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Abstract

In this paper we introduce a concept of 1-cone pentagonal metric space, which
combines the notions of cone pentagonal metric space [I], and n-cone metric
space [2]. Moreover, a variant of the interpolative Berinde weak mapping

theorem obtained in [3] is proved in this setting.

1 Introduction and Premilinaries

Definition 1.1. [4] Let E be a real Banach space with norm || -|| and P be a subset
of E. Then P is called a cone if and only if

(a) P is closed, nonempty, and P # {0}, where 6 is the zero vector in F;
(b) for any nonnegative real numbers a and b, and x,y € P, we have ax + by € P;
(c) for x € P, if —x € P, then z = 6.

Definition 1.2. [4] Given a cone P in a Banach space E, we define on E a partial

order < with respect to P by
xRy <= y—xcint(P).

We shall write x < y whenever < y and = # y. While z < y will stand for
y — x € Int(P), where Int(P) designates the interior of P.
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Definition 1.3. [4] The cone P is said to be normal if there is a real number C' > 0

such that for all z,y € E, we have
02z =2y =l < Cllyl.

The least positive number satisfying the above inequality is called the normal
constant of P. In particular, we will say that P is a K-normal cone to indicate

the fact that the normal constant is K.

Definition 1.4. [I] Let X be a nonempty set. Suppose the mappingd : X x X — E

satisfies
(a) 0 <d(z,y), for all z,y € X and d(z,y) =0 iff x = y;
(b) d(z,y) = d(y,x) for all z,y € X;
(¢) d(z,y) < d(z,z)+d(z,w)+d(w,u)+d(u,y) for all z,y € X and for all distinct
points z,w,u € X — {z,y} [pentagonal property].

Then d is called a cone pentagonal metric on X, and (X,d) is called a cone

pentagonal metric space.

Example 1.5. [5] Let X = {r,s,t,u,v}, E =R? and P = {(x,y) : z,y > 0} be a
cone in E. Define d : X x X — FE as follows

d(z,z) =0, for all x € X,

d(r,s) =d(s,r) = (4,8),
d(r,t) =d(t,r) =d(t,u) = d(u,t) = d(s,t)
= d(t,s) = d(s,u) = d(u, s) = d(r,u) = d(u,r) = (1,2),
d(r,v) =d(v,r) =d(s,v) = d(v,s) = d(t,v) = d(v,t) = d(u,v) = d(v,u) = (3,6).

Then (X, d) is a complete cone pentagonal metric space, but not a complete cone

rectangular metric space, as it lacks the triangular property:
(4,8) =d(r,s) > d(r,t) + d(t,u) + d(u, s)
=(1,2)+(1,2) +(1,2) = (3,6)
as (4,8) — (3,6) = (1,2) € P.
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Definition 1.6. [2] Let X be a nonempty set and 1 : X x X — [1,00) be a map.
A function d,, : X x X — E will be called an n-cone metric on X if

(a) 0 2 dy(x,y) for all z € X and d,)(x,y) =0 iff z = y;
(b) dy(z,y) = dy(y, ) for all z,y € X;
(c) dy(x,2) 2n(x, 2)dy(,y) + dy(y, 2)] for all z,y,z € X.
Moreover the pair (X,d,) is called an 7-cone metric space.
Remark 1.7. [2] If for all z,y € X
(a) n(xz,y) =1, then we obtain the definition of cone metric space [4].

(b) n(xz,y) = L, where L > 1, then we obtain the definition of cone metric type
space [6].

(¢) n(z,y) = C, where C > 1, E = R and P = [0,00), then we obtain the

definition of metric type space [7].
Example 1.8. [2] Let E=R? P = {(z,y) € E:z,y >0} CR? and X = {1,2,3}.
Let o > 0 be a constant and define : X x X +— [1,00) and d,, : X x X — E by
n(@,y) =1+z+y,
dp(1,1) = dy(2,2) = dy(3,3) = (0,0),

dy(1,2) =d,(2,1) = 80(1, a),

dy(1,3) =d,(3,1) = 1000(1, @),

dy(2,3) = d,(3,2) = 600(1, a).
Then (X, d;) is an n-cone metric space.
Now we introduce the following

Definition 1.9. Let X be a nonempty set and 7 : X X X +— [1,00) be a map. A
function d,, : X x X — E will be called an n-cone pentagonal metric on X if
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(a) 0 = dy(x,y) for all z,y € X and dy(x,y) =0 iff z = y;
(b) dy(x,y) =dy(y,x) for all z,y € X;

(¢) dy(z,y) < n(x,y)[dy(z, w) + dy(w, 2) + dy(2,v) + dy(v,y)] for all z,y € X and
for all distinct points w, z,v € X — {z,y}.

