

$T\mbox{-}{\bf Fuzzy \ Ideals \ in \ Coupled \ Ordered \ } \Gamma\mbox{-}{\bf Semirings}:$ Some Properties

Clement Boateng Ampadu

31 Carrolton Road, Boston, MA 02132-6303, USA e-mail: drampadu@hotmail.com

Abstract

In this paper, we introduce the notions of T-fuzzy ideal, T-fuzzy quasi ideal, T-fuzzy bi-ideal, and T-fuzzy interior ideal. Some related properties are obtained. in coupled Γ semirings. Our work is inspired by [1].

1 Some New Notions and Notations

Remark 1.1. Throughout we make the following assumptions:

- (a) M is an ordered Γ -semiring as defined in [1].
- (b) T is a triangular norm as defined in [1].
- (c) The triangular norm T is a combined translation as defined in [1].
- (d) The imaginable property is as defined in [1], except μ is a fuzzy subset of $M \times M$.

Definition 1.2. Let M be an ordered Γ -semiring. A fuzzy subset μ of $M \times M$ will be called a T-fuzzy left (right) ideal, if it satisfies the following conditions for all $(x, m), (y, v) \in M \times M$, and $\alpha \in \Gamma$

(a) $\mu(x+y,m+v) \ge T(\mu(x,m),\mu(y,v));$

Received: August 17, 2020; Accepted: October 21, 2020

2010 Mathematics Subject Classification: 16Y60, 03G25, 08A72.

Keywords and phrases: T-fuzzy ideals, ordered Γ -semirings, coupled.

- (b) $\mu(x\alpha y, m\alpha v) \ge \mu(y, v) \ [\mu(x, m)];$
- (c) If $x \leq y$ and $m \leq v$, then $\mu(x,m) \geq \mu(y,v)$.

Definition 1.3. Let M be an ordered Γ -semiring. If μ is both a T-fuzzy right and left ideal of $M \times M$, then we say μ is a T-fuzzy ideal of $M \times M$.

Definition 1.4. Let M be an ordered Γ -semiring, and μ be a nonempty fuzzy subset of $M \times M$. We say μ is a fuzzy left (right) ideal of $M \times M$, if it satisfies the following conditions for all $(x, m), (y, v) \in M \times M$ and $\alpha \in \Gamma$

- (a) $\mu(x+y,m+v) \ge \min\{\mu(x,m),\mu(y,v)\};$
- (b) $\mu(x\alpha y, m\alpha v) \ge \mu(y, v) \ [\mu(x, m)];$
- (c) If $x \leq y$ and $m \leq v$, then $\mu(x,m) \geq \mu(y,v)$.

Definition 1.5. Let M be a nonempty set, and A be a nonempty subset of $M \times M$, we define the characteristic function of A by

$$\mathbb{1}_A(x,m) = \begin{cases} 1 & (x,m) \in A \\ 0 & (x,m) \notin A. \end{cases}$$

Definition 1.6. Let M be an ordered Γ -semiring, and $(x,m) \in M \times M$. By $M_{(x,m)}$ we mean the set

$$M_{(x,m)} = \{(y,z), (v,z') \in M \times M | x \le y\alpha z, m \le v\alpha z', \alpha \in \Gamma\}.$$

In particular, for any fuzzy subsets μ and ω of $M \times M$, we define $\mu \circ \omega : M \times M \mapsto [0,1]$ by

$$(\mu \circ \omega)(x,m) = \begin{cases} \sup_{(y,z),(v,z')} \in M_{(x,m)} & T[\mu(y,v),\omega(z,z')] & \text{if } M_{(x,m)} \neq \emptyset \\ 0 & \text{otherwise.} \end{cases}$$

Definition 1.7. Let M be an ordered Γ -semiring, and A be a nonempty subset of $M \times M$.

(a) We say A is a left(right) ideal of $M \times M$, if A is closed under addition, and

$$(M \times M)\Gamma A \subseteq A(A\Gamma(M \times M) \subseteq A)$$

and for any $(x,m) \in M \times M$, $(y,v) \in A$, $x \leq y$ and $m \leq v$, implies $(x,m) \in A$.

(b) We say A is an ideal of $M \times M$, if it is both a left and right ideal of $M \times M$.

Definition 1.8. Let M be an ordered Γ -semiring, and μ, ω be two fuzzy subsets of $M \times M$. We define

$$(\mu \wedge \omega)(x,m) = T[\mu(x,m),\omega(x,m)]$$

and

$$(\mu \cap \omega)(x,m) = \min\{\mu(x,m), \omega(x,m)\}$$

for all $(x, m) \in M \times M$.

