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Abstract 

In this paper, we introduced the discrete analogue of the continuous Marshall-Olkin 

Weibull distribution using the discrete concentration approach. Some mathematical 

properties of the proposed discrete distribution such as the probability mass function, 

cumulative distribution function, survival function, hazard rate function, second rate of 

failure, probability generating function, quantile function and moments are derived. The 

method of maximum likelihood estimation is employed to estimate the unknown 

parameters of the proposed distribution. The applicability of the proposed discrete 

distribution was examined using an over-dispersed and under-dispersed data sets.  

1. Introduction 

The theory of discretization generally arises when it becomes seemingly difficult to 

measure the life length of a product or device on a continuous scale. Situation of such 

arises when the observed lifetimes are preferably recorded on a discrete scale than on a 

continuous analogue. For examples the number of times devices are switched on/off, the 

number of days a patient stays in an observation ward, and the number of 

weeks/months/years a cancer patient survives after treatment etc. Although, classical 

discrete distributions such as the Poisson, Geometric, Binomial and Negative Binomial 

distributions have been developed to handle such situation, there is still need to introduce 

more flexible discrete distributions especially those arising from the discretization of 

continuous distributions to handle more sophisticated real-life phenomena. 
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Several methods of discretizing a continuous distribution have been widely 

considered in literature. [3] gave a comprehensive survey on the different methods of 

generating discrete probability distributions as analogues of continuous distributions 

which include; the discretization method based on the survival function, the discretization 

method based on probability mass function (infinite series), the discretization method 

based on the cumulative distribution function, the discretization method based on the 

hazard function, discretization method based on reverse hazard function, the difference 

equation analogues of Pearsonian differential equation and the two-stage composite 

method etc. The method of discretization by survival function also referred to as the 

discrete concentration approach was proposed by [13]. 

Let X be a random variable associated to a continuous probability distribution with 

survival function ( ) ,XS x  [9] defined the probability mass function (pmf) of a discrete 

random variable [ ],Y X=  where [ ]X  indicates the smallest integer part or equal to X, 

as: 

( ) ( ) ( )
1

0

1
j

X

j

P Y k S k j

=
= = − +  

 
( ) ( )1 .

X X
S k S k= − +  (1) 

Using this method of discretization, [17] introduced the discrete Rayleigh 

distribution, [10] examined the discrete half-normal distribution, [11] studied the discrete 

Burr distribution, [8] introduced the discrete inverse Weibull distribution, [5] proposed 

the discrete Lindley distribution, [15] developed the discrete Type II generalized 

exponential distribution, [7] discretized the inverse Rayleigh distribution, [16] introduced 

the discrete analogue of the continuous Power Lindley distribution, and [2] recently 

developed the discrete Marshall-Olkin generalized exponential distribution, among 

others. 

In this paper, using the same method of discretization defined in equation (1), we 

introduced the discrete analogue of the continuous Marshall-Olkin Weibull (DMOW) 

distribution. The rest Sections of this paper are as follows: Section 2 proposes the new 

discrete Marshall-Olkin Weibull (DMOW) distribution and presents some of its 

mathematical properties, the estimation of the unknown parameters of the proposed 

distribution is presented in Section 3, while Section 4 presents the application of the 

proposed distribution to two count data sets. Section 5 concludes the paper. 
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2. The Proposed Discrete Marshall-Olkin Weibull (DMOW) Distribution 

[12] introduced the Marshall-Olkin family of distributions obtained by adding a scale 

parameter ( ),α  which they called the “tilt parameter” to an existing distribution. They 

derived the Marshall-Olkin Weibull distribution with the survival function given by 

( )
1

x

x

e
S x

e

β

β

−θ

−θ

α=
− α      

0, , , 0,x > α θ β >                    (2) 

where ( )1α = − α  is called a “tilt parameter”. 

By substituting equation (2) into (1), we defined the discrete analogue of the 

continuous Marshall-Olkin Weibull distribution with probability mass function (pmf) 

expressed as 

{ }
{ }{ }

( 1)

( 1)
, 0, , 0, .

