Earthline Journal of Mathematical Sciences

ISSN (Online): 2581-8147

Volume 5, Number 2, 2021, Pages 251-266 https://doi.org/10.34198/ejms.5221.251266

The Interpolative Berinde Weak Mapping Theorem in η -Cone Pentagonal Metric Space

Clement Boateng Ampadu

31 Carrolton Road, Boston, MA 02132-6303, USA e-mail: drampadu@hotmail.com

Abstract

In this paper we introduce a concept of η -cone pentagonal metric space, which combines the notions of cone pentagonal metric space [1], and η -cone metric space [2]. Moreover, a variant of the interpolative Berinde weak mapping theorem obtained in [3] is proved in this setting.

1 Introduction and Premilinaries

Definition 1.1. [4] Let E be a real Banach space with norm $\|\cdot\|$ and P be a subset of E. Then P is called a cone if and only if

- (a) P is closed, nonempty, and $P \neq \{\theta\}$, where θ is the zero vector in E;
- (b) for any nonnegative real numbers a and b, and $x, y \in P$, we have $ax + by \in P$;
- (c) for $x \in P$, if $-x \in P$, then $x = \theta$.

Definition 1.2. [4] Given a cone P in a Banach space E, we define on E a partial order \leq with respect to P by

$$x \leq y \iff y - x \in int(P).$$

We shall write $x \prec y$ whenever $x \leq y$ and $x \neq y$. While $x \ll y$ will stand for $y - x \in Int(P)$, where Int(P) designates the interior of P.

Received: August 16, 2020; Accepted: September 19, 2020

2010 Mathematics Subject Classification: 47H10, 54H25.

Keywords and phrases: cone pentagonal metric space, fixed points, interpolative Berinde weak contraction mapping principle, ordered Banach space.

Definition 1.3. [4] The cone P is said to be normal if there is a real number C > 0 such that for all $x, y \in E$, we have

$$\theta \leq x \leq y \Longrightarrow ||x|| \leq C||y||$$
.

The least positive number satisfying the above inequality is called the normal constant of P. In particular, we will say that P is a K-normal cone to indicate the fact that the normal constant is K.

Definition 1.4. [1] Let X be a nonempty set. Suppose the mapping $d: X \times X \mapsto E$ satisfies

- (a) $0 \le d(x, y)$, for all $x, y \in X$ and d(x, y) = 0 iff x = y;
- (b) d(x,y) = d(y,x) for all $x, y \in X$;
- (c) $d(x,y) \le d(x,z) + d(z,w) + d(w,u) + d(u,y)$ for all $x,y \in X$ and for all distinct points $z,w,u \in X \{x,y\}$ [pentagonal property].

Then d is called a cone pentagonal metric on X, and (X,d) is called a cone pentagonal metric space.

Example 1.5. [5] Let $X = \{r, s, t, u, v\}$, $E = \mathbb{R}^2$, and $P = \{(x, y) : x, y \ge 0\}$ be a cone in E. Define $d: X \times X \mapsto E$ as follows

$$\begin{split} d(x,x) &= 0, \text{ for all } x \in X, \\ d(r,s) &= d(s,r) = (4,8), \\ d(r,t) &= d(t,r) = d(t,u) = d(u,t) = d(s,t) \\ &= d(t,s) = d(s,u) = d(u,s) = d(r,u) = d(u,r) = (1,2), \\ d(r,v) &= d(v,r) = d(s,v) = d(v,s) = d(t,v) = d(v,t) = d(v,u) = (3,6). \end{split}$$

Then (X, d) is a complete cone pentagonal metric space, but not a complete cone rectangular metric space, as it lacks the triangular property:

$$(4,8) = d(r,s) > d(r,t) + d(t,u) + d(u,s)$$
$$= (1,2) + (1,2) + (1,2) = (3,6)$$

as
$$(4,8) - (3,6) = (1,2) \in P$$
.

Definition 1.6. [2] Let X be a nonempty set and $\eta: X \times X \mapsto [1, \infty)$ be a map. A function $d_{\eta}: X \times X \mapsto E$ will be called an η -cone metric on X if

- (a) $\theta \leq d_{\eta}(x,y)$ for all $x \in X$ and $d_{\eta}(x,y) = \theta$ iff x = y;
- (b) $d_n(x,y) = d_n(y,x)$ for all $x,y \in X$;
- (c) $d_{\eta}(x,z) \leq \eta(x,z)[d_{\eta}(x,y) + d_{\eta}(y,z)]$ for all $x,y,z \in X$.

Moreover the pair (X, d_{η}) is called an η -cone metric space.

Remark 1.7. [2] If for all $x, y \in X$

- (a) $\eta(x,y)=1$, then we obtain the definition of cone metric space [4].
- (b) $\eta(x,y) = L$, where $L \ge 1$, then we obtain the definition of cone metric type space [6].
- (c) $\eta(x,y) = C$, where $C \geq 1$, $E = \mathbb{R}$ and $P = [0,\infty)$, then we obtain the definition of metric type space [7].

