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Abstract 

This article gives an effective strategy to solve nonlinear stochastic Itô-Volterra integral 

equations (NSIVIE). These equations can be reduced to a system of nonlinear algebraic 

equations with unknown coefficients, using Bernoulli wavelets, their operational matrix 

of integration (OMI), stochastic operational matrix of integration (SOMI) and these 

equations can be solved numerically. Error analysis of the proposed method is given. 

Moreover, the results obtained are compared to exact solutions with numerical examples 

to show that the method described is accurate and precise.  

1. Introduction 

Wavelets are mathematical functions that isolate the data and analyze each variable 

with the corresponding resolution in various frequency components. As a mathematical 

tool, wavelet can be used to extract information from the different forms of data, 

including, seismic waves, earthquakes, music, image processing, signal processing, 

acoustics, nuclear engineering, and astronomy. 

We lack enough knowledge in certain issues related to behavioral analysis for some 

processes to decide how it conforms, or its operation is so complex that it is irrelevant or 

difficult to explain precisely. In such a scenario a probabilistic model is always helpful. 

Due to their significance in modeling, science and technological phenomenon, nonlinear 

stochastic and deterministic functions have been widely investigated and studied. 
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Stochastic integral equations are used in simulation of many physical, science and 

engineering phenomena. In recent years, as can be seen in some situations, the complex 

hierarchical systems of physics, medicines, engineering and finance have been extremely 

challenging [1-9]. Within these systems a source of noise is generally governed by 

likelihood rules. The simulations of these phenomena involve various stochastic integral 

equations, differential equations and so on [10-16]. These problems are also hard to 

solve. Therefore, numerical approaches become important to obtain approximate 

solutions [17-19]. 

The Itô integral typically used in applied mathematics is named after Kiyoshi Itô. In 

analytical forms, stochastic integral equations cannot be resolved normally and therefore 

a necessary prerequisite for their solution in applied mathematics become necessary. 

Throughout recent years, the computational methods such as [20-24] have been used to 

solve stochastic integral equations. However, very few articles exist on stochastic integral 

equations. The operational matrix method using Bernoulli wavelets for solving linear Itô-

Volterra integral equations was recently employed by Mirzaee and Samadyar [25]. This 

article however attempts to frame a stochastic operational matrix of integration of 

Bernoulli wavelets (SOMIBW) and is employed to obtain the solution to the particular 

case of the NSIVIE as follows 

,)())((),())((),()()(

0

2

0

1  σ+µ+=
xx

tdWtytxkdttytxkxfxy                (1) 

where ),1,0[∈x  ),(1 txk  and ),(2 txk  are functions of x and t, ))(( xyµ  
and ))(( xyσ  

are 

known functions, )(xy  
is the unknown that is to be determined and )(xW  

is the 

Brownian motion process defined on probability space ),,( PFΩ  
that consists of the 

sample space ,Ω  a σ -algebra F of subsets of Ω  which we call events, and a real-valued 

set function P  defined on F  that is called probability. 

Equation (1) appears in various fields including engineering, mathematics, biology, 

health and social science. It is very hard or even difficult to solve this equation, so we 

develop an efficient method for solving it. In this article, equation (1) is numerically 

solved by the use of operational matrix of integration (OMI) and stochastic OMI based on 

Bernoulli wavelets. This equation is reduced to a nonlinear system of algebraic equations 

by the use of collocation points and these matrices can be solved by an effective 

numerical method such as Newton’s method.  
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The rest of the work is structured accordingly. Section 2 provides some basic 

definitions and characteristics of stochastic calculus, wavelets, and Bernoulli wavelets. 

Also, in this section, OMI and stochastic OMI based on Bernoulli wavelets are obtained. 

The proposed method of solution is given to estimate the solution of non linear Itô-

Volterra integral equation in Section 3. In Section 4, Numerical examples are presented 

to show the efficiency and reliability of the proposed method. Finally, the conclusion of 

the article is given in Section 5. 

2. Properties of Stochastic Calculus, Wavelets, and Bernoulli Wavelets 

2.1. Brownian motion 

Definition 2.1. A stochastic process, { },0:)( ∞<≤ xxW  is called a standard 

Brownian motion if   

• 0=(0)W  

• The stochastic process { }∞<≤ xxW 0:)(  has continuous sample paths.  

• The process has independent, stationary increments. 