Definition 1.9. Let M be an ordered Γ -semiring. A fuzzy subset μ of $M \times M$ will be called a T-fuzzy left (right) k-ideal of $M \times M$ if it satisfies the following conditions for all $(x, m), (y, v) \in M \times M$, and $\alpha \in \Gamma$

- (a) $\mu(x+y,m+v) \ge T[\mu(x,m),\mu(y,v)];$
- (b) $\mu(x\alpha y, m\alpha v) \ge \mu(y, v) \ [\mu(x, m)];$
- (c) If $x \leq y$ and $m \leq v$, then $\mu(x, m) \geq \mu(y, v)$.

Definition 1.10. Let M be an ordered Γ -semiring. If μ is a T-fuzzy left k-ideal and a T-fuzzy right k-ideal of $M \times M$, then we say μ is a T-fuzzy k-ideal of $M \times M$.

Definition 1.11. Let μ be a fuzzy subset of $X \times X$, $a \in [0, 1 - \sup\{\mu(x,m) | (x,m) \in X \times X\}$, and $b \in [0, 1]$. The mapping

$$\mu_a^T: X \times X \mapsto [0,1]$$

will be called a fuzzy translation of μ , if

$$\mu_a^T(x,m) = \mu(x,m) + a$$

Definition 1.12. Let μ be a fuzzy subset of $X \times X$, $a \in [0, 1 - \sup\{\mu(x,m) | (x,m) \in X \times X\}$, and $b \in [0,1]$. The mapping

$$\mu_b^T: X \times X \mapsto [0,1]$$

will be called a fuzzy multiplication of μ , if

$$\mu_b^T(x,m) = b\mu(x,m).$$

Definition 1.13. Let μ and β be fuzzy subsets of $X \times X$. The cartesian product of μ and β will be defined as

$$(\mu \times \beta)((x,m),(y,v)) = T[\mu(x,m),\beta(y,v)]$$

for all $((x,m),(y,v)) \in X^2 \times X^2$.

Definition 1.14. Let M be an ordered Γ -semiring, and μ and β be T-fuzzy k-ideals of $M \times M$. We say $\mu \times \beta$ is a T fuzzy left (right) k-ideal of $M^2 \times M^2$ if the following holds for all $((x, m), (z, z')), ((y, v), (w, w')) \in M^2 \times M^2$

- $(a) \ \ (\mu \times \beta)[((x,m),(z,z')) + ((y,v),(w,w'))] \geq T[\mu(x+y,m+v),\beta(z+w,z'+w')]$
- (b) $(\mu \times \beta)[((x,m),(z,z'))\alpha((y,v),(w,w'))] \ge T[(\mu \times \beta)((y,v),(w,w')),(\mu \times \beta)((x,m),(z,z'))]$
- (c) If $((x, m), (z, z')) \leq ((y, v), (w, w'))$, then

$$(\mu \times \beta)((x,m),(z,z')) \ge (\mu \times \beta)((y,v),(w,w'))$$

(d) $(\mu \times \beta)((x,m),(z,z')) \ge T[(\mu \times \beta)((x+y,m+v),(z+y,z'+v)),(\mu \times \beta)((y,v),(y,v))].$

Definition 1.15. Let M be an ordered Γ semiring. A fuzzy subset μ of $M \times M$ will be called a T fuzzy quasi ideal if it satisfies the following conditions

- (a) $\mu(x+y,m+v) \ge T[\mu(x,m),\mu(y,v)));$
- (b) $\mu \circ \mathbb{1}_M \wedge \mathbb{1}_M \circ \mu \subseteq \mu;$

(c) If $x \leq y$ and $m \leq v$, then $\mu(x, m) \geq \mu(y, v)$ for all $(x, m), (y, v) \in M \times M$.

Definition 1.16. Let M be an ordered Γ -semiring. A fuzzy subset μ of $M \times M$ will be called a fuzzy bi-ideal if the following holds

- (a) $\mu(x+y,m+v) \ge \min\{\mu(x,m),\mu(z,z')\}$
- (b) $\mu(x\alpha y\beta z, m\alpha v\beta z') \ge \min\{\mu(x, m), \mu(z, z')\}$
- (c) If $x \leq y$ and $m \leq v$, then $\mu(x, m) \geq \mu(y, v)$

for all $(x, m), (y, v), (z, z') \in M \times M, \alpha, \beta \in \Gamma$.

Definition 1.17. Let M be an ordered Γ -semiring. A fuzzy subset μ of $M \times M$ will be called a T-fuzzy bi-ideal if the following holds

- (a) $\mu(x+y,m+v) \ge T[\mu(x,m),\mu(z,z')]$
- (b) $\mu(x\alpha y\beta z, m\alpha v\beta z') \ge T[\mu(x,m), \mu(z,z')]$
- (c) If $x \leq y$ and $m \leq v$, then $\mu(x,m) \geq \mu(y,v)$

for all $(x, m), (y, v), (z, z') \in M \times M, \alpha, \beta \in \Gamma$.