1 1

x x

x
x x

P x e

β β

β β

+
−θ

+

α γ − γ
= > α β > γ =

− αγ − αγ
             

(3) 

The probability mass function of the discrete Marshall-Olkin Weibull distribution 

defined in equation (3) can be expressed as an infinite mixture (with weights kαα ) of 

discrete Weibull distributions with parameter ( )1
, 0, 1, 2, ...

k
k

+γ =
 
and 0 1.< α <  

Using the series representation in [4], 

( ) ( )
( ) ( )

0

1 , 1, 0,
1

j k

k

j k
Z Z Z j

k j

∞
−

=

Γ +− = < >
Γ + Γ       (4) 

equation (2) can be rewritten as 

( )
1

0

,
k

k x

k

S x
β∞ +

=

 = α α γ 
   

so that, 

( ) ( ) ( 1) ( 1)( 1)

0

1 .k k x k x
x

k

P S x S x
β β∞

+ + +

=

 = − + = α α γ − γ 
 

                   

 (5) 
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The graphical representation of the probability mass function of the discrete 

Marshall-Olkin Weibull (DMOW) distribution for varying parameters of t

is shown in Figure 1. 

Figure 1. Probability 

The plots in Figure 1 reveal that the pmf of the DMOW distribution can be 

decreasing, left-skewed, right

in handling any nature of real data sets.

2.1 Distribution and survival functions

The cumulative distribution function of the DMOW distribution is defined by

( ) 1G x S x P X x= − + =

  

1

= > α β > < γ <

the corresponding survival function of the DMOW distribution is obtained as

( )G x x= > α β > < γ <
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The graphical representation of the probability mass function of the discrete 

Olkin Weibull (DMOW) distribution for varying parameters of t

Probability mass function (pmf) of the DMOW distribution

The plots in Figure 1 reveal that the pmf of the DMOW distribution can be 

skewed, right-skewed unimodal and symmetric which proves 

in handling any nature of real data sets. 

survival functions 

The cumulative distribution function of the DMOW distribution is defined by

( ) ( )1G x S x P X x= − + =  

( 1)

( 1)

1
, 0, , 0, 0 1,

1

x

x
x

β

β

+

+

− γ= > α β > < γ <
− αγ

                          

the corresponding survival function of the DMOW distribution is obtained as

( 1)

( 1)
, 0, , 0, 0 1.

1

x

x
G x x

β

β

+

+

αγ= > α β > < γ <
− αγ
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The graphical representation of the probability mass function of the discrete 

Olkin Weibull (DMOW) distribution for varying parameters of the distribution 

 

distribution. 

The plots in Figure 1 reveal that the pmf of the DMOW distribution can be 

skewed unimodal and symmetric which proves flexibility 

The cumulative distribution function of the DMOW distribution is defined by 

                           (6) 

the corresponding survival function of the DMOW distribution is obtained as 

, 0, , 0, 0 1.           (7) 
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2.2 Hazard rate, reversed hazard rate 

The hazard rate, reversed hazard rate and the second rate of failure of the

Marshall-Olkin Weibull distribution are respectively defined by

( )h x

 ( )*
r x = =

and 

( ) ( )
(

** log log , , 0, 0 1.
1

G x
r x

G x

 = = α β > < γ <   + 

Figures 2 and 3 respectively show the plots of the

and the hazard rate function of the discrete Marshall

varying values of its parameters.

Figure 2. Cumulative 
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reversed hazard rate and second rate of failure 

The hazard rate, reversed hazard rate and the second rate of failure of the

Olkin Weibull distribution are respectively defined by 

( )
( )

{ }
{ }
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x x

x x

P X x
h x

G x

β β

β β

+

+
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)

( 1) ( 2)

( 2) ( 1)

1

log log , , 0, 0 1.
1

1

x x

x x

G x

β β

β β
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+ +

  γ − αγ     = = α β > < γ <   +     γ − αγ 
  

Figures 2 and 3 respectively show the plots of the cumulative distribution function 

and the hazard rate function of the discrete Marshall-Olkin Weibull distribution for 

varying values of its parameters. 

Cumulative distribution function (cdf) of the DMOW distribution

Olkin Weibull Distribution … 419

The hazard rate, reversed hazard rate and the second rate of failure of the discrete 

                 (8) 

          (9)  

log log , , 0, 0 1.= = α β > < γ <    (10) 

cumulative distribution function 

Olkin Weibull distribution for 

 

distribution. 
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Figure 3

Clearly, Figure 3 shows that the hazard rate of the DMOW distribution exhibits a 

decreasing, increasing, bathtub

2.3 Probability generating function, moments and quantile functio

Let X be a discrete random variable defined in the non

The probability generating function

  

Using equation (11), the probability generating function of the DMOW distribution is 

obtained as 

 

( )X xG S S P
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Figure 3. Hazard rate function of the DMOW distribution

Figure 3 shows that the hazard rate of the DMOW distribution exhibits a 

decreasing, increasing, bathtub-shape and inverted bathtub-shape properties.

generating function, moments and quantile function 

be a discrete random variable defined in the non-negative integers

The probability generating function ( )XG S  of X is defined by 

( ) ( ) ( )
0

.x x
X

x

G S E S S P X x

∞

=
= = =                                      

Using equation (11), the probability generating function of the DMOW distribution is 

0

,x
X x

x

G S S P

∞

=
=   
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{ }{ }
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( 1)
0

,

1 1

x x

x

x x
x

S

β β

β β

+∞

+=

γ − γ
= α
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distribution. 

