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Abstract

This paper introduces an inverse power Akash distribution as a generalization of the
Akash distribution to provide better fits than the Akash distribution and some of its
known extensions. The fundamental properties of the proposed distribution such as the
shapes of the distribution, moments, mean, variance, coefficient of variation, skewness,
kurtosis, moment generating function, quantile function, Rényi entropy, stochastic
ordering and the distribution of order statistics have been derived. The proposed
distribution is observed to be a heavy-tailed distribution and can also be used to model
data with upside-down bathtub shape for its hazard rate function. The maximum
likelihood estimators of the unknown parameters of the proposed distribution have been
obtained. Two numerical examples are given to demonstrate the applicability of the
proposed distribution and for the two real data sets, the proposed distribution is found to
be superior in its ability to sufficiently model heavy-tailed data than Akash, inverse
Akash and power Akash distributions respectively.

1. Introduction

In many fields of life, statistical models are formulated to analyze real-life problems
and these models are commonly built using probability distributions. Several kinds of
probability distributions have been used by various researchers to model different kinds
of real life problems. One of such distributions is the Akash distribution developed by
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[1]. If a random variable X follows the Akash distribution with parameter 0, then its
probability density function (pdf) g(x) and cumulative distribution function (cdf) G (x)

are respectively given by

g(x) = ¢’ (1+x2)e_ex; x>0, >0 (D
9% +2
and
G(x)=1-[1+W}‘ex; x>0, 8>0. @)
- +2

The Akash distribution which is applied in modelling data with monotonic increasing

hazard rate was developed as a two-component mixture of exponential (6) and gamma
(3,8) distributions with mixing proportions 6’ / (92 + 2) and 2/ (62 + 2) respectively.

The mathematical and statistical properties of the Akash distribution were equally studied
by [1] and this distribution was applied in modelling datasets from the engineering and
medical fields. In addition, it was shown that the Akash distribution performed better
than the well-known exponential and Lindley distributions in statistical modelling.
Another related study by [2] and [3] used several datasets to substantiate the claim that
the Akash distribution outperforms the exponential, Lindley and Shanker distributions
respectively in modelling real-life phenomena.

In recent times, several extensions and generalizations of the Akash distribution have
been given in the literature. The essence of such generalizations as pointed out by [4] is
to provide better fits to data and obtain more flexible models. In this regard, [S] proposed
a quasi Akash distribution and defined its probability density function (pdf) as

92

fi(x) = e+2(a +9x2)e_ex; x>0, 8>0, a>0.
a

Also, a power Akash distribution having two-parameters was developed by [6] with
the following pdf

3
fr(x) = Gge (l + x2u)xa—le—9x°'; x>0, 6>0, a>0.
+2

Further, [7] proposed a generalized Akash distribution with pdf
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3
(1 + C(x2)e_ex; x>0, >0, a>0.

f3(x) =

6% +2a
A two-parameter Akash distribution due to [8] has its pdf given by

3
(1+ax2)e_ex; x>0, >0, a>0.

fa(x) % + 20
Obviously, none of the generalizations of the Akash distribution reviewed in this
paper allow for modelling data with heavy tails. By heavy tails, we mean tails that decay
more slowly than the tails of the normal distribution. Heavy-tailed distributions do not
have all their power moments finite and quite often they do not have finite variance. As
we may be aware, many datasets are heavy tailed, especially those arising from finance,
actuarial science, insurance etc. The aim of this article is to introduce a heavy-tailed
version of the Akash distribution, called the inverse power Akash distribution (IPAD).

2. Derivation of the Inverse Power Akash Distribution

Given the distribution of the Akash random variable X defined in (1). Let us assume

_1
that another random Y is related to X by the inverse power function ¥ = g(X) = X .

The derivation of the pdf of the inverse power Akash distribution entails finding the

distribution of the random variable Y. One way to determine the pdf of Y is to assume that
1 -1
Y = g(X) =X @ is aone-to-one function. Next, one obtains the support of ¥ = X ¢

as (0, ) by solving for y when x =0 and x = oo respectively. Suppose the observed

—-a -o-1

-1
value of Y is denoted by y =x ¢, then x =y

and dx =-0y . Plugging
dy
x =y % into (1) gives
fle7'0) = o (1+y20)e® 3)
0% +2

As stated in [9], the probability density function of a continuous random variable (Y)

may be obtained using the relation

dx
dy

o) = £ W) 5| 4
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Consequently, the probability density function (pdf) f(y) of the inverse power

o-

Akash distribution is obtained by putting (3) and ? =-ay into (4). By so doing,
Y

we get

3 _
f(y)= ege (1 + y—2u)y—u—1e—ey ° y>0, >0, a>0. 5)
+2

Similarly, the cumulative density function (cdf) of the inverse power Akash
distribution (IPAD) is derived as follows

y
_ _ a6’ 20\ -a-1_-8x"%
F(y) —P[YS y] —mj(l"'x )X e dx. (6)
. _ -1 _ _—-a dx _ -o-1 . .
Substituting y = x 9, x =y = and P —-ay into (6) yields
Y
— 63 T 2\ -0y
F(y)=— I(1+y)e dy )
6" +2 7,
y