Definition 1.18. Let M be an ordered Γ semiring. A fuzzy subset μ of $M \times M$ will be called a fuzzy interior ideal if the following holds for all $(x, m), (y, v), (z, z') \in M \times M$, and $\alpha, \beta \in \Gamma$.

(a)
$$\mu(x+y,m+v) \ge \min\{\mu(x,m),\mu(y,v)\};\$$

- (b) $\mu(x\alpha y\beta z, m\alpha v\beta z') \ge \mu(y, v);$
- (c) If $x \leq y$ and $m \leq v$, then $\mu(x,m) \geq \mu(y,v)$.

Definition 1.19. Let M be an ordered Γ semiring. A fuzzy subset μ of $M \times M$ will be called a T-fuzzy interior ideal if the following holds for all $(x, m), (y, v), (z, z') \in M \times M$, and $\alpha, \beta \in \Gamma$.

- (a) $\mu(x+y, m+v) \ge T[\mu(x, m), \mu(y, v)].$
- (b) $\mu(x\alpha y\beta z, m\alpha v\beta z') \ge \mu(y, v).$
- (c) If $x \leq y$ and $m \leq v$, then $\mu(x,m) \geq \mu(y,v)$.

2 Some Properties

Proposition 2.1. Let M be a Γ -semiring. If μ is a T-fuzzy right ideal of $M \times M$, $T(\mu(x,m),\mu(x,m)) \ge \mu(x,m)$ for all $(x,m) \in M \times M$, and $(a.b) \in M \times M$, then $I_{(a,b)}$ is a right ideal of $M \times M$ where

$$I_{(a,b)} = \{ (c,d) \in M \times M | \mu(c,d) \ge \mu(a,b) \}.$$

Proof. Let M be an ordered Γ -semiring, and μ be a T-fuzzy right ideal of $M \times M$, and $T(\mu(x,m),\mu(x,m)) \geq \mu(x,m)$ for all $(x,m) \in M \times M$. Then $I_{(a,b)} \neq \emptyset$, since $(a,b) \in I_{(a,b)}$. Let $(x_1,x_2), (y_1,y_2) \in I_{(a,b)}$, and $\alpha \in \Gamma$. Then $\mu(x_1,x_2) \geq \mu(a,b)$, and $\mu(y_1,y_2) \geq \mu(a,b)$. Thus,

$$\mu(x_1 + y_1, x_2 + y_2) \ge T(\mu(x_1, x_2), \mu(y_1, y_2))$$
$$\ge T[\mu(a, b), \mu(a, b)]$$
$$\ge \mu(a, b).$$

So $(x_1 + y_1, x_2 + y_2) \in I_{(a,b)}$. On the other hand

$$\mu(x_1 \alpha x, x_2 \alpha m) \ge \mu(x_1, x_2) \ge \mu(a, b)$$

for all $(x,m) \in M \times M$. Hence $(x_1 \alpha x, x_2 \alpha m) \in I_{(a,b)}$. Now let $(x_1, x_2) \in I_{(a,b)}$, $y_1 \leq x_1$, and $y_2 \leq x_2$. Then. $\mu(x_1, x_2) \geq \mu(a, b)$, and $\mu(y_1, y_2) \leq \mu(x_1, x_2)$. Thus, we have

$$\mu(y_1, y_2) \ge \mu(x_1, x_2) \ge \mu(a, b).$$

So $(y_1, y_2) \in I_{(a,b)}$. It now follows that $I_{(a,b)}$ is a right ideal of $M \times M$.

Theorem 2.2. Let M be an ordered Γ -semiring. Every fuzzy ideal of $M \times M$ is a T-fuzzy ideal of $M \times M$.

Proof. Let μ be a fuzzy ideal of $M \times M$, $(x, m), (y, v) \in M \times M$, and $\alpha \in \Gamma$. Observe

$$\mu(x+y,m+v) \ge \min\{\mu(x,m),\mu(y,v)\}$$
$$\ge T(\mu(x,m),\mu(y,v)).$$

Also

$$\begin{split} \mu(x\alpha y, m\alpha v) &\geq \max\{\mu(x, m), \mu(y, v)\}\\ &\geq T(\mu(x, m), \mu(y, v)). \end{split}$$

It follows that μ is a *T*-fuzzy ideal of $M \times M$.

