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Abstract

In this paper the generalized inverse distribution is defined. Some properties

and applications of the generalized inverse distribution are studied in some

detail. Characterization theorems generalizing the new family in terms of the

hazard function are obtained. Recommendation for further study concludes

the paper.

1 Introduction

Suppose random variable X has CDF F (x), the CDF of the inverse distribution

associated with the random variable X is defined as

1− FX
(

1

x

)
.

The PDF is given by

1

x2
fX

(
1

x

)
.

Two methods for creating probability distributions appeared in [1] and [2]. The

work in [2] extends that of [1]. The CDF of the distribution generalizing that of

[1] is given by
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G(x) = RT [QY (FR(x))],

where RT is the CDF of the random variable T , QY is the quantile function of

the random variable Y , and FR is the CDF of the random variable R. The PDF

is given by

g(x) =
fR(x)

p[QY (FR(x))]
rT [QY (FR(x))],

where p is such that d
dyQ(y) = 1

(p◦Q)(y) , fR is PDF of the random variable R,

and rT is PDF of the random variable T . This paper defines the inverse of the

distributions with the above CDF and PDF and studies some of their properties

with application. It should be noted that some works generalizing the inverse

distributions have appeared in [3]-[16].

2 Organization of Manuscript

This manuscript is organized as follows. In Section 3, we define the new family

introducing its CDF, PDF, and support. In Section 4, we discuss three sub-models

according to the support of the new family, there the CDF, PDF, survival function

(SF), and hazard function (HF) are highlighted in a plot. In Section 5 we

obtain some statistical properties of the new family including quantile function,

random number generation, rth non-central moments, and the Renyi entropy. In

Section 6, the method of maximum likelihood in estimating model parameters are

discussed. In Section 7, a simulation study is conducted to assess the performance

of the maximum likelihood method in estimating model parameters. In Section

8, application to three real life data sets are considered, and submodels of the

new family are shown to be competitive in fitting real life data. In Section 9,

some characterization theorems generalizing the new family are presented in terms

of the hazard function of a random variable. Some further research direction

concludes the paper in Section 10.
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3 The New Family Defined

3.1 The CDF of the New Family

Suppose random variable X has CDF

G(x) =

∫ QY (FR(x))

a
rT (t)dt.

Consider the random variable Z = 1
X . The CDF of Z is

FZ(z) = P(Z ≤ z)

= P
(

1

X
≤ z
)

= P
(
X ≥ 1

z

)
= 1− P

(
X <

1

z

)
= 1−G

(
1

z

)
.

So

FZ(z) = 1−
∫ QY

(
FR

(
1
z

))
a

rT (t)dt = 1−RT

[
QY

(
FR

(
1

z

))]
.

We call the random variable Z with above CDF a generalized inverse type

distribution, or the inverse T −R{Y } distribution.

3.2 The PDF of the New Family

The PDF of the generalized inverse type distribution is given by

fZ(z) = rT

[
QY

(
FR

(
1

z

))]
× qY

(
FR

(
1

z

))
× 1

z2
fR

(
1

z

)
,
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where

R′T = rT ,

Q′Y = qY ,

F ′R = fR.

3.3 The Support of the New Family

Our discussion is motivated by [1] and [2]. Here we consider three cases

Case #1: T has support [0,∞)

As recorded in Table 1 [2], in this case we may take Y as Exponential, Weibull,

Rayleigh, Dagum, Lomax, Log-Logistic, and Exponential-Exponential.

Case #2: T has support (−∞,∞)

As recorded in Table 1 [2], in this case we may take Y as Cauchy, Extreme Value

(Gumbel), Laplace, Logistic, and Generalized Logistic II.

Case #3: T has support [0, 1] or bounded support in general

According to [1], we may take QY (y) = y.

In all three cases FR(1z ) and fR(1z ) has same support as the support of the

distribution associated with the random variable R.
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4 Some Sub-Models of the New Family

In this section we introduce three sub-models according to the support of the

new family. The PDF, CDF, survival function (SF), and hazard function (HF)

are visualized.