Integrating Eq. (7) by parts leads to

3 =20 =20 _
26 |:1 y + 2y + £:|e_ey o .
0° +2

F(y) = (8)

0 0 92 93
Further simplification of (8) yields the cdf F(y) of the inverse power Akash distribution
as

ey (Gy_“ + 2) ~a

F(y)=|1+ e y>0, a>0, 8>0. 9)
0% +2

Notably, the IPAD defined in (5) is also a two-component mixture of the inverse
Weibull distribution (with shape parameter 0 and scale parameter 8) and a generalized

inverse gamma distribution (with shape parameters 3 and d, and scale parameter 0) with

mixing proportions 62/ (92 + 2) and 2/ (92 + 2). The TPAD may be called a generalized

Inverse Akash (GIA) distribution because for a =1, the distribution reduces to the
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inverse Akash distribution with pdf

3

— - _pv1
f)= (1+572)y72e® s y>0, 8>0.

6> +2

Interestingly, the inverse Akash distribution offers more flexibility than the Akash
distribution since it can be used to model datasets with heavy-tailed data as well as
bathtub and upside-down bathtub shapes for its failure rate. It may be noted that the
inverse power Akash distribution proposed in this work has polynomial tails for all
values of o and O, and so can be referred to as a heavy-tailed distribution. In this
distribution, d is called the heavy tailed parameter, which controls the rate of decay of the
upper tail. The larger the value of a, the less heavy the rate of decay of the upper tail. The

smaller the value of 0, the more heavy the tail becomes.

3. Investigation of the Proposed Inverse Power Akash Distribution for Proper
Density Function

According to [9], a function f (y) is said to be a proper density function of a random
variable Y if and only if f(y) =0, Oy and the total area under the curve of f(y) is
unity. Cases 1 and 2 below verify these conditions for validity of a pdf:

a0’

Case 1. /(1) =3 +2(1+ y2)y78 710 5 0 forally.

Case 2. The property that total area under the curve of f(y) is unity implies that

o0

[ f£(»)dy =1. Thus,

—00

6 - -1 - dx —a-
I(l+x2)e gy cy=x dx=y Yand = = —ay 9!

-2
0 +20 dy
3 3
_ 0 [r(l) N F(S)}: 0 [l+i}:1‘
02 +20 6 0’ 92 +206 @&
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The two cases above justify that the inverse power Akash distribution proposed in this
paper is indeed a valid probability density function (pdf).

The rest of the paper has been organized in the following sections. Sections 4 and 5
provide discussion of some properties of the IPAD and the reliability analysis. Entropy
measure and stochastic ordering are derived in Sections 6 and 7 respectively. The
maximum likelihood estimators of the unknown parameters of the proposed distribution
are given in Section 8. The asymptotic distribution and the approximate confidence
intervals of the maximum likelihood estimators of the IPAD are derived in Section 9.
Further, the distributions of order statistics are derived in Section 10. Section 11 presents
the application of the distribution to the fit attained by some other competing
distributions. The paper is concluded in Section 12.

4. Properties of the Inverse Power Akash Distribution

In this section, some mathematical and statistical properties of the IPAD are
examined. These properties are of vital importance especially when applying the
distribution in analyzing real life data.

4.1. Shape of the inverse power Akash distribution

Once data have been collected for statistical modelling, it is necessary to determine
the shape of the statistical distribution proposed for the modelling. The shape of the
distribution enables one to know whether or not the proposed method is appropriate for
analyzing the data. To describe the shape of the inverse power Akash probability
distribution defined in (1), there is need to obtain the first derivative of the pdf. Thus,

d 6° -2 gy ( -
1) =) =y elh), (10)

where @(w) = 08w’ - (20 + o + 1)’ + aBw - (a +1) and y™® = Notably, the
mode of the proposed distribution is the value of y~ @ for which f ! () = 0. From (10),

f 1(y) =0 implies that only @(w) =0. One is then required to find the zeroes of
@(w) = 0. To this end, we write @(w) = 0 as

W + a0 + aw+ay = 0. (11)

Defining u = w+ a,/3 and w = u — a, /3 in (11), one obtains

http:/fwww.earthlinepublishers.com
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S+ au +bH =0, (12)

where
a=a - a%/3 =1-(3+ l/C()(392)_1,
b= ap _(612611/3 + 261%/27)

-1+ 1/0()6_1 +(3+ l/a)|:(3e)_1 +2(3+ 1/0()(27@2)‘1}.

The solution of (12) is obtained using the formula
u=A+B, (13)

where

1 1
2 3 )3 2 3 )3
A= —2+ b_+a_ and B = —2— b_+a_ .

2 4 27

After the value of u has been obtained, it has to be substituted into the relation

W =u —a,/3 to get the value of w. Finally, the value of y is obtained from the relation

vy~ = @ and this value of y is the mode of the inverse power Akash random variable.