Example 1.8. [2] Let $E = \mathbb{R}^2$, $P = \{(x, y) \in E : x, y \ge 0\} \subseteq \mathbb{R}^2$ and $X = \{1, 2, 3\}$. Let $\alpha \ge 0$ be a constant and define $\eta : X \times X \mapsto [1, \infty)$ and $d_{\eta} : X \times X \mapsto E$ by

$$\eta(x,y) = 1 + x + y,$$

$$d_{\eta}(1,1) = d_{\eta}(2,2) = d_{\eta}(3,3) = (0,0),$$

$$d_{\eta}(1,2) = d_{\eta}(2,1) = 80(1,\alpha),$$

$$d_{\eta}(1,3) = d_{\eta}(3,1) = 1000(1,\alpha),$$

$$d_{\eta}(2,3) = d_{\eta}(3,2) = 600(1,\alpha).$$

Then (X, d_{η}) is an η -cone metric space.

Now we introduce the following

Definition 1.9. Let X be a nonempty set and $\eta: X \times X \mapsto [1, \infty)$ be a map. A function $d_{\eta}: X \times X \mapsto E$ will be called an η -cone pentagonal metric on X if

- (a) $\theta \leq d_{\eta}(x,y)$ for all $x,y \in X$ and $d_{\eta}(x,y) = \theta$ iff x = y;
- (b) $d_n(x,y) = d_n(y,x)$ for all $x,y \in X$;
- (c) $d_{\eta}(x,y) \leq \eta(x,y)[d_{\eta}(x,w) + d_{\eta}(w,z) + d_{\eta}(z,v) + d_{\eta}(v,y)]$ for all $x,y \in X$ and for all distinct points $w,z,v \in X \{x,y\}$.

Moreover the pair (X, d_{η}) will be called an η -cone pentagonal metric space.

Example 1.10. Let $X = \{r, s, t, u, v\}$, $E = \mathbb{R}^2$, and $P = \{(x, y) : x, y \ge 0\}$ be a cone in E. Define $d_{\eta} : X \times X \mapsto E$ as follows

$$\begin{split} d_{\eta}(x,x) &= (0,0), \text{ for all } x \in X, \\ d_{\eta}(r,s) &= d_{\eta}(s,r) = (4,8), \\ d_{\eta}(r,t) &= d_{\eta}(t,r) = d_{\eta}(t,u) = d_{\eta}(u,t) = d_{\eta}(s,t) = d_{\eta}(t,s) = d_{\eta}(s,u) = d_{\eta}(u,s) \\ &= d_{\eta}(r,u) = d_{\eta}(u,r) = (1,2), \\ d_{\eta}(r,v) &= d_{\eta}(v,r) = d_{\eta}(s,v) = d_{\eta}(v,s) = d_{\eta}(v,t) = d_{\eta}(v,t) \\ &= d_{\eta}(u,v) = d_{\eta}(v,u) = (3,6). \end{split}$$

Also define $\eta: X \times X \mapsto [1, \infty)$ as follows

$$\begin{split} \eta(x,x) &= 0, \text{ for all } x \in X, \\ \eta(r,s) &= \eta(s,r) = \frac{1}{2}, \\ \eta(r,t) &= \eta(t,r) = \eta(t,u) = \eta(u,t) = \eta(s,t) = \eta(t,s) = \eta(s,u) = \eta(u,s) \\ &= \eta(r,u) = \eta(u,r) = \frac{1}{11}, \\ \eta(r,v) &= \eta(v,r) = \eta(s,v) = \eta(v,s) = \eta(t,v) = \eta(v,t) = \eta(u,v) \\ &= \eta(v,u) = \frac{1}{3}. \end{split}$$

By definition of d_{η} , it is trivial to check Definition 1.9(a), and Definition 1.9(b). Now we check Definition 1.9(c). Obviously we have the following cases

Case 1: (x, x) for all $x \in X$

In this case it is enough to check

$$d_{\eta}(r,r) \le \eta(r,r)[d_{\eta}(r,s) + d_{\eta}(s,t) + d_{\eta}(t,u) + d_{\eta}(u,r)].$$

Since $d_{\eta}(r,r) = (0,0)$ and $\eta(r,r) = 0$, we have equality. In particular, we have

$$(0,0) = d_{\eta}(r,r) \le \eta(r,r)[d_{\eta}(r,s) + d_{\eta}(s,t) + d_{\eta}(t,u) + d_{\eta}(u,r)]$$

