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Abstract

In this paper, we establish Cusa-Huygens, Wilker and Huygens type
inequalities for certain generalizations of the hyperbolic functions. From
the established results, we recover some previous results as particular cases.

1 Introduction

The inequality
sin z
z

<
cos z + 2

3 , 0 < z <
π

2 , (1)

is known in the literature as Cusa-Huygens inequality. Its hyperbolic counterpart,
which is given as

sinh z
z

<
cosh z + 2

3 , x > 0, (2)

was established by Neuman and Sandor [14]. The inequality(sin z
z

)2
+ tan z

z
> 2, 0 < z <

π

2 , (3)

which is known as Wilker inequality was first proposed in the classic work [21,
p.55] and subsequently attrated the attention of other researchers. In [23], Wu
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and Srivastava proved the Wilker-type inequality(
z

sin z

)2
+ z

tan z > 2, 0 < z <
π

2 . (4)

The hyperbolic counterpart of (3) was established by Zu [24] as

(sinh z
z

)2
+ tanh z

z
> 2, z ∈ R \ {0}. (5)

Also, the hyperbolic counterpart of (4) was established by Wu and Debnath [22]
as (

z

sinh z

)2
+ z

tanh z > 2, z ∈ R \ {0}. (6)

Another inequality of interest is the Huygens inequality which is given as [17]

2sin z
z

+ tan z
z

> 3, 0 < z <
π

2 , (7)

and its hyperbolic counterpart given as [14]

2sinh z
z

+ tanh z
z

> 3, z ∈ R \ {0}. (8)

Due to their usefulness, these elegant inequalities have been studied extensively
and in diverse ways by several researchers. See for example [2], [3], [4], [5], [6],
[7], [8], [12], [13], [15], [16], [18], [19], [20], [22], [24], [25], [26] and the related
references therein.

Also, in a recent work, the Huygens-type inequality

2
cosh z + cosh z > sinh z

z
+ 2tanh z

z
>

1
cosh z + 2, z ∈ R \ {0}, (9)

was established among other things by Bagul and Chesneau [1].
Motivated by the results (2), (5), (6), (8) and (9), the objective of this

paper is to establish analogous inequalities concerning certain generalizations of
the hyperbolic functions. The established results serve as generalizations of the
previous results.
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2 Preliminary Definitions

In a bid to generalize a previous work [9], the authors of [10] gave the following
generalizations of the hyperbolic functions.

Definition 2.1. The generalized hyperbolic cosine, hyperbolic sine and
hyperbolic tangent functions are respectively defined as [10]

cosha(z) = az + a−z

2 , (10)

sinha(z) = az − a−z

2 , (11)

tanha(z) = sinha(z)
cosha(z)

= az − a−z

az + a−z
= 1− 2

1 + a2z , (12)

where a > 1 and z ∈ R.

These generalized functions satisfy the following identities.

cosha(z) + sinha(z) = az, (13)

cosha(z)− sinha(z) = a−z, (14)

(cosha(z))′ = (ln a) sinha(z), (15)

(sinha(z))′ = (ln a) cosha(z), (16)

(tanha(z))′ =
ln a

cosh2
a(z)

, (17)

(cosha(z))′′ + (sinha(z))′′ = (ln a)2az, (18)

(cosha(z))′′ − (sinha(z))′′ = (ln a)2a−z, (19)

cosh2
a(z) + sinh2

a(z) = cosha(2z), (20)

cosh2
a(z)− sinh2

a(z) = 1, (21)

2 sinha(z) cosha(z) = sinha(2z), (22)

cosh2
a(z) = cosha(2z) + 1

2 , (23)
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sinh2
a(z) = cosha(2z)− 1

2 . (24)

The generalized hyperbolic secant, hyperbolic cosecant and hyperbolic cotangent
functions are respectively defined as

secha(z) = 1
cosha(z)

, cosecha(z) = 1
sinha(z)

, cotha(z) = 1
tanha(z)

. (25)

As pointed out in [10], several other identities can be derived from (10), (11) and
(12). When a = e, where e = 2.71828... is the Euler’s number, then the above
definitions and identities reduce to their ordinary counterparts.

3 Results and Discussion

Lemma 3.1. The inequality

cosha(z) <
(sinha(z)

z

)3
, (26)

holds for z ∈ R \ {0}.

Proof. Inequality (26) has been proved in [11] for z > 0. Now let z < 0 so that
−z > 0. Then

cosha(z) = cosha(−z) <
(sinha(−z)

−z

)3
=
(sinha(z)

z

)3
,

which completes the proof.

Since the function sinha(z)
z is increasing for z > 0 and decreasing for z < 0,

then Lemma 3.1 implies the following generalized result.