Figure 3 shows that the hazard rate of the DMOW distribution exhibits a 

shape properties. 

negative integers {0,1, 2, ...} . 

                                     (11) 

Using equation (11), the probability generating function of the DMOW distribution is 
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( ) 1

1

1 1 .

1

x
x

x
x

S S

β

β

∞
−

=

γ= + α −
 − αγ 
 

  (12) 

The mean of the discrete Marshall-Olkin Weibull distribution can be obtain by taking 

the first derivative of equation (12) and setting 1S = , yielding 

( )
1

1 .

1

x

X
x

x

G

β

β

∞

=

γ′µ = = α
 − αγ 
 

  

Further derivatives (higher) of the generating function of the DMOW distribution 

yields the corresponding raw moment about the origin of the distribution. Hence, the 

variance ( )2
,σ  coefficient of skewness ( ) ,kS  and coefficient of kurtosis ( )sK

 
of the 

DMOW distribution are expressed as 

2 2
2′σ = µ − µ    

( )

2

1 1

2 1 ,

1 1

x x

x x
x x

x

β β

β β

∞ ∞

= =

 
 γ γ= α − − α 

    − αγ − αγ   
    

   

  

( )
3

2

3
3 2

2
2

3 2
,kS

′ ′µ − µ µ + µ
=

′µ − µ
 

  

( )
2 4

4 3 2
22

2

4 6 3
.sK

′ ′ ′µ − µ µ + µ µ − µ=
′µ − µ

 

Table 1 shows the nature of the Mean ( ) ,µ  variance ( )2
,σ  coefficient of skewness 

( ) ,kS  and coefficient of kurtosis ( )sK  of the DMOW distribution for varying values of 

the parameters. 
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Table 1. Summary statistics of the moments of DMOW distribution. 

γ  β  α  µ  2σ  kS  sK  

0.2
 

1
 

5 0.2322 
 

0.7240 1.0751
 

4.7204
 

  10 0.5805 0.8453 0.7368 3.6697 

 5 5 0.0049 0.0274 -0.8519 4.2995 

  10 0.0605 0.0252 -1.0804 4.7066 

0.5 1 5 1.9020 4.0520 0.9762 4.0170 

  10 2.8000 4.8210 0.8556 4.3865 

 5 5 0.1896 0.0373 -0.8368 4.2314 

  10 0.2463 0.0345 -0.9955 4.5860 

From Table 1, we observed that for varying values of the parameters, the mean ( )µ  

is either greater or less than the variance ( )2σ  which makes the distribution flexible for 

analyzing under-dispersed ( µ > 2σ ) and over-dispersed ( µ < 2σ ) data sets. The DMOW 

distribution also exhibits positively-skewed ( )0 ,kS >  and negatively-skewed ( 0)kS <  

shapes which conform with the plots of the pmf of the distribution as shown in Figure 1. 

The recurrence relation for generating probabilities of the DMOW distribution is 

given by 

 
{ }{ }
{ }{ }

( 1) ( 2)

1
( 2) ( 1)

1

, 0,1, 2, ...

1

x x x

x x
x x x

P P x

β β β

β β β

+ +

+
+ +

γ − γ − αγ
= =

− αγ γ − γ
   (13) 

where, 

{ }
{ }0

1
.

1
P

− γ=
− αγ

 

The pth quantile of the DMOW distribution denoted by ( )XQ p  is given by 

 ( )1( ) ,XQ p G x
−=  
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( 1)

( 1)

1
,

1

x

x
p

β

β

+

+

− γ=
− αγ

  

( ) ( 1)1 1,x
p p

β+α − γ = −  

( )
1

( 1) log log ,
1

p
x

p

β  −+ γ =  α − 
 

 

1
1

log
1

( ) 1.
log

X

p

p
Q p

β−  
  α −  = − γ 

  

                                        (14) 

The median of the DMOW distribution is obtained from equation (14) by substituting

1 2,p =  yielding 

 