Case #1: T has support [0,∞)

The proposed sub-model is called the Inverse Standard Exponential-Dagum

{Standard Log-Logistic} distribution. The PDF is given by

f(x; a, b, c) =
abe

1

1−
(
( 1
cx)

−b
+1

)a ((
1
cx

)−b
+ 1
)a

x
((

1
cx

)b
+ 1
)(((

1
cx

)−b
+ 1
)a
− 1
)2 .

The CDF is given by

F (x; a, b, c) = e

1

1−
(
( 1
cx)

−b
+1

)a
.

The SF is given by

SF (x; a, b, c) = 1− F (x; a, b, c) = 1− e
1

1−
(
( 1
cx)

−b
+1

)a

and the HF is given by

HF (x; a, b, c) =
f(x; a, b, c)

1− F (x; a, b, c)
=

abe

1

1−
(
( 1
cx)

−b
+1

)a (
( 1
cx)

−b
+1

)a
x
(
( 1
cx)

b
+1

)((
( 1
cx)

−b
+1

)a
−1

)2

1− e
1

1−
(
( 1
cx)

−b
+1

)a ,

where x, a, b, c > 0. We write

J ∼ ISEDSLL(a, b, c)
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if J is an Inverse Standard Exponential-Dagum{Standard Log-Logistic} random

variable.

Figure 1: The CDF(blue), PDF(red), SF(purple), and HF(brown) of

ISEDSLL(5.1028,1.22623,0.195919).

Case #2: T has support (−∞,∞)

The proposed sub-model is called the Inverse Standard Extreme Value-Dagum

{Standard Logistic} distribution. The PDF is given by

k(x; a, b, c) =
abe

1−
(
( 1
cx)

−b
+1

)a ((
1
cx

)−b
+ 1
)a

x
((

1
cx

)b
+ 1
) .

The CDF is given by

K(x; a, b, c) = 1− e1−
(
( 1
cx)

−b
+1

)a
.

The SF function is given by

SF (x; a, b, c) = 1−K(x; a, b, c) = 1− (1− e1−
(
( 1
cx)

−b
+1

)a
).
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The HF is given by

HF (x; a, b, c) =
k(x; a, b, c)

K(x; a, b, c)
=

abe
1−

(
( 1
cx)

−b
+1

)a(
( 1
cx)

−b
+1

)a
x
(
( 1
cx)

b
+1

)
1− (1− e1−

(
( 1
cx)

−b
+1

)a
)

,

where x, a, b, c > 0. We write

JJ ∼ ISEV DSL(a, b, c)

if JJ is an Inverse Standard Extreme Value-Dagum{Standard Logistic} random

variable.

Figure 2: The CDF(blue), PDF(red), SF(purple), and HF(brown) of

ISEVDSL(0.526334,1.88075,1.04701).

Case #3: T has support [0, 1] or bounded support in general

The proposed sub-model is called the Inverse Beta(2,2)-Dagum{Standard

Uniform} distribution. The PDF is given by
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w(x; a, b, c) =
6ab

(((
1
cx

)−b
+ 1
)a
− 1
)((

1
cx

)−b
+ 1
)−3a

x
((

1
cx

)b
+ 1
) .

The CDF is given by

W (x; a, b, c) = 1− I(
( 1
cx)

−b
+1

)−a(2, 2).

The SF is given by

SF (x; a, b, c) = 1−W (x; a, b, c) = 1− (1− I(
( 1
cx)

−b
+1

)−a(2, 2)).

The HF is given by

HF (x; a, b, c) =
w(x; a, b, c)

1−W (x; a, b, c)
=

6ab
((

( 1
cx)

−b
+1

)a
−1

)(
( 1
cx)

−b
+1

)−3a

x
(
( 1
cx)

b
+1

)
1− (1− I(

( 1
cx)

−b
+1

)−a(2, 2))
,

where

Iz(a, b) =

∫ z
0 t

a−1(1− t)b−1dt∫ 1
0 t

a−1(1− t)b−1dt

and x, a, b, c > 0. We write

JK ∼ IBDSU(a, b, c)

if JK is an Inverse Beta(2,2)-Dagum{Standard Uniform} random variable.
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Figure 3: The CDF(blue), PDF(red), SF(purple), and HF(brown) of

IBDSU(2.85163, 0.796766, 0.165976).

