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Abstract 

In the present paper, we establish some differential subordination properties for analytic 

functions defined in the open unit disk associated with the fractional integral by using 

Wanas differential operator. 

1. Introduction  

Let ( )UH  denote the space of all analytic functions in the open unit disk =U  

{ }.1: <∈ zz C  Assume that { ( ) ( ) }UzzazzfUfA
n

nn ∈++=∈= +
+ ,,

1
1 ⋯H  with 

.1 AA =   

Given two functions f and g which are analytic in U, we say that f is subordinate to g, 

written gf ≺  or ( ) ( ) ( ),Uzzgzf ∈≺  if there exists a Schwarz function w which is 

analytic in U with ( ) 00 =w  and ( ) 1<zw  such that ( ) ( )( ) ( )., Uzzwgzf ∈=  In 

particular, if the function g is univalent in U, then we have the following equivalent (see 

[5]), ( ) ( )00 gfgf =⇔≺  and ( ) ( ).UgUf ⊂  

Let CC →×ψ U
3

:  and let h be univalent function in U. If p is analytic in U and 

satisfies the (second-order) differential subordination 
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 ( ( ) ( ) ( ) ) ( ),;,,
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zhzzpzzpzzp ≺′′′ψ   (1.1)  

then p is called a solution of the differential subordination. The univalent function q is 

called a dominant of the solutions of the differential subordination, or more simply 

dominant if qp ≺  for all p satisfying (1.1).  

Definition 1.1 [6]. For .Af ∈  The Wanas differential operator is defined by 
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where 0, ≥β∈α R  with { }.0,,0 0 ∪NN =∈δ>β+α m   

Definition 1.2 [1]. The fractional integral of order ( )0>λλ  is defined for a 

function f by 
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where f is an analytic function in a simply-connected region of the z-plane containing the 

origin, and the multiplicity of ( ) 1−λ− tz  is removed by requiring ( )tz −log  to be real, 

when ( ) .0>− tz   

From Definition 1.1 and Definition 1.2, we conclude that 
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It is easily verified from (1.4) that 
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To establish our main results, we require the following lemma.  

Lemma 1.1 [5]. Let g be a convex function in U and let ( ) ( ) ( ),zgnzgzh ′γ+=  for 

,Uz ∈  where 0>γ  and n is a positive integer. 

If ( ) ( ) ,0
1

1 ⋯+++= +
+

n
n

n
n zpzpgzp  for ,Uz ∈  is analytic in U and  

( ) ( ) ( ),zhzpzzp ≺′γ+  

for ,Uz ∈  then 

( ) ( )zgzp ≺  

and this result is sharp.  

Such type of study was carried out by various authors for another classes (see [2, 3, 

4]).  

2. Main Results  

Theorem 2.1. Let g be a convex function such that ( ) 10 =g  and let h be the 

function ( ) ( ) ( ),zgzzgzh ′+=  for .Uz ∈  If Af ∈  satisfies the differential 

subordination: 
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Proof. Suppose that 
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  (2.2)  

Then p is analytic in U and ( ) .10 =p   

Differentiating both sides of (2.2) with respect to z and using the identity (1.5), we 

have  
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In view of the subordination (2.1), we find from (2.3) that 

( ) ( ) ( ).zhzpzzp ≺′+  

Making use of Lemma 1.1, yields ( ) ( ).zgzp ≺  By (2.2), we obtain 
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This completes the proof of the theorem.   

Theorem 2.2. Let g be a convex function such that ( ) 10 =g  and let h be the 

function ( ) ( ) ( ),zgzzgzh ′+=  for .Uz ∈  If Af ∈  satisfies the differential 

subordination: 
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Then p is analytic in U and ( ) .10 =p   

Differentiating both sides of (2.5) with respect to z and the identity (1.5), we get  
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From the subordination (2.4) and the equation (2.6), we deduce that 

( ) ( ) ( ).zhzpzzp ≺′+  

Making use of Lemma 1.1, yields ( ) ( ).zgzp ≺  By (2.5), we obtain the required result.  

Theorem 2.3. Let g be a convex function such that ( ) 10 =g  and let h be the 

function ( ) ( ) ( ),zgzzgzh ′+=  for .Uz ∈  If Af ∈  satisfies the differential 
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subordination:   
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Then p is analytic in U and ( ) .10 =p  A simple computation using (2.8) gives   
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In the light of (2.9), the subordination (2.7) can be written as 
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Making use of Lemma 1.1, yields ( ) ( ).zgzp ≺  By (2.8), we have         
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which completes the proof of the theorem.  
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