4.2. Asymptotic behaviour of the proposed distribution

The asymptotic behaviour of a distribution is investigated by evaluating the limit of
the probability density function (pdf) as the observed values of the random variable tends

to zero and infinity respectively. As orchestrated by [10], if lim f(y) =0 and
y -0

lim f(y) =0, then a distribution has at least one mode. Hence, for the inverse power
y -0

Akash distribution, it is obvious that f(0) =0 and f (+c) = 0, which implies that the
proposed distribution is always unimodal. Figures 1 and 2 shows various shapes of the
probability density function (pdf) and that of the cumulative distribution function (cdf) of
the IPAD for different values of 6 and 0.

Earthline J. Math. Sci. Vol. 6 No. 1 (2021), 1-32
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Figure 1. Shape of the pdf of the IPAD for various values of parameters 6 and a.
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The asymptotics of the pdf, cdf and the upper tails of the pdf are polynomials (i.e.,
heavy upper tails), while its lower tails decay exponentially. The mode moves more to the

right and the pdf becomes more peaked with increasing values of 6.
4.3. Quantile function of the Inverse power Akash distribution
The pth quantile of the IPAD is the value of y that satisfies the equation
p=F(®)
0y 6y +2)) -

=>p= 1+ > e—ey . (14)
0° +2

On solving (14) for y, we get

e 92+ey;°‘(ey;°‘+2)+2 a
vy =|5in e . (1)

Undoubtedly, the quantile function can be useful for random number generation,
estimation based on percentiles and quantile regression methods. For random number
generation, one can solve (15) for y, for p a uniform random number between 0 and 1.

The solving must be performed numerically, for example, using uniroot in the R software
[11].

4.4. Moments of the inverse power Akash distribution

The moments of distributions are used to describe some of the most important
features of a model like dispersion, skewness and kurtosis. Consequently, the rth raw
moment of the IPAD is given by

i ely) = [ e
0

3 0 _e/y(] 00 _e/ya
aB J‘e +I e (16)

92 12 ) JarH ) [ dy .
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-1
Putting y = x @, x =y ¢ and;ﬂ =-a y_O(_1 into (16), one gets
y
3 % -9/x X -6/x
M = E(Yr) = eze+ 2[_[ 6—’)4.1 dx +J. é_r)ﬂ dx]
0x 0x

_ e [T(i-g) (-5)-grl-2
e’ +2| © 0

Oul =6a|1+ rz(r;?)a) F(G_r), a>r.
a (e +2)

(7)

On substituting r = 1,2,3and 4 into (17), one gets the first four crude moments of the

IPAD as

a (62+2 a
2 _ _
uh =091 22(223“) r(“ 2), a>2
a (9 +2) a
3| _ ] _
u13=9°‘ | 32(3230() r(a 3), q>3
a (9 +2) a

4 _ _
l'lll _gali+ 42(423a) I_(G 4), q >4
a (9 +2)

The rth central moment of the IPAD is given by

M, = E(X -p) = i(r)(—u)r—j E(x7)

j=1

(18)

19)

(20)

2y

http:/fwww.earthlinepublishers.com
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r=j

= i@ o1+ agl((;ji)z) r(aa_l) eé 1+ ajz((e; 110(2)) r(aa_j)' 22

J=1

In particular, the second, third and fourth central moments of the inverse power Akash
distribution are

2-j -

o = i@ oo o) e A ) e
(3 1 [ (1-3a) | ra-1 T j(j—30()_ o-j
H3—]Z_;(jj -Qa _1+a2(92+2)_r( . j g _1+a2(92+2)_r( . ) (24)
L amsay Jopamn L - ] fa-
m—é[}j —ga _1+a2(92+2)_r( . j oo _1+a2(92+2)_r( . j (25)

Notably, the first raw moment (u%) is the mean (p) while the second central
moment (W,) is the variance (02) of the inverse power Akash distribution. It is often

more convenient to write the variance as 0> = E (YZ) -[E(Y )]2 Consequently,

2

2 - — 2 - _
02 =001+ 22(2230‘) r(“ 2)—9(1 1+% rz(“ 1). (26)
o (e +2) o o (e +2) o

4.5. Coefficient of variation of the inverse power Akash distribution

The ratio of the standard deviation to the mean gives the coefficient of variation (cv)
of the inverse power Akash distribution (IPAD) as

2

2
2 — _ 2 — _
0|1 + 22(2 230() I_(cx zj_ea L+ gl 230() I_g(a 1)
5 o (e +2) a o (e +2) o
=0 L@
M 1 _ _
9o |1+ gl 230() r(a 1)
a (e +2) o

Earthline J. Math. Sci. Vol. 6 No. 1 (2021), 1-32



12 S. U. Enogwe, H. O. Obiora-Ilouno and C. K. Onyekwere

4.6. Skewness and Kurtosis of the inverse power Akash distribution

The skewness (sk) of the inverse power Akash distribution (IPAD) is given by

sk(v) =52
o
Z[ j -9a |1+ gl '230‘) r(o‘_lj oa |1+ 12(153“) r(o‘_])
=\ a?(6? +2)| \ @ oa?(e? +2)| \ «a

2
ga 1+ %2;w>r(a-?}eél+g—xo ﬂ(a-g
a (9 +2) a a
(28)