5 Some Mathematical Properties

5.1 Quantile Function

Theorem 5.1. The quantile function of the generalized inverse type distribution

is given by

Q(p) =
1

QR(FY (QT (1− p)))
,

where 0 < p < 1.

Proof. With 0 < p < 1, we solve the following equation for Q(p)

p = 1−RT

[
QY

(
FR

(
1

Q(p)

))]
,

where QR = F−1R , F−1Y = QY , and QT = R−1T .

5.2 Random Number Generation

If U is uniform on (0, 1), then random numbers from the generalized inverse type

distribution can be obtained using
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X =
1

QR(FY (QT (1− U)))
.

5.3 rth Non-Central Moments

Assuming the random variable R follows the standard log-logistic distribution,

then the random variable

X =
FY (QT (1− U))− 1

FY (QT (1− U))

follows the generalized inverse type standard log-logistic distribution. Thus we

have the following

Theorem 5.2. The ordinary moments of the inverse type standard log-logistic

distribution for r ∈ N, can be expressed as

µ′r =
∞∑
k=0

(−1)r+k
(
r

k

)
(FY (QT (1− U)))k−r.

Proof. By the binomial series we can write(
FY (QT (1− U))− 1

FY (QT (1− U))

)r
as

∞∑
k=0

(−1)r+k
(
r

k

)
(FY (QT (1− U)))k−r.

Hence the result

5.4 Renyi Entropy

By definition the Renyi entropy is defined as

IR(δ) =
1

1− δ
log

[∫ ∞
−∞

f δ(z)dz

]
,

where δ > 0 and δ 6= 1.
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Since the PDF of the inverse type standard log-logistic distribution is given by

fZ(z) = rT

[
QY

(
1

1 + z

)]
× qY

(
1

1 + z

)
× 1

(1 + z)2
.

The definition immediately above implies the following

Theorem 5.3. The Renyi entropy of the generalized inverse type log-logistic

distribution can be expressed as

IR(δ) =
1

1− δ
log

[∫ ∞
−∞

{
rT

[
QY

(
1

1 + z

)]
× qY

(
1

1 + z

)
× 1

(1 + z)2

}δ
dz

]
,

where δ > 0 and δ 6= 1.

6 Parameter Estimation

The method of maximum likelihood is used in this paper to estimate model

parameters. Here we discuss this method for the generalized inverse type

distribution. Suppose x1, x2, · · · , xn is a random sample of size n from the

generalized inverse type distribution. It can be shown that the total log-likelihood

function is given by

lnL =
n∑
i=1

{
ln

(
rT

[
QY

(
FR

(
1

z
; ξ

))])}
+

n∑
i=1

{
ln

(
qY

(
FR

(
1

z
; ξ

)))}

+
n∑
i=1

{
ln

(
1

z2

)}
+

n∑
i=1

{
ln

(
fR

(
1

z
; ξ

))}
,

where ξ is a vector of parameters associated with the distribution of the random

variable R. Partial differentiation of the total log-likelihood function with respect

to model parameters gives the following as the score function
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∂ lnL

∂ξ
=

n∑
i=1

r′T

(
QY

(
FR

(
1
z ; ξ

)))
× qY

(
FR

(
1
z ; ξ

))
× fR

(
1
z ; ξ

)

rT

[
QY

(
FR

(
1
z ; ξ

))] +

n∑
i=1

q′Y

(
FR

(
1
z ; ξ

))
× fR

(
1
z ; ξ

)
qY

(
FR

(
1
z ; ξ

)) +

n∑
i=1

f ′R

(
1
z ; ξ

)
fR

(
1
z ; ξ

) .
Equating the score function to zero and numerically solving the equation using

techniques such as the quasi Newton-Raphson method, gives the maximum

likelihood estimates for the model parameters. Let 4 = (ξ), for the purposes

of constructing confidence intervals for the parameters in the hyperbolic tan-X

family of distributions, the observed information matrix, call it J(4), can be

used due to the complex nature of the expected information matrix. The observed

information matrix is given by

J(4) = −
[
∂2lnL
∂ξ∂ξ

]
.