= $0[d_{\eta}(r,s) + d_{\eta}(s,t) + d_{\eta}(t,u) + d_{\eta}(u,r)] = (0,0).$

$\underline{\text{Case 2: }}(r,s) = (s,r)$

In this case it is enough to check

$$d_n(r,s) \le \eta(r,s)[d_n(r,t) + d_n(t,u) + d_n(u,v) + d_n(v,s)].$$

In particular, we have

$$\begin{aligned} (4,8) &= d_{\eta}(r,s) \\ &\leq \eta(r,s)[d_{\eta}(r,t) + d_{\eta}(t,u) + d_{\eta}(u,v) + d_{\eta}(v,s)] \\ &= \frac{1}{2}[(1,2) + (1,2) + (3,6) + (3,6)] \\ &= \frac{1}{2}(8,16) = (4,8). \end{aligned}$$

Case 3:
$$(r,t) = (t,r) = (t,u) = (u,t) = (s,t) = (t,s) = (s,u) = (u,s) = (r,u) = (u,r)$$

In this case it is enough to check

$$d_{\eta}(r,t) \le \eta(r,t) [d_{\eta}(r,s) + d_{\eta}(s,u) + d_{\eta}(u,v) + d_{\eta}(v,t)].$$

In particular, we have

$$(1,2) = d_{\eta}(r,t)$$

$$\leq \eta(r,t)[d_{\eta}(r,s) + d_{\eta}(s,u) + d_{\eta}(u,v) + d_{\eta}(v,t)]$$

$$= \frac{1}{11}[(4,8) + (1,2) + (3,6) + (3,6) = \frac{1}{11}(11,22) = (1,2).$$

Case 4:
$$(r, v) = (v, r) = (s, v) = (v, s) = (t, v) = (v, t) = (u, v) = (v, u)$$

In this case it is enough to check that

$$d_{\eta}(r,v) \le \eta(r,v)[d_{\eta}(r,s) + d_{\eta}(s,t) + d_{\eta}(t,u) + d_{\eta}(u,v)].$$

In particular, we have

$$(3,6) = d_{\eta}(r,v)$$

$$\leq \eta(r,v)[d_{\eta}(r,s) + d_{\eta}(s,t) + d_{\eta}(t,u) + d_{\eta}(u,v)]$$

$$= \frac{1}{3}[(4,8) + (1,2) + (1,2) + (3,6)] = \frac{1}{3}(9,18) = (3,6).$$

It follows that (X, d_{η}) is an η -cone pentagonal metric space. Note that (X, d_{η}) is not an η -cone rectangular metric space, as it lacks Definition 1.9(c) [8]. In particular,

$$(4,8) = d_{\eta}(r,s) > \eta(r,s)[d_{\eta}(r,r) + d_{\eta}(r,t) + d_{\eta}(t,s)]$$

$$= \frac{1}{2}[(0,0) + (1,2) + (1,2)]$$

$$= \frac{1}{2}(2,4) = (1,2)$$

as
$$(4,8) - (1,2) = (3,6) \in P$$
.

Definition 1.11. Let (X, d_{η}) be a η -cone pentagonal metric space. Let $\{x_n\}$ be a sequence in (X, d_{η}) and $x \in X$. If for every $c \in E$ with $0 \ll c$, there exists $n_0 \in \mathbb{N}$ such that for all $n > n_0$, $d_{\eta}(x_n, c) \ll c$, then we say $\{x_n\}$ is convergent, and $\{x_n\}$ converges to x. Moreover, x will be called the limit of $\{x_n\}$. We sometimes write $\lim_{n\to\infty} x_n = x$, or $x_n \to x$ as $n \to \infty$.

Definition 1.12. Let (X, d_{η}) be a η -cone pentagonal metric space. If for every $c \in E$, with $0 \ll c$, there exists $n_0 \in \mathbb{N}$ such that for all $n > n_0$, $d_{\eta}(x_n, x) \ll c$, then we say $\{x_n\}$ is a Cauchy sequence in (X, d_{η}) .

Definition 1.13. Let (X, d_{η}) be a η -cone pentagonal metric space. If every Cauchy sequence is convergent in (X, d_{η}) , then (X, d_{η}) will be called a complete η -cone pentagonal metric space.

Notation 1.14. [1] Let P be a cone as defined in this paper. Φ will denote the set of all nondcreasing continuous functions $\varphi: P \mapsto P$ satisfying

- (a) $0 < \varphi(t) < t$ for all $t \in P \setminus \{0\}$;
- (b) the series $\sum_{n\geq 0} \varphi^n(t)$ converges for all $t\in P\setminus\{0\}$.

Note that from (a), we have $\varphi(0) = 0$, and from (b) we have $\lim_{n \to \infty} \varphi^n(t) = 0$ for all $t \in P \setminus \{0\}$.

Definition 1.15. Let (X, d_{η}) be a η -cone pentagonal metric space. A map $T: X \mapsto X$ will be called an (alternate) Interpolative Berinde Weak operator if it satisfies

$$d_{\eta}(Tx, Ty) \le \lambda \ d_{\eta}(x, y)^{\frac{1}{2}} d_{\eta}(x, Tx)^{\frac{1}{2}},$$

where $\lambda \in (0,1)$, for all $x,y \in X, \ x,y \notin Fix(T)$, where $Fix(T) = \{x \in X : Tx = x\}$.

