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Abstract

We introduce the fourth fundamental form of the torus hypersurface in the four
dimensional Euclidean space. We also compute I, II, III and IV fundamental forms of a
torus hypersurface.

1. Introduction

Surfaces and hypersurfaces have been worked by the mathematicians for centuries.
We see some new papers about torus surfaces and torus hypersurfaces in the literature
such as [2-15].

Aminov [1] gave the three dimensional submanifold M3 in E* homeomorphic to

S1 x S§2, considering in a similar way to the construction of an ordinary torus in E3.

Let y be a circle of radius R with the center at the origin O in a coordinate plane E?,
and P be a point of y. Spanning E3 on vectors OP, e, e,, we consider the sphere S%(P)
of radius  with the center at P. When P moves along y, then all points of $2(P) form the

submanifold M3 in E*, and then a torus hypersurface in E* can be parametrized by:

(R + r cosucosv) cosw
(R+rcosu cos v) sinw ’ (1.1)
r cos u sin v
rsinu

x(u, v,w) =

where u,v,w € [ C R.

In this paper, we study the fourth fundamental form of the torus hypersurface in the
four dimensional Euclidean space E*. We present fundamental notions of four
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dimensional Euclidean geometry. Moreover, we give fundamental forms I, II, III, and IV
of torus hypersurface.

2. Preliminaries

We consider characteristic polynomial of shape operator S:

Ps(A) = 0 = det(S — AI,) = Z(—1)k s Amk, 2.1)
k=0

where I,, denotes the identity matrix of order n in E™**, Then, we get curvature formulas
n
( ) ¢ =s i
L

Here, (8) € =5y =1 by definition. So, k-th fundamental form of hypersurface M™ is
0
defined by

I(SF=1(X),Y) = (S*¥1(X),Y).

Then, we get
Z(—ni (’l‘) ¢ 1(S1(x),Y) = 0. (2.2)
i=0

In the rest of this paper, we shall identify a vector (a,b,c,d) with its transpose
(a,b, ¢, d)t.

Let M = M(u, v,w) be an isometric immersion of a hypersurface M3 in E*. Inner
product of vectors ¥ = (xq1,X,%x3,%4) and ¥ = (y4,¥2,¥3,V4) in E* is given by as
follows:

(X,9) = X191 + X2¥2 + X3¥3 + X4 V4.

Vector product ¥ Xy XZ of X=(x,%2,%3,%), V= 0uV2V3Vs), Z=
(21, 23, 23, Z4)in E* is defined by as follows:
€1€2€3€,4
X1X2X3X4

V1Y2Y3Ya
21232327

XXy XZ=det

The Gauss map of a hypersurface M is given by
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M, X M, X M,,
M, x M,, X M,,, ||’

where M, = dM/du. For a hypersurface M in E*, we have following fundamental form

E F A
[=|F G B
A B C

L M P
[I=det{M N T)

P T V

X Y O
={Y Z R
0O R S

Here, the coefficients are given by

matrices

E= (Mu: Mu): F= (Mu: Mv): G= (Mv: Mv): A= (Mu: Mw): B = (Mv: Mw):
C= (Mw: MW):

L= (Muu:e>: M = (Muvne>: N = (Mvune>: pP= (Muw:e>: T = (Mvw:e>:
V= (Mwwr e),

X = (eu: eu): Y = (eu: ev): Z= (ev: ev): 0= (eu: ew): R = (ev: ew);
S = (er ew):

and e is the Gauss map (i.e. the unit normal vector field).

3. The Fourth Fundamental Form

Next, we obtain the fourth fundamental form matrix for a hypersurface M(u, v, w) in
E*. Using characteristic polynomial Pg(1) = aA3+ bA%2+cAl+d =0, we obtain

curvature formulas: €y = 1 (by definition),
b G c G d
3 T3 T3
(1) @ (2) @ (3) @
Theorem 3.1. For any hypersurface M3 in E*, the fourth fundamental form is related
by