1
1

log
1

(1 2) 1.
log

XQ

β  
   − α = − γ 

  

       (15) 

3. Parameter Estimation 

Suppose ( )1 2, , ..., nx x x x=
 
is a random sample of size n from the discrete Marshall-

Olkin Weibull distribution with probability mass function defined in equation (3), then 

the log-likelihood function is given by 

1
i

n

x

i

P

=

= ∏ℓ  

{ }
{ }{ }

( 1)

( 1)
1

log ,

1 1

x x
n

x x
i

β β

β β

+

+=

 α γ − γ 
=  

 − αγ − αγ
 

  

( 1) ( 1)

1 1 1

log log log 1 log 1 .i i i i

n n n
x x x x

i i i

n
β β β β+ +

= = =

     = α + γ − γ − − αγ − − αγ     
       

 

(16) 
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The maximum likelihood estimates say ( )ˆ ˆˆ ˆ, , ,φ = α β γ  can be obtained by solving the 

system of non-linear equation 0
∂ =
∂φ
ℓ

. Hence, taking the first derivative of equation (16) 

with respect to the parameter vector φ , we have 

( 1)

( 1)
1 1

,

1 1

i i

i i

n nx x

x x
i i

n
β β

β β

+

+
= =

∂ γ γ= − −
∂α α − αγ − αγ

 
ℓ

 

( 1)

( 1)
1 1

log ( 1) log( 1) log
log log

1

i i i

i i i

n nx x x
i i i i i i

x x x
i i

x x x x x x
β β β

β β β

+β β β

+
= =

γ − + γ + γ∂ = γ + α γ
∂β γ − γ − αγ

 
ℓ

 

( 1)

( 1)
1

( 1) log( 1)
log ,

1

i

i

n x
i i

x
i

x x
β

β

+β

+
=

+ γ ++ α γ
− α γ

  

1 ( 1) 1 1 ( 1) 1

( 1) ( 1)
1 1 1

( 1) ( 1)
.

1 1

i i i i

i i i i

n n nx x x x
i i i i

x x x x
i i i

x x x x
β β β β

β β β β

− + − − + −β β β β

+ +
= = =

γ − + γ γ + γ∂ = + α + α
∂γ γ − γ − αγ − αγ

  
ℓ

 

Since there is no close form expression for the MLE of the discrete Marshall-Olkin 

Weibull distribution, it becomes difficult to obtain analytical solutions for the unknown 

parameter estimates, thus a standard numeric optimization algorithm such as the Newton-

Raphson Iterative Scheme is employed to optimize the log-likelihood function. The 

fitdistrplus package in R statistical software is used to evaluate the maximum likelihood 

estimates of the DMOW distribution. 

4. Applications 

In this section, we attempt to illustrate the flexibility of the proposed DMOW 

distribution using two real data sets. The first data set records the number of strikes in 

UK coal mining industries in four successive week periods during 1948-1959 reported in 

[7]. The data set is under-dispersed with µ  = 0.99 and 2σ = 0.74. The second data set is a 

biological data set which records the number of Hemocytometer yeast cell counts per 

square reported in [1]. The data set is over-dispersed with µ  = 0.68 and 2σ = 0.81. 

The goodness of fit of the DMOW distribution is compared with the following 

existing discrete distributions: 
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(1)  Discrete Weibull (DW) distribution ([13]) with pmf given by 

( 1) ,x x
xP

β β+= γ − γ  

(2) Exponentiated Discrete Weibull (EDW) distribution ([14]) with pmf given by 

( 1)1 1 ,x x
xP

β βα α
+   = − γ − − γ   

   
 

(3) Generalized Geometric (GG) distribution ([4]) with pmf given by 

( )
( ) ( )( 1)

1
,

1 1

x

x x x
P +

αγ − γ
=

− αγ − αγ
 

(4) Discrete Generalized Exponential (DGE) distribution ([15]) with pmf given by 

( ) ( )( 1)1 1 ,x x
xP

α α+= − γ − − γ  

(5) Discrete Marshall-Olkin Generalized Exponential (DMOGE) distribution ([2]) 

with pmf given by 

( )
( )

( )
( )

( 1)

( 1)

1 1 1 1

,

1 1

x x

x
x x

P

α α+

α α+

   β − − γ β − − γ   
   = −

β + β − γ β + β − γ
 

(6) Discrete Bur XII (DBXII) distribution ([11]) with pmf given by 

( ) ( )1 1 ( 1)
.

log x log x

xP

α α+ + +
= γ − γ  

The parameter estimates, log-likelihood ( )ℓ  and the expected frequencies were 

obtained using the estimated probabilities considering the parameter estimates for each 

distribution. The bolded expected frequencies refer to those closer to the corresponding 

observed frequencies. The chi-square ( )2χ  goodness-of-fit statistics with the 

corresponding p-value is employed to evaluate the fit of each distribution to determine 

which distribution fit better for the two data sets under study.  
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Table 2. Goodness-of-fit of each distribution for data set 1. 