2 Main Results

Our main result is as follows

Theorem 2.1. Let (X, d_{η}) be a η -cone pentagonal metric space. Suppose $T : X \mapsto X$ satisfies

$$d_{\eta}(Tx, Ty) \le \varphi\left(\frac{1}{\sqrt{2}} d_{\eta}(x, y)^{\frac{1}{2}} d_{\eta}(x, Tx)^{\frac{1}{2}}\right)$$

for all $x, y \in X$, $x, y \notin Fix(T)$, and $\varphi \in \Phi$. If (X, d_{η}) is complete and

$$\lim_{n,m\to\infty}\eta(x_0,x_m)$$

exists and is finite, then the fixed point of T exists.

Proof. Let x_0 be an arbitrary point in X. Define a sequence $\{x_n\}$ in X by $x_{n+1} = Tx_n$ for all $n = 0, 1, 2, \cdots$. Assume that $x_n \neq x_{n+1}$ for all $n \in \mathbb{N}$. Now observe from the inequality of the theorem, we have

$$d_{\eta}(x_{n}, x_{n+1}) = d_{\eta}(Tx_{n-1}, Tx_{n})$$

$$\leq \varphi \left(\frac{1}{\sqrt{2}} d_{\eta}(x_{n-1}, x_{n})^{\frac{1}{2}} d_{\eta}(x_{n-1}, Tx_{n-1})^{\frac{1}{2}}\right)$$

$$= \varphi \left(\frac{1}{\sqrt{2}} d_{\eta}(x_{n-1}, x_{n})^{\frac{1}{2}} d_{\eta}(x_{n-1}, x_{n})^{\frac{1}{2}}\right)$$

$$< \varphi \left(d_{\eta}(x_{n-1}, x_{n})\right)$$

$$= \varphi \left(d_{\eta}(Tx_{n-2}, Tx_{n-1})\right)$$

$$\leq \varphi \left(\varphi \left(d_{\eta}(x_{n-2}, x_{n-1})\right)$$

$$\vdots$$

$$\leq \varphi^{n} \left(d_{\eta}(x_{0}, x_{1})\right).$$

Now observe we have the following

$$\begin{split} d_{\eta}(x_{n}, x_{n+2}) &= d_{\eta}(Tx_{n-1}, Tx_{n+1}) \\ &\leq \varphi \left(\frac{1}{\sqrt{2}} \ d_{\eta}(x_{n-1}, x_{n+1})^{\frac{1}{2}} \ d_{\eta}(x_{n-1}, Tx_{n-1})^{\frac{1}{2}} \right) \\ &= \varphi \left(\frac{1}{\sqrt{2}} \ d_{\eta}(x_{n-1}, x_{n+1})^{\frac{1}{2}} \ d_{\eta}(x_{n-1}, x_{n})^{\frac{1}{2}} \right) \\ &\leq \varphi \left(\frac{1}{\sqrt{2}} \ d_{\eta}(x_{n-1}, x_{n+1})^{\frac{1}{2}} \ 2^{\frac{1}{2}} d_{\eta}(x_{n-1}, x_{n+1})^{\frac{1}{2}} \right) \\ &= \varphi \left(d_{\eta}(x_{n-1}, x_{n+1})\right) \\ &= \varphi \left(d_{\eta}(Tx_{n-2}, Tx_{n})\right) \end{split}$$

$$\leq \varphi \left(\varphi \left(d_{\eta}(x_{n-2}, x_n) \right) \right)
= \varphi^2 \left(d_{\eta}(x_{n-2}, x_n) \right)
\vdots
\leq \varphi^n \left(d_{\eta}(x_0, x_2) \right).$$

Further we deduce the following

$$d_{\eta}(x_{n}, x_{n+3}) = d_{\eta}(Tx_{n-1}, Tx_{n+2})$$

$$\leq \varphi \left(\frac{1}{\sqrt{2}} d_{\eta}(x_{n-1}, x_{n+2})^{\frac{1}{2}} d_{\eta}(x_{n-1}, Tx_{n-1})^{\frac{1}{2}}\right)$$

$$= \varphi \left(\frac{1}{\sqrt{2}} d_{\eta}(x_{n-1}, x_{n+2})^{\frac{1}{2}} d_{\eta}(x_{n-1}, x_{n})^{\frac{1}{2}}\right)$$

$$\leq \varphi \left(\frac{1}{\sqrt{2}} d_{\eta}(x_{n-1}, x_{n+2})^{\frac{1}{2}} 2^{\frac{1}{2}} d_{\eta}(x_{n-1}, x_{n+2})^{\frac{1}{2}}\right)$$

$$= \varphi \left(d_{\eta}(x_{n-1}, x_{n+2})\right)$$

$$= \varphi \left(d_{\eta}(Tx_{n-2}, Tx_{n+1})\right)$$

$$\leq \varphi \left(\varphi \left(d_{\eta}(x_{n-2}, x_{n+1})\right)$$

$$\vdots$$

$$\leq \varphi^{n} \left(d_{\eta}(x_{0}, x_{3})\right).$$

Now for $k = 1, 2, 3, \cdots$ we have

$$d_{\eta}(x_n, x_{n+3k+1}) \le \varphi^n \left(d_{\eta}(x_0, x_{3k+1}) \right)$$

$$d_{\eta}(x_n, x_{n+3k+2}) \le \varphi^n \left(d_{\eta}(x_0, x_{3k+2}) \right)$$
$$d_{\eta}(x_n, x_{n+3k+3}) \le \varphi^n \left(d_{\eta}(x_0, x_{3k+3}) \right).$$