Lemma 3.2. The inequality

cosha(z) <
(sinha(z)

z

)v
, (27)

holds for z ∈ R \ {0} and v ≥ 3.
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Lemma 3.3 ([11]). For z ∈ R \ {0}, the inequality

ln a
cosha(z)

<
sinha(z)

z
< (ln a) cosha(z), (28)

holds.

Lemma 3.4 (Young’s Inequality). Let x, y ≥ 0, r, s ∈ (0, 1) such that r + s = 1.
Then,

xrys ≤ rx+ sy. (29)

Theorem 3.5. The inequality

sinha(z)
z

<
2 ln a+ (ln a) cosha(z)

3 , (30)

holds for z ∈ R \ {0}.

Proof. Since the functions in each term of the inequality are even, it suffices to
prove the case for z > 0. Let z > 0 and h be defined as

h(z) = 2z + z cosha(z)
sinha(z)

.

Then

h′(z) = 1
sinh2

a(z)
[2 sinha(z) + cosha(z) sinha(z)− 2z(ln a) cosha(z)− (ln a)z]

= 1
sinh2

a(z)
φ(z)

and then

φ′(z) = (ln a) [cosha(2z)− 2(ln a)z sinha(z)− 1]

= 2(ln a) sinha(z) [sinha(z)− (ln a)z] > 0,

since sinha(z)
z > ln a for z ∈ (0,∞). Hence φ(z) is increasing and consequently,

φ(z) > φ(0) = 0. Thus h(z) is increasing. Hence

h(z) > lim
z→0

h(z) = 3
ln a,

which gives (30).
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Remark 3.6. When a = e, then inequality (30) reduces to the hyperbolic
Cusa-Huygens inequality (2).

Theorem 3.7. The inequalities(sinha(z)
z

)2
+ tanha(z)

z
> 2, (31)

(
z

sinha(z)

)2
+ z

tanha(z)
>

1 + ln a
(ln a)2 , 1 < a ≤ e, (32)

hold for z ∈ R \ {0}.

Proof. Let z ∈ R \ {0}. Then by the AM-GM inequality and Lemma 3.1, we
obtain (sinha(z)

z

)2
+ tanha(z)

z
≥ 2

√(sinha(z)
z

)2 tanha(z)
z

= 2

√(sinha(z)
z

)3 1
cosha(z)

> 2,

which gives (31). To prove (32), it suffices to prove the case for z > 0. Let z > 0
and define ψ(z) by

ψ(z) =
(

z

sinha(z)

)2
+ z

tanha(z)
,

where 1 < a ≤ e. Then by differentiating, applying the AM-GM inequality and
Lemma 3.1, we obtain

ψ′(z)

= 1
sinh3

a(z)

[
sinh2

a(z) cosha(z) + (2− ln a)z sinha(z)− 2(ln a)z2 cosha(z)
]

≥ 1
sinh3

a(z)

[
2
√

sinh2
a(z) cosha(z).(2− ln a)z sinha(z)− 2(ln a)z2 cosha(z)

]

= 2z2

sinh3
a(z)

.
√

cosha(z)

√2− ln a

√(sinha(z)
z

)3
− (ln a)

√
cosha(z)


> 0.
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Thus ψ(z) is increasing. Hence

ψ(z) > lim
z→0

ψ(z) = 1 + ln a
(ln a)2 ,

which gives (32).

Remark 3.8. When a = e, then the inequalities (31) and (31) reduce to the
hyperbolic Wilker-type inequalities (5) and (6) respectively.

Theorem 3.9. The inequality

(sinha(z)
z

)2
+ tanha(z)

z
>

(
z

sinha(z)

)2
+ z

tanha(z)
, (33)

holds for z ∈ R \ {0}.

Proof. Using the fact that (A2 +B)/(1/A2 + 1/B) = A2B, together with Lemma
3.1, we obtain

(
sinha(z)

z

)2
+ tanha(z)

z(
z

sinha(z)

)2
+ z

tanha(z)

=
(sinha(z)

z

)2 tanha(z)
z

=
(sinha(z)

z

)3 1
cosha(z)

> 1,

which concludes the proof.

Theorem 3.10. Let α, β ∈ (0, 1) such that α+ β = 1. Then the inequality

α

(sinha(z)
z

)2
+ β

(tanha(z)
z

)
> (ln a)2(α−β), (34)

holds for z ∈ R \ {0}.
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Proof. Let z ∈ R \ {0}. Then Youngs inequality (29) and Lemma 3.1 imply that

α

(sinha(z)
z

)2
+ β

(tanha(z)
z

)
≥
(sinha(z)

z

)2α (tanha(z)
z

)β
=
(sinha(z)

z

)2α+β ( 1
cosha(z)

)β
>

(sinha(z)
z

)2α+β (sinha(z)
z

)−3β

=
(sinha(z)

z

)2(α−β)

> (ln a)2(α−β),

which completes the proof.

