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Abstract

CDF-quantile distributions appeared in [1]. In the present paper, we show it can be used

to generalize the T — R{Y} class of distributions [2] to a new family which we call
T - R{Y{U}} family of distributions. Some properties and applications associated with
the T — R{Y{U}} family of distributions are obtained.

1. The T - R{Y} Family of Distributions

This family of distributions was proposed in [2]. In particular, let 7, R, Y be random
variables with CDF’s Fr(x) = P(T < x), Fr(x) = P(R < x), and Fy(x) = P(Y < x),
respectively. Let the corresponding quantile functions be denoted by Or(p), Qr(p),
and Qy(p), respectively. Also if the densities exist, let the corresponding PDF’s be
denoted by fr(x), fr(x), and fy(x), respectively. Following this notation, the CDF of
the T — R{Y} is given by

Fe() = [ 7 ) = Fr{y(Feo)
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and the PDF of the T — R{Y} family is given by

) = — L)

= 10y (Fe ) Jr{Qy (Fr(x))}.

2. The CDF-quantile Family of Distributions

Let G(x, W, 0) denote a CDF for random variable X with support (0, 1), where
M OR is alocation parameter, and 0 > 0 is a scale parameter. Then,
— -1
G(x, b, 0) = F[U(H ™ (x), 1, o)],

where F is a CDF with support which is denoted Dj, H is an invertible CDF with

support which is denoted by D,, and U : D, > Dj is an appropriate transform for

imposing the location and scale parameters, U and O.
Case I. When F has support (=, ), and H is an invertible CDF with support

(= o0, ®), we take U : (= 0, ) > (= o0, ») as

U(y, W, 0)=yf;u-

Case II: When F has support (=, »), and H is an invertible CDF with support

(0, ), we take U : (0, ) > (= o, o) as

lo -
Uy, b, 0)=%~

Case III: When F has support (0, ©), and H is an invertible CDF with support

(— o0, oo), we take U : (— o, 00) = (0, °°) as

U(y, 4, 0) = exp(_?u) exp(l).

o

Case IV: When F has support (0, ©), and H is an invertible CDF with support
(0, ©), we take U : (0, ©) > (0, ) as

U(y, 1, 0) = eXp(%‘“)y"-
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3. The New Class of Distributions

To motivate the new class of distributions, we first make the following observation
for Case I of the previous section. Note that similar observations hold for the remaining
cases. For Case I, the CDF can be written as

Gi(x, y, 0) = F{m}
o

If F' = f, then G has the following integral representation

H™(x)-p

Glxno)=| o sl

Further observe that

H
Gi(x 0,1) = J’ C T )
and

G(S(x), 0, 1) = j £(t) .

If the random variable T with support (=, ©) has PDF f(¢) and CDF F(t), the
random variable R has CDF S§(x), and the random variable Y with support (= oo, o)
has quantile function, H(x), then the relation to the T — R{Y} family of distributions
[2] is clear. If we define U : supp(T) — supp(Y) by U(y, 4, 0) = y_—ll, then it
(o)

follows that

Gi(S(x), 0,1) =

_1 X
J‘_Ul(H (s(x)). 0, l)f(t)dt,

that is,

G(S(x), 0, 1) = F[u,(H ' (S(x)). 0, 1)].

Earthline J. Math. Sci. Vol. 3 No. 2 (2020), 167-190
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Now we present the T — R{Y{U}} class of distributions of type I as follows

Definition 3.1. Let the random variable T with support (- o, ©) have PDF fr(¢)
and CDF Fr(t), the random variable R have CDF Fg(x), and the random variable Y
with support (= oo, ) have quantile function Qy, and let U, : supp(T) > supp(Y) be

defined as U(y, W, 0) = y;u, where W OR, and 0 >0, then we say a random
o

variable X is T — R{Y{U,}} distributed or T — R{Y{U}} distributed of TYPE I if the
CDF is given by the following

U1 (Qy (Fr(x)))

—00

Gi(x . 0) = | () = FlUy(0y ()] = | 2ERED 2R

By differentiating the CDF in the previous definition, we have the following

Theorem 3.2. The PDF of the T — R{Y{U,}} class of distributions is given by

Ir [QY(FRC(:))_H} fr(x)
ofy (Qy (Fr(x))

g1(x o) =

B

where the random variable T with support (=, ©) has PDF fr, the random variable
R has CDF Fg(x) and PDF fy(x), the random variable Y with support (— o, ©) has

quantile function Qy, 0 >0, and p O R.