Since $d_{\eta}(x_n, x_{n+1}) \leq \varphi^n \left(d_{\eta}(x_0, x_1)\right)$, we deduce the following using the η -cone pentagonal property

$$d\eta(x_0, x_4) \leq \eta(x_0, x_4) [d\eta(x_0, x_1) + d\eta(x_1, x_2) + d\eta(x_2, x_3) + d\eta(x_3, x_4)]$$

$$\leq \eta(x_0, x_4) \left[d\eta(x_0, x_1) + \varphi \left(d_{\eta}(x_0, x_1) \right) + \varphi^2 \left(d_{\eta}(x_0, x_1) \right) + \varphi^3 \left(d_{\eta}(x_0, x_1) \right) \right]$$

$$\leq \eta(x_0, x_4) \left[\sum_{i=0}^{3} \varphi^i \left(d_{\eta}(x_0, x_1) \right) \right].$$

Similarly, we can show the following

$$d\eta(x_0, x_7) \le \eta(x_0, x_7) \left[\sum_{i=0}^{6} \varphi^i \left(d_{\eta}(x_0, x_1) \right) \right].$$

By induction for $k = 1, 2, 3, \dots$, we have

$$d\eta(x_0, x_{3k+1}) \le \eta(x_0, x_{3k+1}) \left[\sum_{i=0}^{3k} \varphi^i \left(d_{\eta}(x_0, x_1) \right) \right].$$

Since $d_{\eta}(x_n, x_{n+1}) \leq \varphi^n \left(d_{\eta}(x_0, x_1) \right)$ and $d_{\eta}(x_n, x_{n+2}) \leq \varphi^n \left(d_{\eta}(x_0, x_2) \right)$, we deduce the following using the η -cone pentagonal property

$$d\eta(x_0, x_5) \leq \eta(x_0, x_5) [d\eta(x_0, x_1) + d\eta(x_1, x_2) + d\eta(x_2, x_3) + d\eta(x_3, x_5)]$$

$$\leq \eta(x_0, x_5) \left[d\eta(x_0, x_1) + \varphi \left(d_{\eta}(x_0, x_1) \right) + \varphi^2 \left(d_{\eta}(x_0, x_1) \right) + \varphi^3 \left(d_{\eta}(x_0, x_2) \right) \right]$$

$$\leq \eta(x_0, x_5) \left[\sum_{i=0}^{2} \varphi^i \left(d_{\eta}(x_0, x_1) \right) + \varphi^3 \left(d_{\eta}(x_0, x_2) \right) \right].$$

Similarly, we can show the following

$$d\eta(x_0, x_8) \le \eta(x_0, x_8) \left[\sum_{i=0}^5 \varphi^i \left(d_{\eta}(x_0, x_1) \right) + \varphi^6 \left(d_{\eta}(x_0, x_2) \right) \right].$$

By induction for $k = 1, 2, 3, \dots$, we have

$$d\eta(x_0,x_{3k+2}) \leq \eta(x_0,x_{3k+2}) \left[\sum_{i=0}^{3k-1} \varphi^i \bigg(d_\eta(x_0,x_1) \bigg) + \varphi^{3k} \bigg(d_\eta(x_0,x_2) \bigg) \right].$$

Since $d_{\eta}(x_n, x_{n+1}) \leq \varphi^n \left(d_{\eta}(x_0, x_1) \right)$ and $d_{\eta}(x_n, x_{n+3}) \leq \varphi^n \left(d_{\eta}(x_0, x_3) \right)$, we deduce the following using the η -cone pentagonal property

$$d\eta(x_0, x_6) \leq \eta(x_0, x_6) [d\eta(x_0, x_1) + d\eta(x_1, x_2) + d\eta(x_2, x_3) + d\eta(x_3, x_6)]$$

$$\leq \eta(x_0, x_6) \left[d\eta(x_0, x_1) + \varphi \left(d_{\eta}(x_0, x_1) \right) + \varphi^2 \left(d_{\eta}(x_0, x_1) \right) + \varphi^3 \left(d_{\eta}(x_0, x_3) \right) \right]$$

$$\leq \eta(x_0, x_6) \left[\sum_{i=0}^{2} \varphi^i \left(d_{\eta}(x_0, x_1) \right) + \varphi^3 \left(d_{\eta}(x_0, x_3) \right) \right].$$