When the usual regularity conditions are satisfied and that the parameters

are within the interior of the parameter space, but not on the boundary, the

distribution of
√
n(4̂ − 4) converges to the multivariate normal distribution

Np(0, I
−1(4)), where I(4) is the expected information matrix, and it is assumed

that ξ = (ξ1, · · · , ξp). The asymptotic behavior remains valid when I(4)

is replaced by the observed information matrix evaluated at J(4̂). The

asymptotic multivariate normal distribution Np(0, J
−1(4̂)) is a very useful tool

for constructing an approximate 100(1 − ψ)% two-sided confidence intervals for

the model parameters, where ψ is the significance level.

7 Simulation Study

In this section we show that the method of maximum likelihood is adequate in

estimating the parameters in the generalized inverse type distribution. For this,

http://www.earthlinepublishers.com
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a Monte Carlo simulation study is carried out to assess the performance of the

estimation method in the ISEVDSL sub-model. Samples of sizes 200, 400, 500,

and 700, are drawn from the ISEVDSL distribution, and the samples have been

drawn for the following set of parameters

(a) Set I: (a, b, c) = (0.3, 0.5, 0.7),

(b) Set II: (a, b, c) = (0.7, 0.5, 0.3),

(c) Set III: (a, b, c) = (0.5, 0.5, 0.5).

The maximum likelihood estimators for the parameters a, b and c are obtained.

The procedure has been repeated 400 times, and the mean and standard deviation

for the estimates are computed, and the results are summarized in Tables 1-3

below for each of sets I, II and III, respectively, considered above

Table 1: Result of Simulation Study for Set I.

Parameter a

Sample Size Average Estimate Standard Deviation

200 0.3892565 0.3328055

400 0.349296 0.2133193

500 0.3424607 0.1929938

700 0.3191086 0.1541398

Parameter b

Sample Size Average Estimate Standard Deviation

200 0.5111777 0.06877959

400 0.5048487 0.04457237

500 0.5040079 0.04033673

700 0.5001244 0.03365005

Parameter c

Sample Size Average Estimate Standard Deviation

200 0.7595461 0.2755513

400 0.7286692 0.1859357

500 0.7165568 0.1435993

700 0.7201309 0.1159644

Earthline J. Math. Sci. Vol. 6 No. 1 (2021), 33-63
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From the table above, we find that the simulated estimates are close to the true

values of the parameters and hence the estimation method is adequate. We have

also observed that the estimated standard deviation consistently decrease with

increasing sample size as can been seen by plotting the standard deviation against

the sample size.

Table 2: Result of Simulation Study for Set II.

Parameter a

Sample Size Average Estimate Standard Deviation

200 0.8608792 0.6430768

400 0.7671702 0.3629744

500 0.7725065 0.3436264

700 0.7729478 0.2817265

Parameter b

Sample Size Average Estimate Standard Deviation

200 0.5159465 0.08208287

400 0.5067538 0.05257483

500 0.5070602 0.04684715

700 0.5069424 0.03793475

Parameter c

Sample Size Average Estimate Standard Deviation

200 0.306919 0.07088208

400 0.3032652 0.04883596

500 0.3009655 0.04330803

700 0.2984207 0.03330566

From the table above, we find that the simulated estimates are close to the true

values of the parameters and hence the estimation method is adequate. We have

also observed that the estimated standard deviation consistently decrease with

increasing sample size as can been seen by plotting the standard deviation against

the sample size.
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Table 3: Result of Simulation Study for Set III.