Also, the kurtosis (kur) of the inverse power Akash distribution (IPAD) is

kur(Y) = u—j
(0}

.
:éﬁﬁ“ﬁﬁﬁﬁtg%“*%ﬁfﬁﬂ

2 - - 2 -
0o |1 + 2(2 - 3a) l_(a 2)_9(} 1+ 1 30( ]rz(aa

a2(62 +2) a

(29)
4.7. Moments generating function of the inverse power Akash distribution

In addition to moments, many of the interesting features of a statistical distribution
can also be obtained through its moment generating function (mgf). Let Y denote a
random variable having the inverse power Akash distribution (IPAD) with parameters 0

and a, then its moment generating function (mgf) is

My (1) = E(e j (1+y720) 18 gy, (30)
0

http:/fwww.earthlinepublishers.com
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) ~a

[e0) r _1
Using the series expansion e” = Z(Zy_' together with y =x %, x=y
r!

and
r=0
? = —O(y_a_l, the expression in (30) becomes
y
3 © r|% -9 @ -9
_ 0 t e x e~
MY(t)—62+2ZFJ pr x+J v
r=0 ox © ox ¢
320 r(3- M-z
o prfrb=g), rh-y
O +2737 g 0"
00 r r —_ —_
:Zf_'ea 1+ rz(r23°‘) r(“ r), a>r 31)
= a (e +2) a

5. Reliability Analyses

In this section, we present the survival, hazard rate, reversed hazard, cumulative
hazard and odds functions of the inverse power Akash distribution, which are useful in
reliability analysis.

5.1. Survival function for the inverse power Akash distribution

Let Y be a continuous random variable having the inverse power Akash distribution

with parameters 8 and a, then the survival function of Y is defined to be

By (Gy_a +2) e )

S(y)=1-F(y)=1-|1+
(») (») 712

The survival function is also known as the reliability function and it indicates the

probability of surviving an age y or becoming older than y. The study of § (y) is at the

heart of survival analysis and reliability theory. It is important in describing systems of
components, that is, in calculating systems’ reliability.

5.2. Hazard rate function of the inverse power Akash distribution

The hazard rate function of a statistical distribution is obtained mathematically as the

Earthline J. Math. Sci. Vol. 6 No. 1 (2021), 1-32
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ratio of the probability density function f (y) to the survival function S(y). Thus, the

hazard rate function for the inverse power Akash distribution is defined as

3 _
ge (14_y—2a)y—a—le—9y a
h(y)Zf(y): 0- +2
S(y) By %6y +2 _
T & )e_eya

6% +2
_ af’ (1 + y2a)
) ya+1[_9(9+ 2,%) + (67 + 2) 2 (ee/y“ _1)]

For the inverse power Akash distribution (IPAD), the behaviour of S(y) and % (y)

(33)

for different values of © and o are shown in Figures 3 and 4 respectively. The hazard rate
function appears always unimodal. Its shape becomes more peaked with increasing
values of 0 and less peaked with increasing values of .

Survival Function
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Figure 3. Survival function of the inverse power Akash distribution 8 and a.
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Figure 4. Hazard function of the inverse power Akash distribution 8 and 0.

5.3. Reversed hazard rate for the inverse power Akash distribution
The reversed hazard rate refers to the ratio of the probability density function (pdf) to

the cumulative distribution function (cdf). It extends the concept of hazard rate to a

reverse time direction and is given by
gy ¢ (ey‘“ + 2) )
. (34)

hg (y) = ?8;

The reversed hazard h, (y) describes the probability of an immediate past failure, given

a6’ -2a) ,-a-1
= L+y =)y 1+
[92 + 2( ) 6% +2

that the unit has already failed at time y, described by % (y).
5.4. Cumulative hazard rate function for the inverse power Akash distribution

The cumulative hazard rate (chr) of the probability density function (pdf) is defined

as
ey—a ey—a +2 -a
H(y)=-In[l = F(y)] = =Inq1=|1+ (2 ) O L (35)
0° +2
Earthline J. Math. Sci. Vol. 6 No. 1 (2021), 1-32
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Notably H (y) does not have a probabilistic connotation although it plays a key role in
reliability and survivals analysis since P(Y > y) = e HO), y = 0.

5.5. Odds function for the inverse power Akash distribution

The odds function of the inverse power Akash distribution is defined as

0() =W

1-F(y)

-1
gy ¢ (ey‘“ +2) gy gy ¢ (Gy_a + 2) gy
=||1+ 5 e Y l1-|1+ 5 e Y . (36)
0°+2 0°+2

6. Rényi Entropy of the Inverse Power Akash Distribution

Entropy provides tool for quantifying the amount of information (or uncertainty)
contained in a random sample regarding its parent population. A large value of entropy
implies that there is greater uncertainty in the data. The concept of entropy is important in
different areas such as physics, probability and statistics, communication theory,
economics and so on. The Rényi, Shannon and Tsallis entropy, among others, are some
different forms of entropy. In this paper, the widely used Rényi entropy was considered.