4. Some Statistical Measures

Theorem 4.1. (Transformation) If W is uniform on (0, 1), then the random variable
1-w_
s
X = Qgle }

follows the standard Logistic-R{standard Gumbel{U}} class of distributions, where

Qg is the quantile of the random variable R, 0 >0, and Y| O R.

Proof. Assume Y is standard Gumbel with quantile function, Qy(p) = —In(=In(p))

for 0< p <1, and T is standard Logistic with CDF Fy(t) = (1+e *)"!, xOR, and
Fr(x) is the CDF of the random variable R. We know the CDF of W is

http://www.earthlinepublishers.com
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Fy (w) = P(W < w) = w. Now we show the CDF of X is given by the standard Logistic-

R{standard Gumbel {U;}} class of distributions as follows

oln =W -H
P(X < x) = P(Qp{e™® (W) } < ).

However, Qr = Fp ! where F % 1s the CDF of the random variable R. Thus, the above

implies the following

(1+e ° )

In(=In(Fg (x)))+4
=(1+e o )7L

Earthline J. Math. Sci. Vol. 3 No. 2 (2020), 167-190
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It now follows that the CDF of X is the standard Logistic-R{standard Gumbel {U;}}

class of distributions, that is,

In(=In(Fg (x))) +1
Fx(x)=P(X <x)=(1+e o )L

Theorem 4.2. (Quantile) The quantile of the T — R{Y{U\}} class of distributions or
the T — R{Y{U}} class of distributions of TYPE I is given by

0(p) = Or{Fy[o0r (p) + 1},

where 0 < p <1, Qp = FR_1 is the quantile of the random variable R with CDF Fp,

Fy is the CDF of the random variable Y, Qr = Fr Uis the quantile of the random
variable T with CDF Fp, 0 >0, and p O R.

Proof. Using the fact that Fj' = Qp, Qy = Fy!, and Qg = Fg'. The result

follows from Definition 3.1 by solving the following equation for Q(p)

00N -]

=F
- [ 22l0

Theorem 4.3. (CDF Power Series) The standard Logistic-standard

Gumbel{standard Gumbel{U,}} class of distributions has the following representation

as a power series for its CDF

RG)= 3 3 E LIt 0]

q 4\
k,q=0 m=0 0°q m

where 0 >0, YW, y O R.

Proof. From Theorem 4.1, we know that the CDF of the standard Logistic-
R{standard Gumbel {U;}} class of distributions, is given by

In(~In(Fg(x)))+H
Fy(x)=P(X <sx)=(1+e o )7

Now if R is standard Gumbel, then it follows that

Fr(x)=e™
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thus, the CDF of the standard Logistic-standard Gumbel { standard Gumbel {U;}} class of
distributions, call it, Fy(y), is given by
—y+
Fy(y)=(+e o )
By the negative binomial series, we can write

-yt % (=y+u) (=1-k)

(l+e o )= (1 o

k=0
By the power series representation for the exponential function, we can write

R P B

e p
olq!

q=0
By the binomial theorem, we can write
q q B
o= e,
m
m=0
It now follows that

d _ \k+tm+ + -m
OEDS qu( D+ k)T [qjym_

q m
k,g=0 m=0 074!

Theorem 4.4. (PDF Power Series) The standard Logistic-standard
Gumbel{standard Gumbel{U,}} class of distributions has the following representation

as a power series for its PDF

)= 3 S UG L 4,

k, =0 m=0 o

where 0 > 0, 4, y OR.

Proof. By differentiating Fy(y) from the proof of the previous theorem, we know
the PDF of the standard Logistic-standard Gumbel{standard Gumbel{U,}} class of

distributions is given by
Earthline J. Math. Sci. Vol. 3 No. 2 (2020), 167-190
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—y+i
e

fr(y) = e

Ooll+e ©

By the negative binomial series, we can write

Yyt -2 )

el =Z<—n"(llkle‘o‘2"‘

It now follows that

—y+ -y 72 (=y+p) (-1-k)
e 0 |1+e © Z( (1+k} o

By the power series representation for the exponential function, we can write

e

(_”“2(_1_” _ i (= y+ )9 (=1)7(1 + k)7
7=0 olq!