Theorem 2.3. Let M be an ordered Γ -semiring, and μ be a fuzzy subset of $M \times M$. Then μ is a T-fuzzy left ideal of $M \times M$ iff μ satisfies the following conditions

- (a) $\mathbb{1}_{M \times M} \circ \mu \subseteq \mu$
- (b) $\mu(x+y, m+v) \ge T[\mu(x, m), \mu(y, v)]$

for all $(x, m), (y, v) \in M \times M$.

Proof. Let M be an ordered Γ -semiring, $(x, m) \in M \times M$, and μ be a T-fuzzy ideal of $M \times M$.

<u>Case 1:</u> If $(\mathbb{1}_{M \times M} \circ \mu)(x, m) = 0$, then

$$(\mathbb{1}_{M \times M} \circ \mu)(x, m) = 0 \le \mu(x, m).$$

So $\mathbb{1}_{M \times M} \circ \mu \subseteq \mu$.

<u>Case 2:</u> If $(\mathbb{1}_{M \times M} \circ \mu)(x, m) \neq 0$, then there exists $(y, v), (z, z') \in M \times M$ such that $x \leq y\alpha z, m \leq v\alpha z'$, and $\alpha \in \Gamma$. Thus

$$(\mathbb{1}_{M \times M} \circ \mu)(x, m) = \sup_{\substack{(y, v), (z, z') \in M_{(x, m)}}} T[\mathbb{1}_{M \times M}(y, v), \mu(z, z')]$$
$$= \sup_{\substack{(y, v), (z, z') \in M_{(x, m)}}} \mu(z, z')$$
$$\leq \mu(y \alpha z, v \alpha z')$$
$$\leq \mu(x, m)$$

Earthline J. Math. Sci. Vol. 5 No. 2 (2021), 377-393

which implies $(\mathbb{1}_{M \times M} \circ \mu) \subseteq \mu$. For the converse, assume the given conditions hold, and let $(x, m), (y, v) \in M \times M, \alpha \in \Gamma$. Since $(\mathbb{1}_{M \times M} \circ \mu) \subseteq \mu$,

$$\mu(x\alpha y, m\alpha v) \ge (\mathbb{1}_{M \times M} \circ \mu)(x\alpha y, m\alpha v)$$

=
$$\sup_{(a,b), (c,d) \in M_{(x\alpha y, m\alpha v)}} T[\mathbb{1}_{M \times M}(a, b), \mu(c, d)]$$

$$\ge T[\mathbb{1}_{M \times M}(x, m), \mu(y, v)]$$

=
$$\mu(y, v).$$

Now let $(x,m), (y,v) \in M \times M$ and $x \leq y, m \leq v$, and $\alpha \in \Gamma$. Then

$$\mu(x,m) \ge \mu(x\alpha y, m\alpha v)$$

=
$$\sup_{(y,v), (y,v) \in M_{(x\alpha y, m\alpha v)}} T[\mathbb{1}_{M \times M}(y,v), \mu(y,v)]$$

=
$$\mu(y,v)$$

which implies $\mu(x,m) \ge \mu(y,v)$. It now follows that μ is a *T*-fuzzy left ideal of $M \times M$.

Theorem 2.4. Let M be an ordered Γ -semiring. $M \times M$ is regular iff $A\Gamma B = A \cap B$ for any right ideal A and left ideal B of $M \times M$.

Proof. Let A and B be right and left ideals, respectively of $M \times M$, where M is a regular ordered Γ -semiring. Obviously,

$$A\Gamma B \subseteq A \cap B.$$

Let $(x,m) \in A \cap B$. Since $M \times M$ is regular, there exists $\alpha, \beta \in \Gamma$, and $(y,v) \in M \times M$ such that $x \leq x \alpha y \beta x$ and $m \leq m \alpha v \beta m$. Since $(x \alpha y, m \alpha v) \in A$ and $(x,m) \in B$, then

$$(x\alpha y\beta x, m\alpha v\beta m) \in A\Gamma B.$$

Thus, $(x, m) \in A\Gamma B$, which implies $A\Gamma B = A \cap B$.

Conversely, suppose that $A\Gamma B = A \cap B$ for every right ideal A and left ideal

B of $M \times M$. Let $(x, m) \in M \times M$, and I be the right ideal generated by (x, m), and J be the left ideal generated by (x, m). Then $(x, m) \in I \cap J = I \Gamma J$. Thus,

$$x = x\alpha y = z\beta z$$

and

$$m = m\alpha v = z'\beta m$$

for $\alpha, \beta \in \Gamma$, $(y, v), (z, z') \in M \times M$. So

$$x = x\alpha y \Omega z \beta z$$

and

$$m = m \alpha v \Omega z' \beta m$$

for some $\Omega \in \Gamma$. Hence, $M \times M$ is regular.