Consequently, the Rényi entropy is defined by [12] as

Re(n) =

1
n #
e [ )yt n>0andn =0
y

1 a8’ V' 20\ _-3na-n_-ndy @
= logq| — I(1+y ) y N NTNEY gyt
I-n 6°+2) 4

nj y2aj , one gets

Using the fact that (1 + y2a)n =y (J

Jj=0

http:/fwww.earthlinepublishers.com
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Re(n) = ——log [ 22 [ 37)
en_l_HOg 02 42 j=0 n3a1 mrrle

L d. —a-
Using y =x %, x=y and—x:—ay a

y Iand simplifying, we obtain
Y

af’ 1 1
02 +2 a(ne)n/a(w—l)—l/a

1
Re(n) = oo {

[o0]

> (" Jine) rin/aa 1) - 25 - el . 9

Jj=0

7. Stochastic Ordering of the Inverse Power Akash Distribution

Stochastic ordering of positive continuous random variables is an important tool for
judging the comparative behaviour of random variables. The different types of stochastic
orderings which are useful in ordering random variables include the usual stochastic
order, the hazard rate order, the mean residual life order, and the likelihood ratio order for
the random variables under a restricted parameter space. Suppose X and Y are
independent random variables with cumulative distribution functions Fy (y) and Fy (y)

respectively, then Y is said to be smaller than the random variable X in the

1. stochastic order (Y < (, X) if Fy (y) = Fy (y), forally
2. hazard rate order (Y < . X) if hy (y) 2 hy (y), forall y

3. mean residual life order (Y < ,,,,; X) if my (y) =2 my (y) forally

4. likelihood ratio order (Y < ;. X) if Sr0) decreases in y.
fx ()
The inverse power Akash distribution is ordered with respect to the strongest
“likelihood ratio” ordering. To show the flexibility of the IPAD, its likelihood ratio is
defined as
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alel (1 + y—Zal)y—al—le—el y_al

3 _
fX (y) azez (1 + y—2a2)y—a2—le—62y a2

9% +2
5 201 _ —
_ a6 |( 63 +2 (1 T )y3(0(2-0‘1)e92y 26y (39)
0,036 +2 {1+ %)

Next, the log of the likelihood ratio in (39) is

3 2
ln[—fy (y)j = ln{O(lel ] + ln{ez * 2] + ln(l + y2a1)
fx (%) a,63 67 +2

= In(1+y%2) +3(cy — ay)Iny +8, 572 =6y, (40)

Differentiating (40) with respect to y, we obtain

dy \fx(y) 1+ yzo‘l 1+ y2a2 y

+ 0,8, y (@2*D) — g g y (@), @1)

If 0y =a, =a and 6; = 6;, then (40) and (41) respectively reduces to

fr () {ﬁj{eﬁ +2]e(92—91)/y°‘ (42)
fx () 83 )\e? +2
and
d fY()’)j_a(ez"'el)
4, - 43
dy “[fx )y -

which is decreasing in y for 6, = 8, or (or for 8, = 6,). The results in (42) and (43)
clearly show that if ¥ ~ (8;,a;) and X ~ (8,,0,), then Y 2 /,X and hence, Y 2, X,
Y 2,, X andY 2, X provided 8, = 6, or (or for 6, = 6,).

st
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8. Maximum Likelihood Estimators of the Inverse Power Akash Distribution

In estimation theory, the method of maximum likelihood have been used more often
to find the parameters of statistical distributions due to the fact that it possesses the
consistency, asymptotic efficiency and invariance properties. Thus, to obtain the
maximum likelihood estimators of parameters of the inverse power Akash distribution,

let ¥;,Y5,...,Y, constitute a random sample of size n from this distribution and define

the likelihood function of the random sample as

n 3 _ 3\ _eiy.‘“ n 1+ 2a
(o{3] 2a\ -a-1 -6y79 (o (3] il i
L(e,a) = ) (1 + Yy; a)yi a e Yi = 5 e i=1 %
2 e + 2 =1 yl

Il
LN

(44)

Taking the natural log of (44), one obtains the log-likelihood function of the random
sample as

InL(8,a) = n[In(a) + 31n(6) - In(6% +2) |

- ezn:y,-‘“ ¥ iln(l +y79) - (3a + 1)Zn:1ny,.. (45)
i=1 i=1 i=1

Taking the partial derivatives of (45) with respect 8 and a respectively leads to

0lnL(6,0) _n y lny
a( “a BZw’lnsz’ ’ 32“‘” (46)

OInL(B,0) _3n _ 2nB _Z”: ~a
2 6 gr+2 &

(47)

The maximum likelihood estimates (d and é) of parameters (0 and@) are obtained by

solving these nonlinear systems of equations dlnL(6,0)/0a =0 and 0lnL(8,0)/08
= 0. Consequently,

n n__2d n
n Z - Z yi Iny; Z _
a + eizl Vi In Vi + 21_:11_'_—.2(1 3i_ In yi = 0 (48)
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n

3n 2n8 —a
— - - . =0. (49)
e 92 + 2 ;yl

The maximum likelihood estimates of o and O can is obtained by solving the
nonlinear system of equations (48) and (49). It is usually more convenient to use
nonlinear optimization algorithms such as quasi-Newton algorithm to numerically
maximize the log-likelihood function. The R package provides nonlinear optimization for
solving such problems.