By the binomial theorem, we can write

q
q _
o= e,
m=0 mn
It now follows that
_ _ -2
o o (= D)K*M 1+ )™ (1+k m
e l+e Z Z e k m Y.
k,g=0 m=0 q:
So the result follows from
_ _ -2
o |14 o > N )T R)IT (14 ) (0
—e e = +1 yo.
o k. q=0m=0 o™ q! ke J\m
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Theorem 4.5. (Non-Central Moments) The rth noncentral moments of the standard
Logistic-R{standard Gumbel{U}} class of distributions are given by

e 3 S5 m LU

where WOR,0>0, and 9, ; = (iho)_lZ:iS:l [s(r +1) = i]hd, ;- with S, 0 = hy for
i=12,..[3]

Proof. From Theorem 4.1, the following random variable below follows the standard

Logistic-R{standard Gumbel {U;}} class of distributions

cln(l_wj—u
w

Ogle™ b

where Qp(0) = Fg (0} is a quantile function. According to [4], we can write

where the coefficients are suitably chosen real numbers that depend on the parameters of

the Fg(x) distribution. For a power series raised to a positive integer r > 1, we have

(Qrl)Y = [Z hiu,} =35,
i=0 i=0

are obtained from the recurrence equation as stated in the theorem. Thus we

[I—W
oln
w

M, = Zar,iE[(e_e Y1,
i=0

where 9, ;

have the following

—-e

where E([) is an expectation. Now observe we can write (e )" as follows

_ecln(l;VWj_u j (e_(l;ijo_p )i

(e ) =

Earthline J. Math. Sci. Vol. 3 No. 2 (2020), 167-190
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- (e_{(l;ijcﬂ‘} -

),
A

By the power series representation for the exponential function, we can write

fiote) gl of

q=0

e

By the Binomial theorem we can write

(5] o] =

=0

Again by the Binomial theorem we have

_ mo
(LW - yomog -y

It now follows that we have the following

_Wj_ui_ @ g mO(_\g+mO-v.q g-m m -y
)‘;0,,12202( S [Z][ﬂw |

1
Gln(
—e w
q!
v=0

(e

Now using the expression immediately above in

cln(l_wj—u
w

p-'r = Zar, iE[(e_e )l]
i=0

http://www.earthlinepublishers.com
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we deduce the following

’ 00 q mg 5”_(_ 1)q+m0—vl-quq—m q\(mo .
-5 58 s
i,qg=0 m=0

|
v=0 -

From Theorem 4.1, we know W is uniform on (0,1). Let Y =W™". By the
transformation technique, the CDF of Y for 0 < y <1 is given by

-1
F(O)=y".
Consequently, the PDF is given by
v
KO) =y v
v
where 0 < y < 1. Thus,

1

1-v

E[y] = J;yfy(y)dy =

It now follows that

r - .
ia20 m=0 q!(l—v) m)\ v

v=0

Given a random variable X, one defines the moment generating function as
- X
Mx(z) = E[¢*"],

X

where E[[] is an expectation. Now using the series expansion for e* , one can write

1

0 Z,-IJ
MX(Z) = Z r’r H
r=0 -

where ). is the rth non-central moment of the random variable X. Thus from the

previous theorem, the following is immediate

Theorem 4.6. (Moment Generating Function) The moment generating function of

the standard Logistic-R{standard Gumbel{U,}} class of distributions are given by

Earthline J. Math. Sci. Vol. 3 No. 2 (2020), 167-190
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DI i () (Y
1g1(1 - ’
ria=0 m=0 1=0 rq!(1-v) m)\_ v
where WOR, 0 >0, and §,; = (iho)_lZ:iS:1 [s(r +1) = i]hd, ;- with 8, o = hi for
i=1,2, .. [3]

Theorem 4.7. (Shannon Entropy) If a random variable V follows the T — R{Y{U,}}
class of distributions, then the Shannon entropy of V, call it Sy, is given by

Sy =ng — Ellog fr(Qr{Fy[oT +p]})] +log o + Eflog fy (0T + )],

where the random variable T has Shannon entropy Ny, the random variable R has PDF
fr and quantile function Qp, the random variable Y has CDF Fy and PDF
fy.0>0, and pOR.