Number 

of Strikes  

Observed 

Frequency 

  Expected Frequency    

  DMOW DMOGE EDW DW DGE GG DBXII 

0 46 46.14 46.05 46.29 48.52 46.03 47.70 47.26 

1 76 75.17 75.35 74.37 68.69 75.64 71.33 80.23 

2 24 26.40 26.37 27.33 31.09 26.02 29.80 17.65 

3 9 6.93 6.39 6.46 6.84 6.41 5.99 5.44 

4 1 1.26 1.43 1.28 0.81 1.47 0.99 2.26 

Parameter 

Estimates 

 α=0.1466 

β=2.7120 

γ=0.9420 

α=4.6120 

β=1.1353 

γ=0.2177 

α=2.9170 

β=1.1996 

γ=0.3406 

β=1.9014 

γ=0.6890 

α=4.7947 

γ=0.2248 

α=12.0575 

γ=0.1585 

α=4.6533 

γ=0.5941 

ℓ   -187.0142 -187.5292 -187.4544 -188.1832 -187.5343 -188.1023 -19232095 

χ2 (df)  0.8997 (1) 1.4140 (1) 1.5032 (1) 3.2523 (2) 1.3553 (2) 3.0078 (2) 5.534 (2) 

p-value  0.3430 0.2340 0.2200 0.1970 0.2440 0.2220 0.0620 

Table 3. Goodness-of-fit of each distribution for data set 2. 

Number of 

Hemo. yeast  

Observed 

Frequency 

  Expected Frequency    

  DMOW DMOGE EDW DW DGE GG DBXII 

0 213 212.89 212.08 214.06 213.96 213.13 213.95 213.59 

1 128 127.27 126.65 122.71 123.05 126.57 123.87 134.12 

2 37 41.23 42.03 45.19 44.89 42.13 44.31 32.37 

3 18 13.49 12.81 13.54 13.48 12.80 12.98 10.31 

4 

5 

3 

1 

3.97 

0.94 

3.82 

1.13 

3.50 

0.80 

3.54 

0.84 

3.80 

1.12 

3.57 

0.96 

4.22 

2.04 

Parameter 

Estimates 

 α=0.1945 

β=1.8972 

γ=0.8188 

α=1.8447 

β=0.9650 

γ=0.2957 

α=0.9435 

β=1.3059 

γ=0.4845 

β=1.2719 

γ=0.4651 

α=1.8096 

γ=0.2938 

α=2.3695 

γ=0.2685 

α=2.4174 

γ=0.3324 

ℓ  
 -445.8829 -446.4779 -446.4810 -446.4518 -446.4783 -446.6230 -451.3099 

χ2 (df)  2.1868 (2)
 

2.9101 (2)
  

3.3081 (2)
  

3.2187 (2)
  

2.9347 (2)
  

3.3820 (2)
  

7.5618 (2)
  

p-value  0.3351 0.2334 0.1913 0.2000 0.2305 0.1843 0.0228 
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Tables 2 and 3 present the parameter estimates, log-likelihood, observed and 

expected frequencies, and 2χ  statistics with the corresponding p-value of each 

distribution for the two data sets. The better distribution corresponds to the one having 

the maximized log-likelihood and p-value and the least 2χ  statistics value. Thus, the 

results obtained from these Tables suggest that the DMOW distribution performs 

reasonably better than the compared discrete distributions for the two data sets. 

5. Conclusion 

A discrete analogue of the continuous Marshall-Olkin Weibull distribution has been 

introduced using the discrete concentration approach. Some mathematical properties of 

the proposed DMOW distribution were derived and it observed that the probability mass 

function of the distribution accommodates a decreasing, left-skewed, right-skewed 

unimodal and symmetric shapes while the hazard rate function exhibits a decreasing, an 

increasing, bathtub and inverted bathtub shapes properties. The method of maximum 

likelihood estimation was employed to estimate the unknown parameters of the proposed 

distribution and finally, two count data sets (over-dispersed and under-dispersed) was 

used to examine the applicability of the DMOW distribution. 
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