Theorem 2.5. Let M be an ordered Γ -semiring. Then $M \times M$ is regular iff $\lambda \circ \mu = \lambda \wedge \mu$ for any T-fuzzy right ideal λ and T-fuzzy left ideal μ of $M \times M$.

Proof. Let M be an ordered Γ -semiring, λ and μ be T-fuzzy right and T-fuzzy left ideals of $M \times M$, and $(x, m) \in M \times M$. Then

$$(\lambda \circ \mu)(x,m) = \sup_{(y,v),(z,z') \in M_{(x,m)}} T[\lambda(y,v),\mu(z,z')].$$

Since $x \leq y\alpha z$ and $m \leq v\alpha z'$,

$$\mu(x,m) \ge \mu(y\alpha z, v\alpha z') \ge \mu(z, z').$$

 So

$$\lambda(x,m) \ge \lambda(y\alpha z, v\alpha z') \ge \lambda(y,v).$$

Thus

$$T[\lambda(y,v),\mu(z,z')] \le T[\lambda(x,m),\mu(x,m)].$$

This implies

$$\begin{aligned} (\lambda \circ \mu)(x,m) &= \sup_{(y,v),(z,z') \in M_{(x,m)}} T[\lambda(y,v),\mu(z,z')] \\ &\leq T[\lambda(x,m),\mu(x,m)] \\ &= (\lambda \wedge \mu)(x,m). \end{aligned}$$

Thus $\lambda \circ \mu \subseteq \lambda \wedge \mu$. Now let $(x, m) \in M \times M$. Since $M \times M$ is regular, there exists $\alpha, \beta \in \Gamma$, $(a, b) \in M \times M$ such that $x \leq x \alpha a \beta x$ and $m \leq m \alpha b \beta m$. Suppose $(y, v), (z, z') \in M \times M, \ \Omega \in \Gamma, \ x \leq y \Omega z$ and $m \leq v \Omega z'$, then

$$\lambda(x,m) \ge \lambda(y\Omega z, v\Omega z') \ge \lambda(y,v)$$

which implies

$$\mu(x,m) \geq \mu(y\Omega z,v\Omega z') \geq \mu(z,z')$$

On the other hand

$$T[\lambda(y,v),\mu(z,z')] \le T[\lambda(x\alpha a,m\alpha b),\mu(x,m)]$$

which implies

$$\begin{aligned} (\lambda \circ \mu)(x,m) &= \sup_{(y,v),(z,z') \in M_{(x,m)}} T[\lambda(y,v),\mu(z,z')] \\ &\geq T[\lambda(x\alpha a,m\alpha b),\mu(x,m)]. \end{aligned}$$

Thus

$$\begin{aligned} (\lambda \circ \mu)(x,m) &\geq T[\lambda(x\alpha a, m\alpha b), \mu(x,m)] \\ &\geq T[\lambda(x,m), \mu(x,m)] \\ &= (\lambda \wedge \mu)(x,m). \end{aligned}$$

So $\lambda \wedge \mu \subseteq \lambda \circ \mu$, which implies $\lambda \circ \mu = \lambda \wedge \mu$. Conversely, suppose $\lambda \circ \mu = \lambda \wedge \mu$ for *T*-fuzzy right ideal λ and *T*-fuzzy left ideal μ of $M \times M$. Let *A* and *B* be right and left ideals, respectively, of $M \times M$. Then $\mathbb{1}_A$ and $\mathbb{1}_B$ are *T*-fuzzy right and left ideals of $M \times M$, respectively. Thus,

$$\mathbb{1}_A \circ \mathbb{1}_B = \mathbb{1}_A \wedge \mathbb{1}_B.$$

Obviously, $A\Gamma B \subseteq A \cap B$. Suppose $(x, m) \in A \cap B$, then, $\mathbb{1}_A(x, m) = \mathbb{1}_B(x, m) = 1$ implies

$$(\mathbb{1}_A \wedge \mathbb{1}_B)(x,m) = T[\mathbb{1}_A,\mathbb{1}_B] = T[1,1] = 1$$

which implies $(\mathbb{1}_A \circ \mathbb{1}_B)(x,m) = 1$. Consequently, there exists $(a,a') \in A$ and $(b,b') \in B$ such that $x \leq a\alpha b$, $m \leq a'\alpha b'$, and $(a\alpha b, a'\alpha b') \in A\Gamma B$, which implies $(x,m) \in A\Gamma B$. Thus, $A\Gamma B = A \cap B$. It now follows that $M \times M$ is regular by the previous theorem.

Theorem 2.6. Let M be an ordered Γ -semiring. If μ and λ are T-fuzzy left k-ideals of $M \times M$, then $\mu \wedge \lambda$ is a T-fuzzyy left k-deal of $M \times M$.