Similarly, we can show the following

$$d\eta(x_0, x_9) \le \eta(x_0, x_9) \left[\sum_{i=0}^5 \varphi^i \left(d_{\eta}(x_0, x_1) \right) + \varphi^6 \left(d_{\eta}(x_0, x_3) \right) \right].$$

By induction for $k = 1, 2, 3, \dots$, we have

$$d\eta(x_0, x_{3k+3}) \le \eta(x_0, x_{3k+3}) \left[\sum_{i=0}^{3k-1} \varphi^i \left(d_\eta(x_0, x_1) \right) + \varphi^{3k} \left(d_\eta(x_0, x_3) \right) \right].$$

Since

$$d_{\eta}(x_n, x_{n+3k+1}) \le \varphi^n \left(d_{\eta}(x_0, x_{3k+1}) \right)$$

and

$$d\eta(x_0, x_{3k+1}) \le \eta(x_0, x_{3k+1}) \left[\sum_{i=0}^{3k} \varphi^i \left(d_\eta(x_0, x_1) \right) \right],$$

we deduce the following

$$d_{\eta}(x_{n}, x_{n+3k+1}) \leq \varphi^{n} \left(d_{\eta}(x_{0}, x_{3k+1}) \right)$$

$$\leq \varphi^{n} \left(\eta(x_{0}, x_{3k+1}) \left[\sum_{i=0}^{3k} \varphi^{i} \left(d_{\eta}(x_{0}, x_{1}) \right) \right] \right)$$

$$\leq \varphi^{n} \left(\eta(x_{0}, x_{3k+1}) \left[\sum_{i=0}^{3k} \varphi^{i} \left(d_{\eta}(x_{0}, x_{1}) + d_{\eta}(x_{0}, x_{2}) + d_{\eta}(x_{0}, x_{3}) \right) \right] \right)$$

$$\leq \varphi^{n} \left(\eta(x_{0}, x_{3k+1}) \left[\sum_{i=0}^{\infty} \varphi^{i} \left(d_{\eta}(x_{0}, x_{1}) + d_{\eta}(x_{0}, x_{2}) + d_{\eta}(x_{0}, x_{3}) \right) \right] \right).$$

Since $d_{\eta}(x_n, x_{n+3k+2}) \leq \varphi^n \left(d_{\eta}(x_0, x_{3k+2}) \right)$ and

$$d\eta(x_0, x_{3k+2}) \le \eta(x_0, x_{3k+2}) \left[\sum_{i=0}^{3k-1} \varphi^i \left(d_\eta(x_0, x_1) \right) + \varphi^{3k} \left(d_\eta(x_0, x_2) \right) \right],$$

we deduce the following

$$d_{\eta}(x_{n}, x_{n+3k+2}) \leq \varphi^{n} \left(d_{\eta}(x_{0}, x_{3k+2}) \right)$$

$$\leq \varphi^{n} \left(\eta(x_{0}, x_{3k+2}) \left[\sum_{i=0}^{3k-1} \varphi^{i} \left(d_{\eta}(x_{0}, x_{1}) \right) + \varphi^{3k} \left(d_{\eta}(x_{0}, x_{2}) \right) \right] \right)$$

$$\leq \varphi^{n} \left(\eta(x_{0}, x_{3k+2}) \left[\sum_{i=0}^{3k-1} \varphi^{i} \left(d_{\eta}(x_{0}, x_{1}) + d_{\eta}(x_{0}, x_{2}) + d_{\eta}(x_{0}, x_{3}) \right) + \varphi^{3k} \left(d_{\eta}(x_{0}, x_{1}) + d_{\eta}(x_{0}, x_{2}) + d_{\eta}(x_{0}, x_{3}) \right) \right] \right)$$

$$\leq \varphi^{n} \left(\eta(x_{0}, x_{3k+2}) \left[\sum_{i=0}^{3k} \varphi^{i} \left(d_{\eta}(x_{0}, x_{1}) + d_{\eta}(x_{0}, x_{2}) + d_{\eta}(x_{0}, x_{3}) \right) \right] \right)$$

$$\leq \varphi^{n} \left(\eta(x_{0}, x_{3k+2}) \left[\sum_{i=0}^{\infty} \varphi^{i} \left(d_{\eta}(x_{0}, x_{1}) + d_{\eta}(x_{0}, x_{2}) + d_{\eta}(x_{0}, x_{3}) \right) \right] \right).$$