Proof. From Theorem 3.2, T = Oy (Fr(X)) 1t has PDF r(¢), thus the result
o

follows by noting that we have the following

_ E{log fT[M}} = B~ log ()] = ny

o
E[log fr(X)] = E[log fr(Qr{Fy[oT + u]})]

E[log fy (Qy (Fr(X)))] = Ellog fy (0T + u)]

E[log o] = log 0.
5. Practical Illustration and Numerical Comparison

In this section, we show a member of the T — R{Y{U}} family of distributions of

type I is a good fit to the coupons data, Table 5 [5]. We also compare the new member
arising from the 7 — R{Y{U}} framework with a member of the T — R{Y} framework.

We assume the random variable T with support (=, ) is Normally distributed with

CDF given by

http://www.earthlinepublishers.com
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FT(x; c, d) = %erfc(i/;x}

where x, c R, with d > 0, and

erfe(z) =1-erf(z) =1 - %JOZ o .

We also assume that the random variable Y with support (= o, ) is (standard) Cauchy

distributed, so that the quantile function is given by

Oy (x) = tan(r(x - %D

where 0 < x < 1. Finally, we have the added assumption that the random variable R is
Pareto distributed with CDF

where x = a, and a, b > 0.
From the T — R{Y{U}} framework we deduce the following

Proposition 5.1. The CDF of the Normal-Standard Cauchy{Pareto{U}} distribution
of type 1 is given by

G(x; a, b, c, d, |, 0) =

erfc

N | =

where x > a, a,b,d, 0 >0, c, \OR, erfc(z) =1-erf(z) =1- _tzdt.

2
AL

Remark 5.2. We write J ~ NSCPU (a, b, c, d, |, 0), if J is a random variable with
the CDF given by the previous Proposition. When the parameters a, b, c, d are fixed we

write J ~ NSCPU(afix,bfix, cpix, dfix)(u’ 0).

Earthline J. Math. Sci. Vol. 3 No. 2 (2020), 167-190
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20 00 120 140 183 180 200

fitted to the empirical distribution of the coupons data [5].

Remark 5.3. The PDF of the NSCPU (a, b, ¢, d, |, 0) distribution can be obtained
by differentiating the CDF.

0.020 |
N
0.015
0.010 |-
:l.':lﬂf:—
A
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PR |
20 100 120 140 180 180 200

fitted to the histogram of the coupons data [5].
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From the T — R{Y} framework we deduce the following

Proposition 5.4. The CDF of the Normal-Standard Cauchy{Pareto} distribution is

Sautntl

1
F(x;a, b, c,d)=—erfc R
( ) > V2d

where x 2 a, a, b, d >0, c OR, and erfe(z) =1~ erf(z) ‘e .

-2 ]
Remark 5.5. We write Q ~ NSCP(a, b, ¢, d), if Q is a random variable with the
CDF given by the previous proposition.
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Figure 3. The CDF of NSCP(0.0820562,0.703981,57.9051,6.79818) fitted to the

empirical distribution of the coupons data [5].

Remark 5.6. The PDF of the NSCP(a, b, ¢, d) distribution can be obtained by
differentiating the CDF.
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Figure 4. The PDF of NSCP(0.0820562,0.703981,57.9051,6.79818) fitted to the

histogram of the coupons data [5].

In the rest of this section we compare the Normal-Standard Cauchy{Pareto}
distribution, and the Normal-Standard Cauchy{Pareto{U}} distribution of type I in

fitting the coupons data[5].

Table 1. Estimated parameters for the coupons data.

Model Parameter Estimate Standard Error
NSCP(a,b, ¢, d) (0.0820562,0.703981,57.9051,6.79818)  (0.0816029, 0.142213, 40.9521, 5.91504)
N SCPU0.0820562,0.703081,57.9051,6.7081%) (11, 7) (-0.00716473,1.00037) (4.13149, 0.0703856)

Table 2. Criteria for comparison.