Proof. Let M be an ordered Γ -semiring, μ and λ be T-fuzzy left k-ideals of $M \times M$. Further, let $(x, m), (y, v) \in M \times M$, and $\alpha \in \Gamma$. Observe we have the following

$$\begin{split} (\mu \wedge \lambda)(x+y,m+v) &= T[\mu(x+y,m+v),\lambda(x+y,m+v)]\\ &\geq T[T[\mu(x,m),\mu(y,v)],T[\lambda(x,m),\lambda(y,v)]]\\ &= T[T[\mu(x,m),\lambda(x,m)],T[\mu(y,v),\lambda(y,v)]]\\ &= T[(\mu \wedge \lambda)(x,m),(\mu \wedge \lambda)(y,v)]. \end{split}$$

Since μ and λ are *T*-fuzzy left *k*-deals we have $\mu(x\alpha y, m\alpha v) \geq \mu(y, v)$ and $\lambda(x\alpha y, m\alpha v) \geq \lambda(y, v)$. Thus,

$$(\mu \wedge \lambda)(x\alpha y, m\alpha v) = T[\mu(x\alpha y, m\alpha v), \lambda(x\alpha y, m\alpha v)]$$

$$\geq T[\mu(y, v), \lambda(y, v)]$$

$$= (\mu \wedge \lambda)(y, v).$$

Suppose $(x,m), (y,v) \in M \times M$ with $x \leq y$ and $m \leq v$. Then $\mu(x,m) \geq \mu(y,v)$ and $\lambda(x,m) \geq \lambda(y,v)$. So,

$$\begin{aligned} (\mu \wedge \lambda)(x,m) &= T[\mu(x,m),\lambda(x,m)] \\ &\geq T[\mu(y,v),\lambda(y,v)] \\ &= (\mu \wedge \lambda)(y,v). \end{aligned}$$

Thus, $\mu \wedge \lambda$ is a *T*-fuzzy left ideal of $M \times M$. Since μ and λ are *T*-fuzzy left *k*-ideals,

$$\mu(x,m) \ge T[\mu(x+y,m+v),\mu(y,v)]$$

and

$$\lambda(x,m) \ge T[\lambda(x+y,m+v),\lambda(y,v)]$$

for all $(x, m), (y, v) \in M \times M$. So

$$\begin{split} (\mu \wedge \lambda)(x,m) &= T[\mu(x,m),\lambda(x,m)] \\ &\geq T[T[\mu(x+y,m+v),\mu(y,v)],T[\lambda(x+y,m+v),\lambda(y,v)]] \\ &= T[T[\mu(x+y,m+v),\lambda(x+y,m+vv)],T[\mu(y,v),\lambda(y,v)]] \\ &= T[(\mu \wedge \lambda)(x+y,m+v),(\mu \wedge \lambda)(y,v)]. \end{split}$$

So $\mu \wedge \lambda$ is a *T*-fuzzy left *k*-ideal of $M \times M$.

Theorem 2.7. Let M be an ordered Γ -semiring. A fuzzy subset μ is a T-fuzzy left k-ideal of $M \times M$ iff μ_a^T is a T-fuzzy left k-ideal of $M \times M$ provided t-norm T is a combined translation.

Proof. Let t-norm T be a combined translation, μ be a T-fuzzy left k-ideal of $M \times M$, $(x, m), (y, v) \in M \times M$, and $\alpha \in \Gamma$. Observe we have the following

$$\mu_a^T(x+y,m+v) = \mu(x+y,m+v) + a$$

$$\geq T[\mu(x,m),\mu(y,v)] + a$$

$$= T[\mu(x,m) + a,\mu(y,v) + a]$$

$$= T[\mu_a^T(x,m),\mu_a^T(y,v)]$$

and

$$\mu_a^T(x\alpha y, m\alpha v) = \mu(x\alpha y, m\alpha v) + a$$
$$\geq \mu(y, v) + a$$
$$= \mu_a^T(y, v).$$

Also

$$\begin{split} \mu_{a}^{T}(x,m) &= \mu(x,m) + a \\ &\geq T[\mu(x+y,m+v),\mu(y,v)] + a \\ &= T[\mu(x+y,m+v) + a,\mu(y,v) + a] \\ &= T[\mu_{a}^{T}(x+y,m+v),\mu_{a}^{T}(y,v)]. \end{split}$$

Now suppose $(x, m), (y, v) \in M \times M, x \leq y$ and $m \leq v$. Then $\mu(x, m) \geq \mu(y, v)$, and thus $\mu(x, m) + a \geq \mu(y, v) + a$. So, $\mu_a^T(x, m) \geq \mu_a^T(y, v)$. Hence μ_a^T is a *T*-fuzzy left ideal.