Moreover the pair (X, d,) will be called an n-cone pentagonal metric space.

Example 1.10. Let X = {r,s,t,u,v}, E = R? and P = {(z,y) : 2,5 > 0} be a
cone in E. Define d,, : X x X — E as follows

d»,](T7 8) — Un 8,7") = (478)7

Also define n: X x X — [1,00) as follows

n(z,x) =0, for all z € X

n(r,5) = nls,r) = 5.
77(747 t) = n(ta T') = U(t> u) = 77(% t) = n(sa t) = n(t7 8) = 77(37 u) = 77(“7 3)
1
— () = nfonr) = -
77(T7 U) = 77(7}7 T) - 77(87 U) - 77(”7 3) = 77(t7 U) = 77(7)’ t) - U(Ua 1))
(

By definition of d,,, it is trivial to check Definition 1.9(a), and Definition 1.9(b).

Now we check Definition 1.9(c). Obviously we have the following cases
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Case 1: (z,z) for all z € X

In this case it is enough to check
dy(r,r) < nlr,r)[dy(r, s) + dy(s,t) + dy(t, u) + dy(u, 7)].
Since d,(r,7) = (0,0) and 7n(r,r) = 0, we have equality. In particular, we have

(0,0) = dy(r,7) < n(r,r)[dy(r, s) + dy(s,t) + dp(t,u) + dy(u,r)]
= 0[dy(r,s) + dy(s,t) + dy(t,u) + dy(u,7)] = (0,0).

Case 2: (r,s) = (s,71)

In this case it is enough to check
dy(r,s) < n(r, s)[dy(r,t) + dn(t,u) + dy(u,v) + dy (v, s)).
In particular, we have

(4,8) = d,(r, s)
< n(r,s)dy(r,t) + dy(t, u) + dy(u,v) + dy(v, s)]

- %[(1,2) +(1,2) +(3,6) + (3,6)]
_ %(8, 16) = (4,8).

Case 3: (r,t) = (t,7) = (t,u) = (u,t) = (s,t) = (t,5) = (s,u) = (u,s) = (r,u) = (u, )

In this case it is enough to check

dy(r,t) <n(r,t)dy(r, s) + dy(s,u) + dy(u,v) + dy(v, t)].
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In particular, we have
(1’ 2) = dﬂ(rv t)
< n(r, t)[dy(r, s) + dy(s,u) + dyp(u, v) + dy(v, )]
= LI(48)+ (1,2) + (3,6) + (3,6) = - (11,22) = (1,2).

Case 4: (r,v) = (v,r) = (s,v) = (v,s8) = (t,v) = (v,t) = (u,v) = (v, u)

In this case it is enough to check that
dy(r, v) < n(r, 0)[dy(r, s) + dy(s,t) + dy(t, w) + dy(u, v)].
In particular, we have
(3,6) = dy(r,v)
< n(r,v)[dy(r,s) + dp(s,t) + dy(t,u) + dy(u,v)]
= 1(4.8) 4 (1,2) + (1,2) + (3,6)] = 5(9,18) = (3,6).

It follows that (X, d,) is an n-cone pentagonal metric space. Note that (X, d) is not

an 7)-cone rectangular metric space, as it lacks Definition 1.9(c) [§]. In particular,
(47 8) = dn(’l“, S) > 77(7“7 5)[d77(r7 7") + dn(’l", t) + dn(ta 5)]
1
= 210.0)+ (1,2) + (1,2)
1
=-(2,4)=(1,2
2.4 = (1,2
as (4,8) —(1,2) = (3,6) € P.