9. The Asymptotic Distribution and Approximate Confidence Interval Estimators

of (d, é) for the Inverse Power Akash Distribution

It is clear that the log-likelihood equations defined in (48) and (49) does not yield
closed-form solution. As a result, the estimates of the unknown parameters o and 6
obtained in this work are approximate solution. In what follows, their corresponding
confidence intervals cannot be constructed explicitly. Thus, there is need to find the
approximate confidence intervals of a and 6. To do this, one is required to obtain the
asymptotic distribution of the maximum likelihood estimators of a and 6. In this regard,
we first obtain the second-order partial derivatives, which are required in order to
determine the Fisher information matrix. Thus,

d’InL(6,a) 3n 2”(92 - 2)

0 0 o2 0
2
0"InL(8.a) lnLge = ———GZyl %(Iny,)? +4Z i (iny,)” (51)
g o)
azlnL 8,a) _
oo Zy, UIny;. (52)

Now, we take expectation of (50) to get

2 271 92 _2
Q[PnLEa)]_ (-2 53
302 ) 9% +2
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Similarly, the expectations of (51) is given by

E{aZmL(ea} ___GZE[ (Iny,) ]*42151/20((%' (54)

2
da i=1 (1 + YZG)
To solve (54), one is required to find the expressions for E [ “(InY;) ] and

% (Iny;)?

o)

E[Y_a (In Y)2] = a6’ Oj:y_a (In y)2 (l + y—2a ) y @ —1e—ey‘°‘ dy

E respectively. Thus,

2
67 +2y
a8’ T _q 214370 gya
=———— |y " (Iny) e Y dy. (55)
2 J.)’z (Inyi)" g5
0° +2 0 y
1 1 1y
Letting y = x o, y @ =y, y2cx =x2, y30(+1 = x_(2+1/a), dy =——x 9 dx in (54),
a

one obtains

0% +2
3
= @z‘;lnx(x + x3) 0% gy

3 [oe] [oe]
% Ixz_l ¢ (Inx ) dx + Ix4_1 e (nx)?dx |, (56)
a? (6% +2) :

To resolve the integrals in (56), we recall from [13] that

r(vv){[lp(v) —Inp]? + Z(2,v)}, v, £>0 (57

va_le_“x (Inx)? dx =
0 M
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and

(z.v =Z . z>L vE0-1-2,.. (58)

0v+m

where T (v) is the gamma function of v, Y(v) is the digamma function of v, and {(z,v)

is the Riemann’s zeta function of (z, v). Using (57) and (58) in (56), we have
E[Y™® (iny)* ]

rreeniva (AL RIS b

{[lIJ(3 ~Ing]* + z(2,4)}}

1

= m{ez (@) -1n0)* +7(2.2)] + 6 (W(4) - m6)* +2(2.4) ] (59)

Again, we obtain the following expectation

y2o (lnY)2 _ ad’ ]‘oy-za (lny-)2 2a) -a-1 -y @
E (1+Y2°‘)2 & +2) (11+yl.20‘l)2 (1+y O‘)y a-1 -8y

ag’ Tym (Iny;)* 1+ y*
T a2 2 3o+l

O gy, (60)

1
- ——-1
Putting y =x &, y @ =x, 2% =x72, o= x_(2+1/0(), dy = —lx o dx into

(60), we have

12

_2 —_—

ox “|Ilnx @ _ 1

y2 (lnY)2 _ a6’ [ j 1+ x72 0| 1 _a_l

E 2 2 o cruyrey R R SR
(1+Y2°‘) 0 +20 (1+x_2) X a

e f(ied)
= (12(92 +2)_([ (l+x_2)2

(Inx)? e 8% dx
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) -2
(1 o )2 (lnx)2 e %y

o?(6? +2)| L1+
92 -
- m_{[Lp(l) -ng* +¢(21)} -07(6)] (61)

I(lnx) —Gxdx
pltx

where J

Substituting (59) and (61) into (54), we obtain

o>
n no
2 ‘m{ez [((2) - 1n8)” +2(2.2)| +6[((4) - m8)* +2(2.4)]
n 2
+WO+2)[O{[¢(I) —In 9]2 + Z(2,1)} + ](9)]_ ©2)

Finally, we obtain the expectation

2
) St
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But
-a C -a -2a\ ,-a-1 -8y~ @
E[Y lnY]: Iy 1ny(1+y )y e Y dy
2
nad® o - 1+ 2% _g -a
) .[y “iny; 3ay+1 ey (64)
0 +2 y
0
1 1
: a0 = 200 _ -2 3o+l _ _—(2+l/a) |
Putting y=x %, y © =x, ¥y =x 7, y =x , dy =——x 9 dx into
a
(64) leads to
6 -1

93
ale” +2);

Ilnx x+x )e_exdx

[e)

3 (o]
S— Ixz_le_exlnxdx + Ix4_1e_exlnxdx . (65)
ale®+2)|; )

In [13], va_le_“xln xdx = l:)[llJ (v) = Inp], v,u > 0. Consequently, (65) becomes
0 H

E(r®my) - (923+ 2){r(2 [W(2) - Inf] + [qJ 1ne]}

- lg? n + —1n .
9(92 - 2){9 [W(2) - €] + 6[y(4) - In6] (6)