Definition 2.2. An n-dimensional process, ( ),)(...,,)(=)(
1 n

xWxWxW  is a standard 

n-dimensional Brownian motion if each 
i

xW )(  is a standard Brownian motion and the 

i
xW )( ’s are independent of each other. 

2.2. Wavelets 

A family of functions is generated by mother wavelets by dilating and translating 

itself, which we call wavelets. The wavelet family is as given below [26]: 

,0,,,)( 2

1

, ≠∈






 −ψ=ψ
−

aRba
a

bx
axba  

 

where a and b are denoted respectively for the dilation parameter and translation 

parameter. Nevertheless, b varies continously. 

If we let ,0
k

aa
−=  ,00 bnab

k−=  10 >a  and ,10 >b  where, ,, Nkn ∈  the family of 

discrete wavelets may be given as, 

( ) ,0,,,)( 0020, ≠∈−ψ=ψ aRbanbxaax
k

k

nk   

where the wavelet bases in )(
2

RL  are ).(, xnkψ  
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2.3. Bernoulli polynomials 

Bernoulli polynomials are defined in general as [25]: 


=

− =α






=
m

i

i
imm mx

i

m
xB

0

...,,2,1,0,)(                           (2)  

where ,iα  mi ...,,0=  
are Bernoulli numbers. For instance, starting five Bernoulli 

numbers are: 

.
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1
)(,0)(,

6

1
)(,

2

1
,1 43210 −=α=α=α−=α=α xxx

 

And the first four Bernoulli polynomials are: 
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2.4. Bernoulli wavelets 

Bernoulli wavelets are defined as follows [25]: 


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where, 1...,,1,0 −= Mm  denotes the order of the Bernoulli polynomials and

.,2...,,2,1 1 Nkn k ∈= −  

For instance, for 2=k  and ,2=M  we get 
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2.5.  Approximation of function 

Suppose 1)0,[)( 2Lxf ∈  is expanded in terms of the Bernoulli wavelets as 

.)(=)(

0==1

xcxf nmnm

mn

ψ
∞∞

                                             (4) 

Truncating the above infinite series, we get  

,)(=)(=)(~)( ˆ

1

0=

1
2

1=

xfxCxcxf m
T

nmnm

M

m

k

n

ψψ− 
−−

                       (5) 

where, C and )(xψ  are 1ˆ ×m )2=ˆ(
1
Mm

k −  matrices given by 

,...,,...,,...,,,...,,,=
1,120,212,2011,1110 1

T

M
kMM cccccccC k 





−−−− −          (6) 


 ψψψψψψ −− ...,),(...,),(),(...,),(),(=)( 12,2011,1110 xxxxxx MM  

.)(...,),(
1,120,2 1

T

M
k xxk 

ψψ
−−−         (7) 

2.6. OMI and stochastic OMI of Bernoulli wavelets (SOMIBW) 

OMI of Bernoulli wavelets is given in detail in [25]. Now, we derive the stochastic 

OMI of Bernoulli wavelets as follows: 

The stochastic integral of )(xψ  can be obtained as follows:  

,)(=)()(
0

xPtdWt s

x
ψψ                                              (8) 

where sP  is a mm ˆˆ ×  matrix and is called the SOMIBW. In particular, for 2=M  and 

,2=k  we have  
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
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Using equations (9) to (12), we get  
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Therefore,  
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The SOMIBW is derived here for 2=k  and 2=M  i.e. for 4=m̂  and the same can be 

extended for different values of k and M i.e. for different values of .m̂  

Remark 1. If F is a m̂ -vector, then 

,)(
~

=)()( xFFxx
T ψψψ                                             (13) 

where, )(xψ  is the Bernoulli wavelet coefficient matrix and F
~

 is a mm ˆˆ ×  matrix given 

by  

,)()(=
~ 1

xFxF
−ψψ                                                (14) 

where .))((= 1
FxdiagF

−ψ  Also, for a mm ˆˆ ×  matrix C,  

,)(ˆ=)()( xCxCx
TT ψψψ                                           (15) 

in which, ))()((= xCxdiagX
T ψψ  is a m̂ -vector and .)(=ˆ 1

xXC
T −ψ  

Remark 2. If µ  is an analytic function on R and )(xC
T ψ  be the the expansion of 

)(xf  in terms of Bernoulli wavelets, where C is given in equation (6), then 

),()(~))(( xCxf
T ψµ−µ                                                 (16) 

where [ ].)()()()( ˆ21 m
T

cccC µµµ=µ ⋯  
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Remark 3. If µ  is an analytic function on R and )(xC
T ψ  be the the expansion of 

)(xf  in terms of Bernoulli wavelets, where C is given in equation (6), then 

),()()
~

(~))((
1

xxCxf
T ψψµ−µ −                                       (17) 

where ,)(
~

xCC
TT ψ=  )(xψ  is the Bernoulli wavelets coefficient matrix given in (7) and 

)(
T

Cµ  is given in Remark 2. 