¢ =
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Proof. Taking n = 3 in (2.2), then some computing, we get the fourth fundamental

cn é
IV = (n [0) 0), (3.2)
6 o ¢

form matrix as follows

where

CL?N — CLM? — GLP? + B*LX + A*NX + GL?V + F?VX + NP?E + M?VE
—CNXE — GVXE — CGLX + 2(BTXE — BL*T — MPTE + ABMX — ALNP
+BLMP + ALMT + CFMX + AGPX — BFPX — AFTX — FLMV + FLPT)

detl
{ CM3 — FNP?2 — GMP? — FLT? — B2LY — A>’NY + FM?V — F2VY 4+ MT?E }

+CNYE — MNVE + GVYE — CLMN + CGLY + FLNV — GLMV + 2(AFPY
—BTYE + ABMY + ANMP — BLMT — CFMY — AGPY + BFPY — TM?A — BM?P)
}7 = )
detl

{ GP3 — B%LO — A2NO + ANP? + CM?P — ALT? — AVM? — F20V + PT?E }

+CNOE + GOVE — NPVE + CGLO — CLNP + ALNV — GLPV + 2(ABMO
—BOTE — CFMO — AGOP + BFOP + AFOT — BLPT + FMPV — BMP? — FP?T)

)

B detl
{CLN2 — CM2N — GLT? + B2LZ + A®NZ + GM?V + F2VZ — NT%E + NZVE}

—CNZE — GVZE — CGLZ + 2(—AN?P + BTZE — ABMZ + BMNP + ANMT
—BLNT + CFMZ + AGPZ — BFPZ — AFTZ + FMNV + FNPT — GMPT)

¢=- detl ’
{ ET3 — BNP? — B?LR — A>NR + BLT? 4+ CM?T — BM?V + GP?*T — F?RV }

+CNRE + GRVE — NTVE + CGLR — CLNT + BLNV — GLTV + 2(ABMR
—BRTE — CFMR — AGPR + BFPR + AFRT + ANPT + FMTV — AT?M — FT?P)
o=
detl ’

CNP? — B%2LS — A>NS 4 CLT? + GLV? — GP?V + F?SV + NV?E — T?*VE
—CNSE — GSVE — CGLS + 2(—FMV? + BSTE — ABMS + CFMS + AGPS
—BFPS — AFST — CMPT — ANPV + BMPV + ATMV — BLTV — FPTV)

§=- detl

4. Curvatures of Torus Hypersurface
In this section, we compute curvatures of torus hypersurface (1.1).

With the first differentials of (1.1) depends on u,v,w, we get the Gauss map of
(1.1):
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COS U COS V COS W
COS U COS V Sin w
cosu sin v
sinu

e=-— (4.1)

We get the first and the second fundamental form matrices of (1.1), respectively,

r? 0 0
I=0 72%cosu 0 ,

0 0 (R + 7 cos u cos v)?

T 0 0
1= (0 T cos?u 0 >
0 0 (R 4+ r cosucos v) cosu cosv

Using 17111, torus hypersurface (1.1) in E* has following shape operator

1
-0 0
k, 0 O r 1
S=<O k, 0>= 0 = 0
0 0 ks r COS U COS V
00
R+ rcosucosv

So, we compute the third fundamental form matrix using (4.1) of (1.1):

1 0 0
M=[0 cos2u 0 )
0 0 cos?u cos?v

Finally, using (3.2) on (1.1), we obtain the fourth quantities of (1.1), i.e., symmetric

1
r

cos?u
0

v =] 0 .
I r
\0 0 cos3u cos3v /
R +rcosucosv

matrix, as follows

Corollary 4.1. Torus hypersurface (1.1) in E* has following relations

IV =1ILS,
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I =11.S,

II=1LS.
Proof. Considering I, IL, II1, IV and S of (1.1), we obtain all quantities.
Corollary 4.2. Torus hypersurface (1.1) in E* has following relations

(detll)(detlll)? COS U COS V
W =detS = klkzkg =

= ;.
r2(R 4+ r cOS u cos V) 3

Proof. Using I, II, III, IV and S of (1.1), it is clear.

5. Conclusion

Torus hypersurfaces have been recently worked by a number of authors. We extend
some well-known results of the torus hypersurfaces with the help of the fourth
fundamental form
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