Definition 1.11. Let (X,d,) be a n-cone pentagonal metric space. Let {z,} be a
sequence in (X, d,) and z € X. If for every ¢ € E with 0 < ¢, there exists ng € N
such that for all n > ng, d,(z,,c) < ¢, then we say {z,} is convergent, and {z,}
converges to z. Moreover, z will be called the limit of {z,}. We sometimes write

lim,, yoo T, = &, OF T,, — T aS N —> Q.
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Definition 1.12. Let (X,d,) be a n-cone pentagonal metric space. If for every
c € E, with 0 < ¢, there exists ng € N such that for all n > ng, dy,(zn, ) < ¢, then

we say {x,} is a Cauchy sequence in (X, d,).

Definition 1.13. Let (X, d,) be a n-cone pentagonal metric space. If every Cauchy
sequence is convergent in (X,d,), then (X,d,) will be called a complete 7-cone

pentagonal metric space.

Notation 1.14. [I] Let P be a cone as defined in this paper. ® will denote the set

of all nondcreasing continuous functions ¢ : P + P satisfying
(a) 0 < @(t) <tforallt e P\{0};
(b) the series >, - ¢"(t) converges for all t € P\{0}.

Note that from (a), we have ¢(0) = 0, and from (b) we have lim,,_, » ¢"(t) = 0 for
all t € P\{0}.

Definition 1.15. Let (X, d;) be a n-cone pentagonal metric space. A map T : X +—

X will be called an (alternate) Interpolative Berinde Weak operator if it satisfies

[NIE

dy(Tz, Ty) < A dn(x,y)%dn(:c,Ta:) ,

where A € (0,1), forall z,y € X, z,y ¢ Fiz(T), where Fiz(T) ={z € X : Tz = x}.

2 Main Results

Our main result is as follows

Theorem 2.1. Let (X, d,) be an-cone pentagonal metric space. SupposeT : X — X

satisfies

dy(Tz, Ty) < so(\}i dy(x,y)? dn(x,T:cﬁ)

forallz,y e X, x,y ¢ Fiz(T), and ¢ € . If (X,d,) is complete and

lim  n(xo, Tm)
n,m—00

exists and is finite, then the fixed point of T exists.
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Proof. Let zp be an arbitrary point in X. Define a sequence {z,} in X by x, 41 =
Tx, for all n =0,1,2,---. Assume that z,, # z,.1 for all n € N. Now observe from

the inequality of the theorem, we have

dy(2n, Tnt1) = dpy(Tep—1, Txy)

1
—= dn(xn 1, xn)

N[

<o dn(xnlaTl'nl)%>

)

=
N

0= dn(ﬂfn 1a$n) dn($n—17xn)

(

=+
<o(thtenrion)

(

=

= | dy(Txp— Q,Txn1)>

)
d

=@ n(mn 2, Tp— 1))

.S ©" <dn(l‘o,$1)>-

Now observe we have the following

ﬁ

dn(xn; xn+2) = dp(Txy— laTxn—l—l)

1
—= dn (xnfla xn+1)

NI

CP dn(xn17T$n1);>

)

dn(xn—la xn—i—l);)

\V)

Nl
ol

dn(l‘nfla xn)

ﬁ
O

1
= dn (xn—la xn—&—l)

N
[N

2

3

=

=@ n($n—1,$n+1)>

n(
(
(1 (Tt Tnsn)
<o
(

— o (aTer-012)
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< <90 <dn(9€n—2, Jﬂn)))

= ( dyfon-an)

D=

1
0= dr](xn—la 1:n+2) dn(l‘n—la Txn—l)2>

)

1
dn(xn—ly xn+2)2>

[NIES
[ I

— dn(xn—la xn+2) dn(xn—la wn)

(ST

2

N

- dn (xn—la xn+2)

(
(
(

= o (danr.01))
(40702, Tt )
( ))

® <dn (xn—% xn—i—l)
d

=@ n($n2a$n+1)>

<o (dy(oo.s)).

Now for £k =1,2,3,--- we have

dy(Zn, Tniskt1) < @ (dn(wo,ﬂf3k+1)>
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dn<37n737n+3k+2) <" (dn($07373k+2)>

dn(xna Tpy3kts3) < @ <dn($0a $3k+3)>~

Since dy(xp, Tnt1) < " (dn(ajo,xl)>, we deduce the following using the n-cone
pentagonal property

dn(zo, x4) < n(xo, z4)[dn(xo, x1) + dn(x1, 2) + dn(z2, x3) + dn(zs, 24)]

< o, ) [dn(:co, )+ w(dn@co, ) + ¢ (dnfonn) ) +6° (dn oo xl))]

Similarly, we can show the following

6 .
d77(900al"7) < 77(:507557) [Z@Z (dn(xoaxl))] .