3. Bernoulli Wavelets Method of Solution (BWM) 

In this section, we use the newly derived SOMIBW for the numerical solution of 

NSIVIE. Here we consider the equation in (1) as: 

.)())((),())((),()()(

0

2

0

1  σ+µ+=
xx

tdWtytxkdttytxkxfxy

             

(18) 

Approximating ,)(xf  )(xy  and ,),( txki  21,=i  with respect to Bernoulli wavelets as 

follows:  

,)(=)(~)( xCxCxy
TT ψψ−                                           (19) 

where C  is given in equation (6) and is the unknown vector to be determined.  

,)(=)(~)( xFxFxf
TT ψψ−                                            (20) 

),()(=)()(~),( 111 xKttKxtxk
TTT ψψψψ−

                              
(21) 

,)()(=)()(~),( 222 xKttKxtxk
TTT ψψψψ−                              

(22) 

where C and F are Bernoulli wavelet coefficient vectors and 1K
 
and 2K  are Bernoulli 

wavelet matrices. Substituting (19), (20), (21) and (22) in (18), we get 








 ψµψψ+ψ−ψ  dttCtKxxFxC
T

x
TTT ))(()()()(~)(

0
1  

.)())(()()(
0

2 






 ψσψψ+  tdWtCtKx
T

x
T

 

(23) 

Now, by using Remark 3, equation (23) can be rewritten as, 
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
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where ,)()
~

(
1
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~
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1
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and .)(
~

xCC
TT ψ=  Using 

equation (24) and Remark 1, we get 
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where 1
~
X  and 2

~
X  

are mm ˆˆ ×  matrices described in Remark 1. Applying the OMI of 

Bernoulli wavelets P  explained in [25] and the stochastic OMI of Bernoulli wavelets 

described in Section 2, equation (25) reduces to: 

.)(
~

)()(
~

)()(~)( 2211 xPXKxxPXKxxFxC S
TTTT ψψ+ψψ+ψ−ψ

           
(26) 

Let us assume that PXK 111
~=δ  

and .
~

222 SPXK=δ  Again using Remark 1, 

equation (26) reduces to 

,)(~)(ˆ)(ˆ)( 21 xFxxxC
TT ψ−ψδ−ψδ−ψ

                               
(27) 

where 1δ̂  and 2δ̂  are m̂ -vectors containing a nonlinear combination of elements of C. 

Equation (27) holds for all ).1,0[∈x  Replacing −~  by = , equation (27) reduces to a 

nonlinear system of equations .~ˆˆ
21

TT
FC −δ−δ−  Solving this nonlinear system, we 

get the unknown vector C. Substituting this obtained vector in equation (19), we obtain 

the solution of NSIVIE (1). 

4. Numerical Experiments 

Test problem 1. Consider the SLSVIE [27], 
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where the exact solution of this problem is found to be 
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
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
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x

dttWt

xWx
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(29) 

where )(xy
 is the unknown stochastic process defined on the probability space 

( ),,, PFΩ  and )(xW  is the Brownian motion process. Table 1 shows the numerical 

results obtained by the method described in Section 3 (BWM), exact solution and 

absolute errors (AE) for ,2=k  3=M  and ,3=k  ,2=M  Table 2 shows the 

comparison of absolute errors of test problem 1 for different values of k and M and Figure 

1 shows the graph of exact and approximate values of test problem 1 for 3=k  and

.2=M  

Table 1. Comparison of exact, Bernoulli wavelet solution (BWS), and AE for test 

problem 1. 