Model -2(Log-likelihood)  AIC AICC BIC
NSCP(a,b,c,d) 912.332 920.332  920.748 930.792
NSCPU (4.0820562,0.7039%1,57.9051,6.79818) (14: ) 912.331 916.331  916.454 921.561

In order to compare the two distribution models, we used the following criteria:
-2(Loglikelihood), AIC (Akaike information criterion), AICC (corrected Akaike
information criterion), and BIC (Bayesian information criterion) for the data set. The
better distribution corresponds to the smaller -2(Log-likelihood) AIC, AICC, and BIC

values:

http://www.earthlinepublishers.com
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AIC =2k - 21,

AICC:AIC+M,
n—-k-1

BIC = klog(n) - 21,

where k is the number of parameters in the statistical model, n is the sample size, and [ is
the maximized value of the log-likelihood function under the considered model. From

Table 2, it is clear that the NSCPU(0.0820562’ 0.703981,57.9051, 6.79818) (l.l, 0) distribution

3 . .
has the smallest values across Z criteria considered, hence we see the

NSCPU (00820562, 0.703981, 57.9051, 6.79818) (K> O)

distribution is a better fit than the NSCP(a, b,c,d ) distribution to the coupons data.

6. Simulation Study

In this section a Monte Carlo simulation study is carried out to assess the

performance of the maximum likelihood estimation method in the distribution
NSCPU (0,0820562, 0.703981, 57.9051, 6.79818) (K> O)
which is a member of the newly introduced T — R{Y{U}} framework. Samples of sizes
200, 350, 500, and 700, are drawn from the
NSCPU (0,0820562, 0.703981, 57.9051, 6.79818) (K> O)
distribution, and the samples have been drawn for the following set of parameters
(a) SetI: (u, o) = (0.1, 0.9),
(b) Set I: (W, o) = (0.9, 0.9).

The maximum likelihood estimators for the parameters |, and O are obtained. The

procedure has been repeated 200 times, and the standard deviation and variance for the
estimates are computed, and the results are summarized in Table 3 and Table 5 for each
of sets I and II, respectively, considered above.

Earthline J. Math. Sci. Vol. 3 No. 2 (2020), 167-190
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Table 3. Result of simulation study for set 1.

Parameter p

Sample Size Standard Deviation Variance
200 1.089441 1.186881
350 0.888419 0.7892883
500 0.7158677 0.5124666
700 0.5997037 0.3596446

Parameter o

Sample Size Standard Deviation Variance
200 0.01643016 0.0002699502
350 0.01326639 0.0001759971
500 0.01072819 0.0001150941
700 0.00908572 0.00008255031

From Table 3, we observe that the estimated standard deviation and variance
consistently decrease with increasing sample size as seen in Table 4, hence the

estimation method is adequate.

Under Set | Under Set |

Parameter —— Parameter y

400

Under Set |

Under Set |

— Parameter ¢ — Parameter o

Table 4. Decreasing variance (VAR) and standard deviation (SD) for increasing sample

size.
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Table 5. Result of simulation study for set II.

Parameter p

Sample Size Standard Deviation Variance
200 1.08944 1.186879
350 0.8884191 0.7892885
500 0.7158675 0.5124663
700 0.57897 0.3352062

Parameter o

Sample Size Standard Deviation Variance
200 0.01643015 0.0002699498
350 0.0132664 0.0001759972
500 0.01072819 0.0001150941
700 0.008833336 0.00007802782

From Table 5, we observe that the standard deviation and variance consistently

decrease with increasing sample size as seen in Table 6, hence the estimation method is

adequate.

Under Set I

500

Under Set Il

Under Set Il

09 %
Parameter y s eeees Parameter i

Parameter o oo e Parameter o

Table 6. Decreasing variance (VAR) and standard deviation (SD) for increasing sample

size.

7. A Characterization Theorem

The characterization of statistical distributions plays a major role in stochastic

modeling. In this section we present a characterization of the 7 — R{Y{U}} distribution

of type 1. Our characterization theorem is based on a simple relationship between two

truncated moments, and for related works in this direction, the reader is referred to [6]-

[11].