Conversely, suppose that μ_a^T is a *T*-fuzzy left *k*-ideal. Then obviously μ is a *T*-fuzzy left ideal. Let $\mu(y, v) = t_1$ and $\mu(x + y, m + v) = t_2$, and

$$t = \min\{t_1, t_2\} \ge T(t_1, t_2).$$

Then $(y, v) \in \mu_t$, $(x + y, m + v) \in \mu_t$. Since μ_t is a k-ideal $(x, m) \in \mu_t$ which implies

$$\mu(x,m) \ge t$$

= min{t₁, t₂}
$$\ge T(t_1, t_2)$$

= T[$\mu(y, v), \mu(x + y, m + v)$].

It follows that μ is a T-fuzzy left k-ideal of $M \times M$.

Theorem 2.8. Let M be an ordered Γ -semiring. A fuzzy subset μ is a T-fuzzy left k-ideal of $M \times M$ iff μ_b^T is a T-fuzzy left k-ideal of $M \times M$ provided t-norm T is a combined translation and $b \in [0, 1]$.

Proof. Let M be an ordered Γ -semiring, μ be a T-fuzzy k-ideal of $M \times M$, t-norm T be a combined translation, $(x, m), (y, v) \in M \times M$, and $\alpha \in \Gamma$. Observe we have the following

$$\begin{split} \mu_b^M(x+y,m+v) &= b\mu(x+y,m+v) \\ &\geq bT[\mu(x,m),\mu(y,v)] \\ &= T[b\mu(x,m),b\mu(y,v)] \\ &= T[\mu_b^M(x,m),\mu_b^M(y,v)] \end{split}$$

and

$$\mu_b^M(x\alpha y, m\alpha v) = b\mu(x\alpha y, m\alpha v)$$
$$\geq b\mu(y, v)$$
$$= \mu_b^M(y, v).$$

Also

$$\begin{split} \mu_b^M(x,m) &= b\mu(x,m) \\ &\geq bT[\mu(x+y,m+v),\mu(y,v)] \\ &= T[b\mu(x+y,m+v),b\mu(y,v)] \\ &= T[\mu_b^M(x+y,m+v),\mu_b^M(y,v)]. \end{split}$$

Now if $x \leq y, m \leq v$, then $\mu(x,m) \geq \mu(y,v)$, and thus $b\mu(x,m) \geq b\mu(y,v)$. So $\mu_b^M(x,y) \geq \mu_b^M(y,v)$. Hence μ_b^M is a *T*-fuzzy left *k*-ideal of $M \times M$.

Theorem 2.9. Let M be an ordered Γ -semiring. If μ is an imaginable T fuzzy left k-ideal of $M \times M$, then μ is a fuzzy left k-ideal of $M \times M$.

Proof. Let M be an ordered Γ -semiring, μ be an imaginable T-fuzzy left k-ideal of $M \times M$, $(x, m), (y, v) \in M \times M$, and $\alpha \in \Gamma$. Since μ is imaginable,

$$\min\{\mu(x,m),\mu(y,v)\} = T[\min\{\mu(x,m),\mu(y,v)\},\min\{\mu(x,m),\mu(y,v)\}]$$

$$\leq T[\mu(x,m),\mu(y,v)]$$

$$\leq \min\{\mu(x,m),\mu(y,v)\}.$$

Thus

$$T[\mu(x,m),\mu(y,v)]=\min\{\mu(x,m),\mu(y,v)\}$$

Now

$$\mu(x+y,m+v)\geq T[\mu(x,m),\mu(y,v)]=\min\{\mu(x,m),\mu(y,v)\}$$

and

$$\mu(x\alpha y, m\alpha v) \ge \mu(y, v).$$

If $x \leq y$ and $m \leq v$, then $\mu(x,m) \geq \mu(y,v)$. So

$$\mu(x,m) \ge T[\mu(x+y,m+v),\mu(y,v)] = \min\{\mu(x+y,m+v),\mu(y,v)\}.$$

Hence the result.

Theorem 2.10. Let M be an ordered Γ -semiring, and μ be an imaginable T-fuzzy left k-ideal of $M \times M$. If μ is a T-fuzzy left k-ideal, then $\mu \times \mu$ is an imaginable T-fuzzy left k-ideal of $M^2 \times M^2$.