Substituting (66) into (63), one obtains

{azlnL(G,a)

2000 }: —{8*[w(2) - 1n6] + 6[w(4) - n6]}. (67)

ae(92 + 2)

The expressions defined in (53), (62) and (66) are used to find the Fisher information
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matrix /(0,a) for the IPAD. However, the elements of the Fisher information matrix are

given respectively as

2
_ {azlnL(e,a)} 3 2(9 —2)
Ill =-F— = —6_—

08’ 6% +2 9
Iy _E{azlgige,a)}
- a_lz " m{e2 (@) - m8)? +2(2.2) ]|+ 6[((4) - m6)> +2(2.4) ]
-4 (p(1) - 1n6)* + Z(2.1) | + 467 (6)} (69)

_-0°[(W(2) - 1n8)* +2(2.2) | - 6| (W(4) ~nB)” + 7 (2.4)]
) o’6? (6? +2) '

(70)

According to [14], the asymptotic distribution of (é( , ﬁ) as n — o is the bivariate

normal distribution with means (o, ) and variance-covariance matrix n_llgl(d,f}),

provided certain regularity conditions are met. In line with the work by [14], the

asymptotic variance of the maximum likelihood estimates 6 and G are respectively
given by

A - I
Var(8) = n~' —1— (71
Iy —1Iip

and

R _ 1
Var(6) = n”' —2— (72)
Iy - I

Also, the asymptotic coverage lengths of & and 6 with significance level y are
respectively
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Iy
n(111122 ‘1122)

I
2z ) (74)
v/2 2
\ n(111122 - 112)

where z,/5 is the quantile of the standard normal distribution.

220 (73)

and

In practice, the distribution of (d -a,6- 9) can be approximated by a bivariate

normal distribution with zero means and covariance matrix

|

N G

" IIFI(G’G) ., 1(}1 }2]
Iy Ip

1 (122 ‘112]:’1-1(‘/11 ‘V12j (75)
l’l(111122_122) -1y Iy Vor Vo

say for n sufficiently large. This approximation can be used to construct confidence

intervals and test of hypotheses. For example, 100(1 - y) confidence intervals for 8 and

o are respectively given by

A \%

6 + ZV/Z % (76)
and

N V.

@ 2y |22 (77)

10. Distributions of Order Statistics for the Inverse Power Akash Distribution

Let ¥},Y,,....Y, be a random sample of size n from the inverse power Akash
distribution with cumulative distribution function (cdf) F(y) and probability density

function f(y). Then, Yoy Y2)» - Y denote corresponding order statistics, where
Y(l) < Y(z) <...< Y(I’l)’ Y(l) = min(Yl,Yz,..., Yl’l) and Y(l’l) = max(Yl,YZ,..., Yl’l) The

probability density function (pdf) of the k™ order statistic is given by
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iy 0 = o OF 0= FOI )
' n—k n - .
-l e Eer )
’ “1=0

: n'a’ Koy -k I,
(k= 1)(n - k(62 +2)l:[ ]( )

_ n'a6’ nkeo _p l gy (ey—q +2) k+1-1
e Sl S

x [1 + )2 Je_(k )8y~ (78)

3a+1

If k=1 in (78), one obtains the probability density function (pdf) of the first order

statistic Y(l) for the inverse power Akash distribution as

o8 o1 ey‘“(ey‘“+2)l 20t a
iy )= 2 e+ [”y A0
(79)

Similarly for k =n in (79), we obtain the probability density function (pdf) of the

nth order statistic Y( n) for the inverse power Akash distribution as

n+l-1

__na®’ ey‘“ (ey‘“+2) 1+y%) (arpy ™
Py (v _(92”2)1;( ] PO [y30(+1 ]e n+l)By~ %

(80)
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11. Numerical Examples

In this section, two real-life data sets are used to illustrate the importance and
flexibility of the inverse power Akash distribution proposed in this work. The first and
second data sets, which appeared in the work [15], are provided in Tables 1 and 2
respectively.

Table 1.Uncensored breaking stress of carbon fibres in (Gba).

0.92, 0.928, 0.997, 0.9971, 1.061, 1.117, 1.162, 1.183, 1.187, 1.192, 1.196, 1.213, 1.215,
1.2199, 1.22, 1.224, 1.225, 1.228, 1.237, 1.24, 1.244, 1.259, 1.261, 1.263, 1.276, 1.31,
1.321, 1.329, 1.331, 1.337, 1.351, 1.359, 1.388, 1.408, 1.449, 1.4497, 1.45, 1.459, 1.471,
1.475, 1.477, 1.48, 1.489, 1.501, 1.507, 1.515, 1.53, 1.5304, 1.533, 1.544, 1.5443, 1.552,
1.556, 1.562, 1.566, 1.585, 1.586, 1.599, 1.602, 1.614, 1.616, 1.617, 1.628, 1.684, 1.711,
1.718, 1.733, 1.738, 1.743, 1.759, 1.777, 1.794, 1.799, 1.806, 1.814, 1.816, 1.828, 1.83,
1.884, 1.892, 1.944, 1.972, 1.984, 1.987, 2.02, 2.0304, 2.029, 2.035, 2.037, 2.043, 2.046,
2.059, 2.111, 2.165, 2.686, 2.778, 2.972, 3.504, 3.863, 5.306

Source: Mahmoud and Mandouh [15].