Parameter a

Sample Size Average Estimate Standard Deviation

200 0.6291761 0.5183241

400 0.5504443 0.2885157

500 0.575298 0.2909363

700 0.5474437 0.2274251

Parameter b

Sample Size Average Estimate Standard Deviation

200 0.5107722 0.07200797

400 0.5043487 0.04647903

500 0.5069798 0.04290096

700 0.5038033 0.03537766

Parameter c

Sample Size Average Estimate Standard Deviation

200 0.5287993 0.1546726

400 0.5128494 0.09710285

500 0.5029422 0.08321209

700 0.5037321 0.07232243

From the table above, we find that the simulated estimates are close to the true

values of the parameters and hence the estimation method is adequate. We have

also observed that the estimated standard deviation consistently decrease with

increasing sample size as can been seen by plotting the standard deviation against

the sample size.

Overall the simulation study conducted, indicated that using the method of

maximum likelihood in estimating model parameters is adequate.

8 Applications

We study some new generalizations of the inverse Dagum Distribution.
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8.1 Data Set #1

The proposed sub-model is called the Inverse Standard Exponential-Dagum

{Standard Log-Logistic} distribution. The first application is a real data set

given by [17]. It consists of thirty successive values of March precipitation (in

inches) in Minneapolis/St Paul as recorded in [18].

8.1.1 The PDF of the Proposed Sub-Model

f(x; a, b, c) =
abe

1

1−
(
( 1
cx)

−b
+1

)a ((
1
cx

)−b
+ 1
)a

x
((

1
cx

)b
+ 1
)(((

1
cx

)−b
+ 1
)a
− 1
)2 ,

where x, a, b, c > 0.

8.1.2 The CDF of the Proposed Sub-Model

F (x; a, b, c) = e

1

1−
(
( 1
cx)

−b
+1

)a
,

where x, a, b, c > 0.

8.1.3 The Competitor

The competing model is called the Inverse Standard Extreme Value-Dagum

{Standard Logistic} distribution. The PDF is given by

k(x; a, b, c) =
abe

1−
(
( 1
cx)

−b
+1

)a ((
1
cx

)−b
+ 1
)a

x
((

1
cx

)b
+ 1
) ,

where x, a, b, c > 0, and the CDF is given by

K(x; a, b, c) = 1− e1−
(
( 1
cx)

−b
+1

)a
,

where x, a, b, c > 0.
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Using the R software, we report below in Table 4, the estimates for the parameters

in each of the two distributions alongside their standard errors.

Table 4: Estimates for the parameter of fitted distribution.

Distribution Parameters Estimates Standard error

ISEDSLL â 41.80316368 49.74838160

b̂ 1.14765052 0.12907628

ĉ 0.02635994 0.02868664

ISEVDSL â 0.4560337 0.3066097

b̂ 2.4955535 0.8924501

ĉ 0.9265444 0.3951511

The fitted CDF and PDF of ISEDSLL to the March precipitation data using the

above table is shown below

Figure 4: The CDF and PDF of ISEDSLL to the March precipitation data.

and the fitted CDF and PDF of ISEVDSL are shown below
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Figure 5: The CDF and PDF of ISEVDSL to the March precipitation data.

The measures of goodness of fit we consider include Bayesian information

criterion (BIC), negative Log-Likelihood, Cramer von-Misses (W), Anderson

Darling (A), KS (Kolmogorov Smirnov), AIC (Akaikes Information Criterion),

CAIC (Consistent Akaikes Information Criterion), and HQIC (Hannan-Quinn

information criterion), and they are reported in Table 5. Whilst it appears

from the fits above, that all the distributions are competitive in fitting the

March precipitation data, Table 5 reveals that the ISEVDSL distribution is most

compatible with this data set, and hence can be considered the best in this

instance.

Table 5: Goodness of fit measures.

ISEDSLL ISEVDSL

W 0.04518177 0.01436276

A 0.2824271 0.1062863

KS statistic 0.12341 0.060637

KS p-value 0.7508 0.9999

AIC 83.50382 82.31917

CAIC 84.4269 83.24224

BIC 87.70742 86.52276

HQIC 84.84859 83.66393

-Log(likelihood) 38.75191 38.15958
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8.2 Data Set #2

The proposed sub-model is called the Inverse Standard Extreme Value-Dagum

{Standard Logistic} distribution. The second application is given by [19]. The

data refers to the time between failures for repairable items as recorded in [18].