Proof. Let M be an ordered Γ -semiring, and μ be an imaginable T-fuzzy left k-ideal of $M \times M$, and $((x, m), (x, m)) \in M^2 \times M^2$. Obviously, $\mu \times \mu$ is a T fuzzy left k-ideal of $M^2 \times M^2$. Now

$$T[(\mu \times \mu)((x, m), (x, m)), (\mu \times \mu)((x, m), (x, m))]$$

= $T[T[\mu(x, m), \mu(x, m)], T[\mu(x, m), \mu(x, m)]]$
= $T[\mu(x, m), \mu(x, m)]$
= $(\mu \times \mu)((x, m), (x, m))$

which implies $\mu \times \mu$ is imaginable. On the other hand

$$\begin{aligned} &(\mu \times \mu)((x,m),(z,z')) \\ &= T[\mu(x,m),\mu(z,z')] \\ &\geq T[T(\mu(x+y,m+v),\mu(y,v)),T[\mu(z+y,z'+v),\mu(y,v)]] \\ &= T[T[\mu(x+y,m+v),\mu(z+y,z'+v)],T[\mu(y,v),\mu(y,v)]] \\ &= T[(\mu \times \mu)((x+y,m+v),(z+y,z'+v)),(\mu \times \mu)((y,v),(y,v))] \end{aligned}$$

for all $((x, m), (z, z')) \in M^2 \times M^2$ and $(y, v) \in M \times M$. Thus, $\mu \times \mu$ is an imaginable *T*-fuzzy left *k*-ideal of $M^2 \times M^2$.

Theorem 2.11. Let M be an ordered Γ semiring. A fuzzy subset μ is a T-fuzzy quasi ideal of $M \times M$ iff

$$\mu(x,m) \ge T[\sup_{(y,z),(v,z')\in M_{(x,m)}} \mu(y,v), \sup_{(y,z),(v,z')\in M_{(x,m)}} \mu(z,z')]$$

for all $(x,m) \in M \times M$.

Proof. Let M be an ordered Γ -semiring, and μ be a T-fuzzy quasi ideal of $M \times M$. By definition

$$\mu(x,m) \ge \mu \circ \mathbb{1}_M \wedge \mathbb{1}_M \circ \mu(x,m)$$

 iff

$$\mu(x,m) \ge T[\mu \circ \mathbb{1}_M(x,m), \mathbb{1}_M \circ \mu(x,m)]$$

iff

$$\mu(x,m) \ge T \left[\sup_{(y,z),(v,z') \in M_{(x,m)}} \left(T[\mu(y,v), \mathbb{1}_M(z,z')], T[\mathbb{1}_M(y,v), \mu(z,z')] \right) \right]$$

 iff

$$\mu(x,m) \ge T \left[\sup_{(y,z),(v,z') \in M_{(x,m)}} \mu(y,v), \sup_{(y,z),(v,z') \in M_{(x,m)}} \mu(z,z') \right]$$

for all $(x,m) \in M \times M$.

Theorem 2.12. Let M be an ordered Γ -semiring. Every fuzzy bi-ideal of $M \times M$ is a T fuzzy bi-ideal of $M \times M$.

Proof. Let M be an ordered Γ -semiring, μ be a fuzzy bi-ideal of $M \times M$, $(x,m), (y,v), (z,z') \in M \times M$, and $\alpha, \beta \in \Gamma$. Observe, we have the following

$$\mu(x+y,m+v) \ge \min\{\mu(x,m),\mu(y,v)\}$$
$$\ge T[\mu(x,m),\mu(y,v)].$$

Also

$$\mu(x\alpha y\beta z, m\alpha v\beta z') \ge \min\{\mu(x,m), \mu(z,z') \ge T[\mu(x,m), \mu(z,z')]$$

which implies μ is a *T*-fuzzy bi-ideal of $M \times M$.

Theorem 2.13. Let M be an ordered Γ -semi ring. Every fuzzy interior ideal of $M \times M$ is a T-fuzzy interior ideal of $M \times M$.

Proof. Let M be an ordered Γ -semiring, and μ be a fuzzy interior ideal of $M \times M$. Since

$$\min\{\mu(x,m), \mu(y,v)\} \ge T[\mu(x,m), \mu(y,v)],$$

 μ is a *T*-fuzzy interior ideal of $M \times M$.

3 Concluding Remarks

In the present paper we introduced notions of T-fuzzy ideal, T-fuzzy quasi ideal, T-fuzzy bi-ideal, and T-fuzzy interior ideal and obtained some related properties in coupled Γ semirings.

References

 [1] Marapureddy Murali Krishna Rao, T-fuzzy ideals in ordered Γ-semirings, Annals of Fuzzy Mathematics and Informatics 13(2) (2017), 253-276. https://doi.org/10.30948/afmi.2017.13.2.253

This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted, use, distribution and reproduction in any medium, or format for any purpose, even commercially provided the work is properly cited.