=0

By induction for £ =1,2,3,---, we have

dn(zo, T3k+1) < 1(T0, T3k+1) [Z@( $0,$1>]

Since dy(zp, Tpt1) < go”(dn(:ro,:nl)> and d,(2n, Tni2) < cp”(dn(xo,:ng)>, we

deduce the following using the n-cone pentagonal property
dn(xo, z5) < n(xo, x5)[dn(z0, 71) + dn(z1, 72) + dn(T2, 73) + dn(T3, T5)]

< o, 73) [dn<xo,x1> +o(dntenon) 4 (anen)) + ¢ <dn<xo,x2>)]

n(zo, x5) [Z¢< xo,ml)—&—w‘g(dn(xo,xg))].
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Similarly, we can show the following

dn(wo, v3) < n(wo, s) [Z(P ( (xo, 1 ) + b (dn(xg,x2)>].

By induction for £ =1,2,3,---, we have

dn(20, T3ps2) < (w0, Tar2) ril & <d7,(x0,x1)> 4+ (dn(xo,x2)>] .

=0

Since dy(zp, Tpt1) < w”(dn(xo,m1)> and d,(2n, Tnt3) < @”(dn(wo,m3)>, we

deduce the following using the n-cone pentagonal property
dn(wo, z6) < 1(xo, x6)[dn(xo, x1) + dn(x1, x2) + dn(w2, x3) + dn(ws, ve)]

SM%@@PM%MH+@@A%JQ>+ﬁ<%@mm0+¢%%@m%0]

n(zo, T6) [ZSO ( (o, 21 > +@3<dn($o,$3))]-

Similarly, we can show the following

dn(wo, v9) < 1(xo, 9) [Z@ ( (w0, 21 > + ¢° <dn(x0,x3)>].

By induction for k£ =1,2,3,---, we have

3k—1
dn(zo, x36+3) < (0, T3k43) [ Z o' (dn(l‘o,ﬂh)) + " <dn(l‘o,l‘3)>] :

Since
dmmMmmw@mmMQ

and

dn(zo, T3k+1) < 1(0, Tk+1) [th( (20, 1 >]

Earthline J. Math. Sci. Vol. 5 No. 2 (2021), 251-266



262 Clement Boateng Ampadu

we deduce the following

dy(Tn, Tpgghg1) < " (dn(iUo, 903k+1)>

'3k

IN

" (77(3?0, T3k+1)

)

SR
" (U(xo,x3k+1) Z<d77 T0, 1) + dy (o, x2) +d (x()?x?’))])
g

IN

OO

< " (n(azo,x3k+1) ‘ dy(x0, 21) + dy(x0, 22) + dn(xo,xg))] )

Since dy)(Tn, Tnspt2) < " <dn(l‘0, x3k+2)) and

3k—1
dn(zo, x3k+2) < (20, T3k+2) [ Z ' (dn(ﬂfo,ﬂfl)> + o3k <dn(9€o, l“z))] ;

1=0

we deduce the following

dy(Zn, Tniskt2) < @ ( Io,$3k+2)>

(n o sz:l g (dn ro.21 > + o <dn(xo,m2)>]>

(2

E

3h—1
<gp (77 0, L3k+2) [ @' <dn(730»331) + dy (20, x2) + dn(iﬂo,ffz))
i—0

_|_

o3k (dn x0, 1) + dy(xo, x2) + dyy (9007903)>])

<g (77 0, T3k+2) [ZSO < (0, x1) + dn(wo, 72) + dy (%JB))])
(77 0, T3k+2) [ng ( (x0, 1) + dy(xo, 22) +d (xo,x3)>]>.