8.2.1 The PDF of the Proposed Sub-Model

k(x; a, b, c) =
abe

1−
(
( 1
cx)

−b
+1

)a ((
1
cx

)−b
+ 1
)a

x
((

1
cx

)b
+ 1
) ,

where x, a, b, c > 0.

8.2.2 The CDF of the Proposed Sub-Model

K(x; a, b, c) = 1− e1−
(
( 1
cx)

−b
+1

)a
,

where x, a, b, c > 0.

8.2.3 The Competitor

The competing model is called the Inverse Beta(2,2)-Dagum{Standard Uniform}
distribution. The PDF is given by

w(x; a, b, c) =
6ab

(((
1
cx

)−b
+ 1
)a
− 1
)((

1
cx

)−b
+ 1
)−3a

x
((

1
cx

)b
+ 1
) ,

where x, a, b, c > 0, and the CDF is given by

W (x; a, b, c) = 1− I(
( 1
cx)

−b
+1

)−a(2, 2),

where

Iz(a, b) =

∫ z
0 t

a−1(1− t)b−1dt∫ 1
0 t

a−1(1− t)b−1dt
and x, a, b, c > 0.
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Using the R software, we report below in Table 6, the estimates for the parameters

in each of the two distributions alongside their standard errors.

Table 6: Estimates for the parameter of fitted distribution.

Distribution Parameters Estimates Standard error

ISEVDSL â 0.526420 0.3552995

b̂ 1.880821 0.6403359

ĉ 1.046672 0.5831751

IBDSU â 14.15461481 29.53868234

b̂ 1.03405481 0.15222980

ĉ 0.04336123 0.09835706

The fitted CDF and PDF of ISEVDSL to the repairbale items data using the

above table are shown below

Figure 6: The CDF and PDF of ISEVDSL to the repairable items data.

and the fitted CDF and PDF of IBDSU are shown below
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Figure 7: The CDF and PDF of IBDSU to the repairable items data.

The measures of goodness of fit we consider include Bayesian information

criterion (BIC), negative Log-Likelihood, Cramer von-Misses (W), Anderson

Darling (A), KS (Kolmogorov Smirnov), AIC (Akaikes Information Criterion),

CAIC (Consistent Akaikes Information Criterion), and HQIC (Hannan-Quinn

information criterion), and they are reported in Table 7. Whilst it appears from

the fits above, that all the distributions are competitive in fitting the repairable

items data, Table 7 reveals that the ISEVDSL distribution is most compatible

with this data set, and hence can be considered the best in this instance.

Table 7: Goodness of fit measures.

ISEVDSL IBDSU

W 0.01732601 0.01757459

A 0.1290585 0.1323956

KS statistic 0.06792 0.065782

KS p-value 0.9991 0.9995

AIC 85.19467 85.25216

CAIC 86.11775 86.17524

BIC 89.39826 89.45575

HQIC 86.53943 86.59692

-Log(likelihood) 39.59733 39.62608
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8.3 Data Set #3

The proposed sub-model is called the Inverse Beta(2,2)-Dagum{Standard

Uniform} distribution. The third application is the vinyl chloride data obtained

from clean upgrading, monitoring wells in mg/L; this data set was used by [20]

and is recorded in [18].

8.3.1 The PDF of the Proposed Sub-Model

w(x; a, b, c) =
6ab

(((
1
cx

)−b
+ 1
)a
− 1
)((

1
cx

)−b
+ 1
)−3a

x
((

1
cx

)b
+ 1
) ,

where x, a, b, c > 0.

8.3.2 The CDF of the Proposed Sub-Model

W (x; a, b, c) = 1− I(
( 1
cx)

−b
+1

)−a(2, 2),

where

Iz(a, b) =

∫ z
0 t

a−1(1− t)b−1dt∫ 1
0 t

a−1(1− t)b−1dt
,

where x, a, b, c > 0.