Since

$$d_{\eta}(x_n, x_{n+3k+3}) \le \varphi^n \bigg(d_{\eta}(x_0, x_{3k+3}) \bigg)$$

and

$$d\eta(x_0,x_{3k+3}) \leq \eta(x_0,x_{3k+3}) \left[\sum_{i=0}^{3k-1} \varphi^i \bigg(d_\eta(x_0,x_1) \bigg) + \varphi^{3k} \bigg(d_\eta(x_0,x_3) \bigg) \right],$$

for $k = 1, 2, 3, \cdots$ we can show the following

$$d_{\eta}(x_n, x_{n+3k+3}) \leq \varphi^n \left(\eta(x_0, x_{3k+3}) \left[\sum_{i=0}^{\infty} \varphi^i \left(d_{\eta}(x_0, x_1) + d_{\eta}(x_0, x_2) + d_{\eta}(x_0, x_3) \right) \right] \right).$$

Consequently it follows for each m, we have the following

$$d_{\eta}(x_n, x_{n+m}) \le \varphi^n \left(\eta(x_0, x_m) \left[\sum_{i=0}^{\infty} \varphi^i \left(d_{\eta}(x_0, x_1) + d_{\eta}(x_0, x_2) + d_{\eta}(x_0, x_3) \right) \right] \right).$$

Since $\sum_{i=0}^{\infty} \varphi^i \left(d_{\eta}(x_0, x_1) + d_{\eta}(x_0, x_2) + d_{\eta}(x_0, x_3) \right)$ is convergent, where

$$d_{\eta}(x_0, x_1) + d_{\eta}(x_0, x_2) + d_{\eta}(x_0, x_3) \in P \setminus \{0\}$$

P is closed, then $\sum_{i=0}^{\infty} \varphi^i \left(d_{\eta}(x_0, x_1) + d_{\eta}(x_0, x_2) + d_{\eta}(x_0, x_3) \right) \in P \setminus \{0\}$. Since $\lim_{n,m\to\infty} \eta(x_0, x_m)$ exists and is finite, then

$$0 = \lim_{n,m \to \infty} \varphi^n \left(\eta(x_0, x_m) \left[\sum_{i=0}^{\infty} \varphi^i \left(d_{\eta}(x_0, x_1) + d_{\eta}(x_0, x_2) + d_{\eta}(x_0, x_3) \right) \right] \right).$$

So given $0 \ll c$, we can find natural number N_1 such that

$$\varphi^n \left(\eta(x_0, x_m) \left[\sum_{i=0}^{\infty} \varphi^i \left(d_{\eta}(x_0, x_1) + d_{\eta}(x_0, x_2) + d_{\eta}(x_0, x_3) \right) \right] \right) \ll c$$

for all $n \geq N_1$. Consequently,

$$d_{\eta}(x_n, x_{n+m}) \ll c \text{ for all } n \geq N_1.$$

Therefore $\{x_n\}$ is a Cauchy sequence in X. Since X is complete, there is a point $z \in X$ such that

$$\lim_{n \to \infty} x_n = \lim_{n \to \infty} Tx_{n-1} = z.$$

Finally we show existence of the fixed point, that is, Tz = z. Since $0 \ll c$, we can choose natural numbers N_2, N_3, N_4 such that $d_{\eta}(z, x_n) \ll \frac{c}{4\eta(Tz, z)}$, for all $n \geq N_2$, $d_{\eta}(x_{n+1}, x_n) \ll \frac{c}{4\eta(Tz, z)}$, for all $n \geq N_3$, and $d_{\eta}(x_{n-1}, z) \ll \frac{c}{4\eta(Tz, z)}$, for all $n \geq N_4$. Since $x_n \neq x_m$ for $n \neq m$, therefore by η -cone pentagonal property, we deduce the following

$$d_{\eta}(Tz,z) \leq \eta(Tz,z)[d_{\eta}(Tz,Tx_n) + d_{\eta}(Tx_n,Tx_{n-1}) + d_{\eta}(Tx_{n-1},Tx_{n-2}) + d_{\eta}(Tx_{n-2},z)]$$

$$\leq \eta(Tz,z)[d_{\eta}(Tz,Tx_n) + d_{\eta}(x_{n+1},x_n) + d_{\eta}(x_n,x_{n-1}) + d_{\eta}(x_{n-1},z)].$$

By the inequality of the theorem, we have

$$d(Tz, Tx_n) \leq \varphi \left(\frac{1}{\sqrt{2}} d_{\eta}(z, x_n)^{\frac{1}{2}} d_{\eta}(z, Tz)^{\frac{1}{2}} \right)$$

$$\leq \varphi \left(\frac{1}{\sqrt{2}} d_{\eta}(z, x_n)^{\frac{1}{2}} (d_{\eta}(z, x_n) + d_{\eta}(x_n, Tz))^{\frac{1}{2}} \right)$$

$$\leq \varphi \left(\frac{1}{\sqrt{2}} d_{\eta}(z, x_n)^{\frac{1}{2}} (2d_{\eta}(z, x_n))^{\frac{1}{2}} \right)$$

$$\leq \varphi (d_{\eta}(z, x_n))$$

$$\leq d_{\eta}(z, x_n).$$

Thus

$$\begin{split} d_{\eta}(Tz,z) &\leq \eta(Tz,z)[d_{\eta}(Tz,Tx_{n}) + d_{\eta}(Tx_{n},Tx_{n-1}) + d_{\eta}(Tx_{n-1},Tx_{n-2}) + d_{\eta}(Tx_{n-2},z)] \\ &\leq \eta(Tz,z)[d_{\eta}(Tz,Tx_{n}) + d_{\eta}(x_{n+1},x_{n}) + d_{\eta}(x_{n},x_{n-1}) + d_{\eta}(x_{n-1},z)] \\ &\leq \eta(Tz,z)[d_{\eta}(z,x_{n}) + d_{\eta}(x_{n+1},x_{n}) + d_{\eta}(x_{n},x_{n-1}) + d_{\eta}(x_{n-1},z)]. \end{split}$$