Remark 3.11. If α = β = 1
2 , then (34) reduces to (31).

Theorem 3.12. The inequality

2sinha(z)
z

+ tanha(z)
z

> 3 ln a, (35)

holds for z ∈ R \ {0}.

Proof. It suffices to prove the case for z > 0. Let z > 0 and let h be defined as

h(z) = 2sinha(z)
z

+ tanha(z)
z

.

Then

z2h′(z) = 2(ln a)z cosha(z)− 2 sinha(z) + (ln a)zsech2
a(z)− tanha(z)

= θ(z),

and

θ′(z) = 2(ln a)2z sinha(z)− 2(ln a)2z tanha(z)sech2
a(z)

= 2(ln a)2z sinha(z)
[
1− 1

cosh3
a(z)

]
> 0,
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Cusa-Huygens, Wilker and Huygens Type Inequalities ... 285

which shows that θ(z) is increasing. Hence θ(z) > θ(0) = 0. Thus, h(z) is
increasing and consequently,

h(z) > lim
z→0

h(z) = 3 ln a

which yields (35).

Remark 3.13. When a = e, then inequality (35) reduces to (8).

Theorem 3.14. The inequality

2 z

sinha(z)
+ z

tanha(z)
>

3
ln a, (36)

holds for z ∈ R \ {0}.

Proof. It suffices to prove the case for z > 0. Let z > 0 and δ be defined as

δ(z) = 2 z

sinha(z)
+ z

tanha(z)
.

Then

δ′(z) = 1
sinh2

a(z)
[2 sinha(z)− z ln a+ cosha(z)(sinha(z)− z ln a)] > 0

since sinha(z) > z ln a. Hence δ(z) is increasing and consequently,

δ(z) > lim
z→0

δ(z) = 3
ln a

which yields (36).

Theorem 3.15. The inequality

(m+ 1)sinha(z)
z

+m
tanha(z)

z
> m

sinha(z)
z

+ (m+ 1)tanha(z)
z

, (37)

holds for z ∈ R \ {0} and m ∈ N ∪ {0}.
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Proof. z ∈ R \ {0} . Then

sinha(z)
z

− tanha(z)
z

= sinha(z)
z

[
1− 1

cosha(z)

]
> 0,

since cosha(z) > 1 for z ∈ R. That is

sinha(z)
z

>
tanha(z)

z
. (38)

Adding m
(

sinha(z)
z + tanha(z)

z

)
to both sides of (38) completes the proof.

Theorem 3.16. The inequality

2 ln a
cosha(z)

+ (ln a) cosha(z) >
sinha(z)

z
+ 2tanha(z)

z
>

ln a
cosha(z)

+ 2 ln a, (39)

holds for z ∈ R \ {0}.

Proof. It suffices to prove the case for z > 0. Let z > 0 and f be defined as

f(z) = 2(ln a)z + (ln a)z cosh2
a(z)− sinha(z) cosha(z)− 2 sinha(z).

Then

f ′(z) = 2(ln a) + 2(ln a)2z cosha(z) sinha(z)− (ln a) sinh2
a(z)− 2(ln a) cosha(z),

and then

f ′′(z) = 2(ln a)3z sinh2
a(z) + 2(ln a)2

[
(ln a)z cosh2

a(z)− sinha(z)
]
> 0,

since sinha(z) < (ln a)z cosha(z) (see Lemma 3.3) and cosha(z) < cosh2
a(z). Hence

f ′(z) is increasing and so, f ′(z) > f ′(0) = 0. Thus, f(z) is increasing and so
f(z) > f(0) = 0. This yields the left-hand side of (39). Next, for z > 0, let g be
defined as

g(z) = sinha(z) cosha(z) + 2 sinha(z)− (ln a)z − 2(ln a)z cosha(z).

Then

g′(z) = (ln a) cosh2
a(z) + (ln a) sinh2

a(z)− ln a− 2(ln a)2z sinha(z)
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Cusa-Huygens, Wilker and Huygens Type Inequalities ... 287

and then

g′′(z) = 2(ln a)2 cosha(z) [sinha(z)− (ln a)z] + 2(ln a)2 sinha(z) [cosha(z)− 1]

> 0,

since sinha(z) > (ln a)z and cosha(z) > 1 . Hence g′(z) is increasing and so,
g′(z) > g′(0) = 0. Thus, g(z) is increasing and so g(z) > g(0) = 0. This yields
the right-hand side of (39) and that completes the proof.

Remark 3.17. When a = e, then inequality (39) reduces to (9).

Remark 3.18. By (37) and (39), we have

2sinha(z)
z

+ tanha(z)
z

>
ln a

cosha(z)
+ 2 ln a.

This is however weaker than inequality (35).
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