Earthline J. Math. Sci. Vol. 3 No. 2 (2020), 167-190
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At first, we recall the following which will be useful later

Theorem 7.1. [7] Let (Q, X, P) be a given probability space, and let I = [a, b] be
an interval for some a <b (a = —oo, b = 00 might as well be allowed). Let X : Q > I
be a continuous random variable with probability distribution function F, and let q, and

q, be two real functions on I such that
Blai (X)X 2 x] = E[g2 (X)X 2 x]n(x), x D1,

is defined with some real function 1. Assume that qy, g, 0 C'(I), and n 0 C*(I), and
F is twice continuously differentiable and strictly monotone increasing on the set I

Finally, assume that the equation ng, = q; has no real solutions in the interior of I.

Then F is uniquely determined by the functions qp, q,, N. In particular,

n'(u)
N(u) g2 () = g1 (u)

exp(— s(u))du,

where the function s is a solution of the differential equation

- r]’CIZ
N —q;

N

and C is a constant chosen to make L dF =1.

Remark 7.2. The characterization based on the ratio of two truncated moments is

stable in the sense of weak convergence, and for more details see [12].
The main result of this section is as follows

Proposition 7.3. Let X : Q+— R be a continuous random variable, and let

g»(x) =1, and

q(x

)= [ )b

then the PDF of X is

| QRN =

o
ofy (Qy (Fg(x)))

http://www.earthlinepublishers.com
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iff the function n in Theorem 7.1 has the form

mngﬁﬁig%mlﬂ}

B

where the random variable T with support (=, ©) has PDF fr and CDF Fr, the
random variable R has CDF Fg(x) and PDF fg(x), the random variable Y with
support (— o, ©) has quantile function Qy and PDF fy, ¢ >0, and ) O R.

Proof. Let X have PDF

fT|:QY(FR(x)) - U}

9)

ofy (Qy (Fg(x))

then for all x O R we deduce the following

’

fr(x)
)

(1= F(x)E[gy (X)X 2 x] = FT_M_

i o i
and
_ N2
(1- F(x))E[ql(X)|X > x] = %(FT_QY(FRC(IX)) U_)
and finally

N(x)g2(x) = ¢ (x)
_ _lFT[QY(FR(x)) - H}

) o
<.

Conversely, if

then we can check that

fT[QY(FIﬁx))_U}fR(X)
Oy (Fr(x)) - U}

o

s'(x) = -

%@wwm[
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and hence

s(x) = _log(FT[QY(FRC(Ix)) - UD

Now in view of Theorem 7.1, X has PDF

fT{QY(FR(x))_u} fr(x)

o

ofy (Qy (Fg(x)))

If g, is given by the previous proposition, then we have the following

Corollary 74. Let X : Q+> R be a continuous random variable, the random
variable T with support (= o, ©) have PDF fr and CDF Fy, the random variable R

have CDF Fg(x) and PDF fg(x), the random variable Y with support (=, o) have
quantile function Qy and PDF fy, 6 >0, and LW UR. The PDF of X is

Ir [W} fr(x)
ofy (Qy (Fg (%))

<

there exists functions ¢q, and 1N defined in Theorem 7.1 satisfying the following

differential equation

Oy (Fr(x)) -~ 1
NETRC T s i L
NWa ) -al) o (0, (Fp (x)))FT[QY(FR(x))_“}

o

Remark 7.5. The general solution of the differential equation in the above corollary

is given by
Oy (Fr(x)) -
n(x) = 1 IFT{QY(FR(X)) — u} fT[YFIiTU}fR(X) dx + D
Fy [Qy(ﬂec(y))u} o ofy (Qy (F(x))

for x 0 R, where D is a constant.
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8. Concluding Remarks

The present paper has introduced a new family of distributions called T — R{Y{U}}
as a generalization of the T — R{Y} family of distributions via the CDF-quantile

distribution framework. Apart from applying the transformation technique to this new
class of distributions, the quantile function, power series representation for the CDF and
PDF, rth non-central moments, moment generating function, and the Shannon entropy

are derived. A member of the T — R{Y{U}} family of distributions of type I is shown to
be practically superior to a member of the T — R{Y} family of distributions in fitting the

coupons data, showing the new family should be practical in fitting related data sets. A
simulation study conducted shows the method of maximum likelihood is adequate in
estimating parameters of members of this new class of distributions. Finally the new
class of distributions is characterized in terms of a simple relationship between two
truncated moments.
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