Table 2: Uncensored strengths of glass fibres.

1.014, 1.081, 1.082, 1.185, 1.223, 1.248, 1.267, 1.271, 1.272, 1.275, 1.276, 1.278, 1.286,
1.288, 1.292, 1.304, 1.306, 1.355, 1.361, 1.364, 1.379, 1.409, 1.426, 1.459, 1.46, 1.476,
1.481, 1.484, 1.501, 1.506, 1.524, 1.526, 1.535, 1.541, 1.568, 1.579, 1.581, 1.591, 1.593,
1.602, 1.666, 1.67, 1.684, 1.691, 1.704, 1.731, 1.735, 1.747, 1.748, 1.757, 1.800, 1.806,
1.867, 1.876, 1.878, 1.91, 1.916, 1.972, 2.012, 2.456, 2.592, 3.197, 4.121

Source: Mahmoud and Mandouh [15].

The inverse power Akash distribution is fitted the to the two data sets by using the
method of maximum likelihood and the results are compared with the other competitive
models namely, Akash (A), Inverse Akash (IA) and Power Akash (PA) distributions
respectively.

Next, some criteria like the Akaike information criterion (AIC), Bayesian
information criterion (BIC), and Consistent Akaike information criterion (CAIC) are used
to verify which of the aforementioned distributions fits the research data better. The
formulae for computing the vales of AIC, BIC and CAIC are respectively given by

AIC =2k - 21 (81)

BIC = kIn(n) - 21 (82)

CAIC = Z—nk -2, (83)
n—k-1

where [ denotes the log-likelihood function evaluated at the maximum likelihood
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estimates, k is the number of model parameters, n is the sample size. For calculation of
the analytical measures, the optimum () R-function with the argument method= “BFGS”".

A distribution is said to provide the best fit to the data if among all the distributions
under consideration, it corresponds to minimum values of AIC, BIC, CAIC and the log-
likelihood respectively. The maximum likelihood estimates with the standard error of the
fitted models and the corresponding model selection criteria for data sets 1 and 2 are
presented in Tables 3 and 4.

Table 3. Estimates of model parameter with standard errors and corresponding values of
model selection criteria for the distributions fitted to data set 1

Distribution Parameter Standard logL AIC BIC CAIC 95% Conf.
. Interval
Estimates Error
L U
IPAD 0=50911 0.5255 53.4688 110.9376 116.1479 111.0613 4.0611 | 6.1211
a =45137 0.3253 3.8759 | 5.1514
AD 0 =1.2707 0.0722 138.8328 279.6656 282.2708 279.7890 1.1292 | 14122
IAD 0 = 2.3451 0.1541 154.8316 311.6631 314.2683 311.7040 2.0431 | 2.6471
PAD 4 =2.0018 2.0018 91.8369 187.6739 192.8842 187.7980 1.7984 | 2.2053
8 =0.8072 0.0641 0.6816 | 0.9328

Table 4. Estimates of model parameter with standard errors and corresponding values of
model selection criteria for the distributions fitted to data set 2

Distribution Parameter Standard logL AIC BIC CAIC 95% Conf. Interval
Estimates Error L U
IPAD B =17.1868 1.1768 19.9648 43.9296 48.2160 44.1297 4.8803 9.4933
a =5.5477 | 0.5094 4.5493 6.5461
AD 6 =1.2931 0.0928 85.6863 173.3726 175.5157 173.4381 1.1112 1.4750
IAD é =2.3417 0.1938 96.2251 194.4501 196.5932 194.516 1.9619 2.7216
PAD G =23013 | 0.1494 46.5065 97.0129 101.2992 97.2129 2.0085 2.5941
8=07457 | 0.0779 0.5930 0.8984

*L and U denote the lower limits of the confidence interval respectively.

Based on the results displayed in Tables 3 and 4 respectively, it is evident that the
IPA distribution has the smallest AIC, BIC, CAIC and log-likelihood values among all
competing models, and so it could be chosen as the best model among all the
distributions which have been fitted to the two data sets.
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12. Conclusion

This paper introduced a new two-parameter heavy-tailed distribution called the
inverse power Akash distribution and derived some of its properties like moments, mean,
variance, mode, coefficient of variation, skewness, kurtosis, moment generating function,
quantile function, Rényi entropy, stochastic ordering and the distributions of order
statistics. In addition, some functions commonly used in reliability analysis, such as
survival, hazard, reversed, cumulative hazard and odds functions respectively have been
derived. The model parameters were estimated by using the maximum likelihood
estimation procedure. Finally, the proposed model was fitted to two real-life data sets and
was compared with the estimates from other extensions of the Akash distribution. The
proposed distribution was found provide a better fit than some other competition
distributions considered in this study. It is hoped that the proposed distribution will serve
as an alternative model to other models available for modelling heavy-tailed data in many
areas such as finance, insurance and economics.
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