8.3.3 The Competitor

The competing model is called the Inverse Standard Exponential-Dagum

{Standard Log-Logistic} distribution. The PDF is given by

f(x; a, b, c) =
abe

1

1−
(
( 1
cx)

−b
+1

)a ((
1
cx

)−b
+ 1
)a

x
((

1
cx

)b
+ 1
)(((

1
cx

)−b
+ 1
)a
− 1
)2 ,

where x, a, b, c > 0, and the CDF is given by
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F (x; a, b, c) = e

1

1−
(
( 1
cx)

−b
+1

)a
,

where x, a, b, c > 0.

Using the R software, we report below in Table 8, the estimates for the parameters

in each of the two distributions alongside their standard errors.

Table 8: Estimates for the parameter of fitted distribution.

Distribution Parameters Estimates Standard error

IBDSU â 9.5796402 12.77780197

b̂ 0.7239137 0.09656385

ĉ 0.0227487 0.04812812

ISEDSLL â 22.427212314 13.178166097

b̂ 0.662065711 0.067428760

ĉ 0.007888539 0.006353141

The fitted CDF and PDF of IBDSU to the vinyl chloride data using the above

table are shown below

Figure 8: The CDF and PDF of IBDSU to the vinyl chloride data.

and the fitted CDF and PDF of ISEDSLL are shown below
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Figure 9: The CDF and PDF of ISEDSLL to the vinyl chloride data.

The measures of goodness of fit we consider include Bayesian information

criterion (BIC), negative Log-Likelihood, Cramer von-Misses (W), Anderson

Darling (A), KS (Kolmogorov Smirnov), AIC (Akaikes Information Criterion),

CAIC (Consistent Akaikes Information Criterion), and HQIC (Hannan-Quinn

information criterion), and they are reported in Table 9. Whilst it appears from

the fits above, that all the distributions are competitive in fitting the vinyl chloride

data, Table 9 reveals that the IBDSU distribution is most compatible with this

data set, and hence can be considered the best in this instance.

Table 9: Goodness of fit measures.

IBDSU ISEDSLL

W 0.03134333 0.03845091

A 0.2063411 0.3086084

KS statistic 0.082004 0.10125

KS p-value 0.9762 0.8768

AIC 116.0194 116.7265

CAIC 116.8194 117.5265

BIC 120.5985 121.3056

HQIC 117.581 118.2881

-Log(likelihood) 55.00969 55.36324
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9 Characterization Theorems

In this section, we present two generalizations of the generalized inverse type

distributions using the hazard rate function

9.1 Hazard Function Characterization I

It is well known that the hazard function, hF , of a twice differentiable function,

F , satisfies the first order differential equation

f ′(x)

f(x)
=
h′F (x)

hF (x)
− hF (x).

In this section we present a Kumaraswamy-generalized inverse type distribution.

The result here is inspired by [21]. First let us introduce the following

Definition 9.1. We say a random variable X follows a Kumaraswamy-G type

distribution if its CDF is given by

F (x; ξ) = 1− (1−G(x; ξ))2,

where G is some baseline distribution, x ∈ Supp(G), and ξ is a vector of

parameters in the baseline distribution whose support depends on G.

Remark 9.2. Note that if we take λ = 1 and ϕ = 2 in equation (1) of [22], then

we get the CDF in the above definition.

The PDF of the Kumaraswamy-G type distribution is given by

f(x; ξ) = 2g(x; ξ)(1−G(x; ξ)),

where g is the PDF of the baseline distribution. Clearly the hazard rate function

of the Kumaraswamy-G type distribution is given by

h(x; ξ) =
2g(x; ξ)

(1−G(x; ξ))
.
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Theorem 9.3. Let X : Ω 7→ R be a continuous random variable. The PDF of X

is

2g(x; ξ)(1−G(x; ξ))

for some baseline distribution with PDF g and CDF G if and only if its hazard

rate function h(x) satisfies the following differential equation

h′(x)− g′(x)

g(x)
h(x) =

2g(x)2

(1−G(x))2

with boundary condition h(0) = 2g(0).