t 2=k  and 3=M  3=k  and 2=M  

Exact 

solution 

BWS AE Exact 

solution 

BWS AE 

0 0.0500 0.0556 5.5802e-03 0.0500 0.0566 6.6481e-03 

0.1 0.0464 0.0526 6.1972e-03 0.0501 0.0521 1.9900e-03 

0.2 0.0509 0.0530 2.0964e-03 0.0511 0.0515 4.0000e-04 

0.3 0.0524 0.0518 5.6708e-04 0.0479 0.0451 2.8000e-03 

0.4 0.0508 0.0490 1.7932e-03 0.0500 0.0444 5.5800e-03 

0.5 0.0540 0.0469 7.1460e-03 0.0469 0.0466 3.0000e-04 

0.6 0.0561 0.0458 1.0322e-02 0.0428 0.0489 6.1200e-03 

0.7 0.0473 0.0488 1.4846e-03 0.0427 0.0486 5.9400e-03 

0.8 0.0454 0.0478 2.4723e-03 0.0427 0.0450 2.2600e-03 

0.9 0.0503 0.0429 7.3592e-03 0.0428 0.0446 1.8700e-03 
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Table 2. Comparison of absolute errors of test problem 1 for different values of k and M. 

BWS Maximum absolute error ���� 

2=k , 3=M  

3=k , 2=M  

1.0322e-02 

6.6481e-03 

 

Figure 1. Graph of exact and BWS of test problem 1 for 3=k  and .2=M  

Test problem 2. Consider the SLSVIE [27], 

.)())((cos
4

1
))((cos))(sin(

16

1

20

1
)(

0

23

0

 +−=
xx

tdWtydttytyxy

           

(30) 

where the exact solution of this problem is found to be 

,)
20

1
tan()(

4

1
arctan)( 







 += xWxy
                                

 (31) 

where )(xy
 

is the unknown stochastic process defined on the probability space 

y
(x
)
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( ),,, PFΩ  and )(xW  is the Brownian motion process. Table 3 shows the numerical 

results obtained by the method described in Section 3 (BWM), exact solution and 

absolute errors (AE) for ,2=k  3=M  and ,3=k  ,2=M  Table 4 shows the 

comparison of absolute errors of test problem 2 for different values of k and M and Figure 

2 shows the graph of exact and approximate values of test problem 2 for 3=k  and

.2=M  

Table 3. Comparison of exact, Bernoulli wavelet solution (BWS), and AE for test 

problem 2. 

t 2=k  and 3=M  3=k  and 2=M  

Exact 

solution 

BWS AE Exact 

solution 

BWS AE 

0 0.0500 0.2351 1.8509e-01 0.0500 0.3160 2.6600e-01 

0.1 0.1016 0.0611 4.0454e-02 0.0853 0.1165 3.1150e-02 

0.2 0.0691 -0.0184 8.7485e-02 0.0652 0.0795 1.4300e-02 

0.3 0.0971 -0.0986 1.9570e-01 0.1678 -0.1963 3.6410e-01 

0.4 0.1856 -0.1795 3.6511e-01 0.1630 -0.2265 3.8949e-01 

0.5 0.1860 -0.1437 3.2965e-01 0.0458 -0.1429 1.8865e-01 

0.6 0.1463 -0.0943 2.4053e-01 0.0659 -0.0605 1.2638e-01 

0.7 -0.0055 -0.0942 8.8645e-02 0.3227 -0.0773 4.0001e-01 

0.8 0.0670 -0.0940 1.6093e-01 -0.0452 -0.2229 1.7769e-01 

0.9 0.3637 -0.0937 4.5739e-01 0.0634 -0.2366 2.9998e-01 

Table 4. Comparison of absolute errors of test problem 2 for different values of k and M. 

BWS Maximum absolute error ���� 

2=k , 3=M  

3=k , 2=M  

4.5739e-01 

4.0000e-01 
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Figure 2. Graph of exact and BWS of test problem 2 for 3=k and .2=M  

5. Conclusion 

In this article, an effective strategy is provided to solve NSIVIE. This technique 

reduces these equations to a system of nonlinear algebraic equations with unknown 

Bernoulli coefficients, by using Bernoulli wavelets, their operational matrix of integration 

and stochastic operational matrix of integration which are solved by Newton's method. 

Error analysis of the proposed method is given. Moreover, the results obtained are 

compared with the exact solution with two Volterra integral equations and two NSIVIE 

in order to show the difference between the nonlinear Volterra integral equations and 

NSIVIE, and these examples show that the method described is precise and accurate and 

the results are in good agreement with the exact solution. By this we can conclude that 

the predicted algorithm is well organized and efficient.  
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