Hence

$$d_{\eta}(Tz,z) \ll \eta(Tz,z)[4 \cdot \frac{c}{4\eta(Tz,z)}] \ll c$$

for all $n \geq N$, where $N := \max\{N_2, N_3, N_4\}$. Since c is arbitrary, we have $d_{\eta}(Tz, z) \ll \frac{c}{m}$ for all $m \in \mathbb{N}$. Since $\frac{c}{m} \to 0$ as $m \to \infty$, we conclude that $\frac{c}{m} - d_{\eta}(Tz, z) \to -d_{\eta}(Tz, z)$ as $m \to \infty$. Since P is closed, $-d_{\eta}(Tz, z) \in P$. Hence $d_{\eta}(Tz, z) \in P \cap (-P)$. By definition of cone, we have $d_{\eta}(Tz, z) = 0$. So the fixed point exists, and the proof is finished.

3 Open Problems

To conclude this paper, we suggest some unsolved problems

Conjecture 3.1. Let (X, d_{η}) be a η -cone pentagonal metric space. Suppose $T: X \mapsto X$ satisfies the following for some positive integer m

$$d_{\eta}(T^m x, T^m y) \le \varphi \left(\frac{1}{\sqrt{2}} d_{\eta}(x, y)^{\frac{1}{2}} d_{\eta}(x, T^m x)^{\frac{1}{2}}\right)$$

for all $x, y \in X$, $x, y \notin Fix(T)$, and $\varphi \in \Phi$. If (X, d_{η}) is complete and

$$\lim_{n \to \infty} \eta(x_0, x_m)$$

exists and is finite, then the fixed point of T exists.

Conjecture 3.2. Let (X, d_{η}) be a η -cone pentagonal metric space. Suppose $T: X \mapsto X$ satisfies the following

$$d_{\eta}(Tx, Ty) \le \lambda \ d_{\eta}(x, y)^{\frac{1}{2}} \ d_{\eta}(x, Tx)^{\frac{1}{2}}$$

for all $x, y \in X$, $x, y \notin Fix(T)$, and $\lambda \in (0,1)$. If (X, d_{η}) is complete and

$$\lim_{n,m\to\infty}\eta(x_0,x_m)$$

exists and is finite, then the fixed point of T exists.

Conjecture 3.3. Theorem 2.1 holds in η -cone rectangular metric space [8].

References

- [1] Abba Auwalu, Banach fixed point theorem in a cone pentagonal metric spaces, *Journal of Advanced Studies in Topology* 7(2) (2016), 60-67. https://doi.org/10.20454/jast.2016.1019
- [2] Yaé Ulrich Gaba, η-metric structures, 2017. arXiv:1709.07690 [math.GN]
- [3] Clement Boateng Ampadu, Some fixed point theory results for the interpolative Berinde weak operator, Earthline Journal of Mathematical Sciences 4(2) (2020), 253-271. https://doi.org/10.34198/ejms.4220.253271
- [4] L.-G. Huang and X. Zhang, Cone metric spaces and fixed point theorems of contractive mappings, *Journal of Mathematical Analysis and Applications* 332(2) (2007), 1468-1476. https://doi.org/10.1016/j.jmaa.2005.03.087
- [5] Abba Auwalu and Evren Hıçal, Common fixed points of two maps in cone pentagonal metric spaces, Global Journal of Pure and Applied Mathematics 12(3) (2016), 2423-2435.
- [6] A.S. Cvetković, M.P. Stanić, S. Dimitrijević and S. Simić, Common fixed point theorems for four mappings on cone metric type space, Fixed Point Theory Appl. 2011, Art. ID 589725, 15 pp. https://doi.org/10.1155/2011/589725
- M.A. Khamsi, Remarks on cone metric spaces and fixed point theorems of contractive mappings, Fixed Point Theory and Application 2010, Art. ID 315398, 7 pp. https://doi.org/10.1155/2010/315398
- [8] Clement Boateng Ampadu, Banach contraction mapping theorem in η-cone rectangular metric space, Fundamental Journal of Mathematics and Mathematical Sciences 13(1) (2020), 23-34.

This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted, use, distribution and reproduction in any medium, or format for any purpose, even commercially provided the work is properly cited.