Proof. If X has PDF as stated in the theorem, then the differential equation as

stated holds. Now if the stated differential equation holds, then

d

dx

{
g(x)−1h(x)

}
= 2

d

dx

{
(1−G(x))−1

}

which implies

h(x) =
2g(x)

1−G(x)

which is the hazard rate function of the Kumaraswamy-G type distribution.

Clearly, a characterization of the Kumaraswamy-generalized inverse type

distribution. is obtained from the above theorem by letting the baseline PDF

be given as in Section 3.2, and letting the baseline CDF be given as in Section

3.1.

9.2 Hazard Function Characterization II

It is well known that the hazard function, hF , of a twice differentiable function,

F , satisfies the first order differential equation

f ′(x)

f(x)
=
h′F (x)

hF (x)
− hF (x).

In this section we present a Weibull-generalized inverse type distribution. The

result here is inspired by [23]. First let us introduce the following
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Definition 9.4. We say a random variable X follows a Weibull-G distribution if

its CDF is given by

F (x; ξ) = 1− e
−

(
G(x;ξ)

G(x;ξ)

)α
,

where G is some baseline distribution, x ∈ Supp(G), and ξ is a vector of

parameters in the baseline distribution whose support depends on G, and α > 0,

and G = 1−G.

The PDF of the Weibull-G distribution is given by

f(x; ξ) = αg(x; ξ)
G(x; ξ)α−1

G(x; ξ)
α+1 e

−

(
G(x;ξ)

G(x;ξ)

)α
,

where g is the PDF of the baseline distribution. Clearly the hazard rate function

of the Weibull-G distribution is given by

hF (x; ξ) = αg(x; ξ)
G(x; ξ)α−1

G(x; ξ)
α+1 .

Theorem 9.5. Let X : Ω 7→ R be a continuous random variable. The PDF of X

is

αg(x; ξ)
G(x; ξ)α−1

G(x; ξ)
α+1 e

−

(
G(x;ξ)

G(x;ξ)

)α

for some baseline distribution with PDF g, CDF G, α > 0, and G = 1−G, if and

only if its hazard rate function hF (x) satisfies the following differential equation

h′F (x)− g′(x)g(x)−1hF (x) = αg(x)
d

dx

G(x)α−1

G(x)
α+1

with x ∈ R, with initial condition hF (0) = 0 for α > 1.

Proof. If X has PDF as stated in the theorem, then the differential equation as

stated in the theorem holds. Now if the stated differential equation holds, then

d

dx

{
g(x)−1hF (x)

}
= α

d

dx

G(x)α−1

G(x)
α+1
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or

hF (x; ξ) = αg(x; ξ)
G(x; ξ)α−1

G(x; ξ)
α+1

which is the hazard function of Weibull-G

Clearly, a characterization of the Weibull-generalized inverse type distribution. is

obtained from the above theorem by letting the baseline PDF and CDF be given

as in Section 3.2, and Section 3.1, respectively.

10 Further Recommendation

In the sense of [24] and [25], the “CDF” of the quantile generated family of

distributions is given by

QT [V [F (x)]],

where QT is a quantile function, V is an appropriate weight depending on the

support of T , and F (x) is some baseline distribution. The truncated distribution

in the sense of [26] has CDF

QT [V [F (x)]]−QT [V (0)]

QT [V (1)]−QT [V (0)]
.

Suppose the random variable X has CDF given as above, and consider the random

variable Z = 1
X , the CDF of Z is given by

FZ(z) = 1− QT [V [F (1/z)]]−QT [V (0)]

QT [V (1)]−QT [V (0)]
.

We call the random variable Z with the above CDF the inverse truncated

quantile generated random variable. Obviously the PDF can be obtained by

differentiating the CDF. A future interesting problem is to obtain some properties

and applications of the inverse truncated quantile generated family of probability

distributions.
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