<@

http://www. earthlinepublishers.com



The Interpolative Berinde Weak Mapping Theorem ... 263

Since
dy (T, Tpyspts) < @" (dn(fb’o,$3k+3)>

and

3k—1
dn(zo, x3k+3) < N(x0, T3k+3) [ Z ¢ (dn(iﬁo,m)) + 3F (dn(xo, 953))] ;

=0

for k =1,2,3,--- we can show the following

dy(Zn, Tntskt3) < @"( n(xo, T3k+3) [Zsﬁ ( (o, x1) +d ($o,$2)+dn($o,$3))]>-

Consequently it follows for each m, we have the following
dn(Tn, Tptm) < w"( (o, Tm) [ZSO < (0, 71) + dy (w0, 22) + d (56'0,963))])

Since Y 70, ¢" (dn(xo, x1) + dp(z0, z2) + dp(z0, x3)> is convergent, where
dn(l'o, xl) =+ dn(l’o, 172) + dn(l'o, 1'3) S P\{O}

P is closed, then > %, ¢' (dn(xo,xl) + dy (o, x2) + dn(wo,mg)) € P\{0}. Since

limy, ;00 (0, T ) exists and is finite, then

Ozn,}%rﬁoo 90n< n(z0, Tm) [Z@( (o, 21) + dy(xo, x2) + dyy (:Uo,xg)>]>.

So given 0 < ¢, we can find natural number N; such that

<Pn< n(xo, Tpm) [ng( (zo,z1) +d (xo,x2)+dn(x0,x3)>]> Lc

for all n > N;. Consequently,

dy(Tn, Tngm) <K c for all n > Nj.
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Therefore {z,,} is a Cauchy sequence in X. Since X is complete, there is a point
z € X such that

lim x, = lim Tx,_1 = 2.
n—oo n—oo

Finally we show existence of the fixed point, that is, Tz = z. Since 0 < ¢, we can
choose natural numbers Na, N3, Ny such that d,(z,z,) < W‘;Z), for all n > N,
dy(ZTnt1,Tn) < ch), for all n > N3, and dy(zp—1,2) < m, for all n > Ny.
Since x,, # x., for n # m, therefore by n-cone pentagonal property, we deduce the

following

dy(Tz,2) < Tz, 2)[dy(Tz,Txy) + dy(Txn, Ten—1) + dy(Trn—1,Trn—2) + dy(Txp_2, 2)]
N(Tz,2)[dy(Tz, Tay) + dy(Xng1, Tn) + dy(n, Tno1) + dy(Tn-1, 2)]-

IN

By the inequality of the theorem, we have

< dp(z,7n)
Thus
dy(Tz,2) < Tz, 2)[dy(Tz,Txyp) + dyp(Txn, Txn—1) + dpy(Trp—1,Txn—2) + dp(TTpn—2, 2)]
<n(Tz,2)[dy(Tz, Tan) + dy(Tps1, Tn) + dy(@n, Tn_1) + dy(Tn—1, 2)]
< U(TZ, Z) [dn(zv xn) + dn(xn+1a xn) + dn(zna mnfl) + dn(xnfla Z)]
Hence

dy(Tz,z) < Tz, 2)[4- | <e

(T2, 2)
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for all n > N, where N := max{N2, N3, Ny}. Since c is arbitrary, we have
dy(Tz,z) < 5 for all m € N. Since =~ — 0 as m — oo, we conclude that
= —dy(Tz,2) = —dy(Tz,z) as m — oo. Since P is closed, —d,(Tz,z) € P. Hence
dy(Tz,z) € PN (—P). By definition of cone, we have d,(Tz,z) = 0. So the fixed

point exists, and the proof is finished. O
3 Open Problems

To conclude this paper, we suggest some unsolved problems

Conjecture 3.1. Let (X,d,) be a n-cone pentagonal metric space. Suppose T :

X — X satisfies the following for some positive integer m

N

(T, T) < o5 (ot a0t )

forallz,y e X, x,y ¢ Fiz(T), and ¢ € . If (X,d,) is complete and

exists and is finite, then the fixed point of T exists.

Conjecture 3.2. Let (X,d,) be a n-cone pentagonal metric space. Suppose T :
X — X satisfies the following

N[
[NIES

dy(Tz, Ty) < X dyp(z,y)2 dy(x,Tx)
forallz,y e X, x,y ¢ Fiz(T), and X € (0,1). If (X,d,) is complete and

exists and is finite, then the fixed point of T exists.

Conjecture 3.3. Theorem 2.1 holds in n-cone rectangular metric space [§].
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