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Abstract

The focus of this paper is to present a stochastic model to capture the
random behavior of the number of reported daily infections due to the Corona
Virus (COVID-19) in Nigeria. The model expressed in form of a distribution
function has five parameters. The model was fitted to the logarithm of the
reported daily number of infection cases for the time period March 18th -
June 11th, 2020. While the results obtained established the adequacy of
the model in fitting and explaining the random behavior of the number of
reported daily infections, it was also possible to use the model to study
the situation of the number of infections exceeding certain thresholds. The
procedure for the determination of these thresholds was established and a
number of them were estimated for some given return periods.

1 Introduction

Infectious disease insurgency such as those resulting from an epidemic or a
pandemic is one with a very long history with the most elaborate documentation
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starting in the Middle Ages. It began with the Black Death plague in the
14th century where in Europe alone were recorded some 25 million deaths in a
population of about 100 million. Towns and villages were completely ravaged
with the plague. Similar report was also obtained from China, where up to
two-thirds of many local populations were said to have died in widely scattered
settlements [1]. Closer to our time is the Spanish Flu pandemic which surfaced in
the twilight of World War I in 1919 with global mortality hitting some 20 million
in twelve months. Since this last pandemic, several infectious disease outbreaks
have plagued our world coming with their attendant health, economic and social
challenges. To name a few, the world have had to endure infectious diseases like
Rabies, Lassa Fever, Smallpox, Infectious Cancers, Genital Herpes, HIV/AIDS,
Ebola Virus etc. and sandwiched between all of these are diseases induced by
parasite like Malaria all having their toll on the well-being of humans.

The current COVID-19 pandemic is one that has placed the entire world
on a stand-still. With no known vaccine for the treatment of the disease yet,
government of nations and the World Health Organization (WHO) have put in
place various measures to curb the spread of the viral infection. There is no doubt
that an understanding of the stochastic nature of the infection trajectory of the
disease will help a great deal in strengthening the existing control framework
while also offering useful clues into the long-term trend or behavior of the disease.
Several mathematical models have been put forward recently to understand the
dynamics of the virus (see [2-6]). The focus of this paper is to develop a stochastic
model in the form of a distribution function to capture the random behavior of
the daily number of infections from COVID-19 in Nigeria.

The rest of the paper is organized as follows. In Section 2 preliminary
arguments for the development of a stochastic model are presented. The model
and its estimation procedure are presented in Section 3. In Section 4 the
application of the model to the reported daily number of COVID-19 infection
cases in Nigeria is carried out. The paper closes in Section 5 with a conclusion.
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2 Preliminary Arguments for a Stochastic Model

The central focus of a stochastic model is usually on a random variable X which
represents a quantity whose outcome is uncertain. This quantity can be the
number of infected persons, the number of deaths or the number of recoveries
from a disease per unit time in a population. Suppose F is the true model which
generates all the outcomes of X in the population. In this regard, F is taken
to be a distribution function for calculating the probability that X will be less
than or equal to some x. The model F is usually unknown. Suppose there
exist some sample data X1, ..., Xn of size n which are independent realizations
of the random variable X, the most plausible thing to do would be to use these
independent realizations ofX to find an approximation for F say F̂n. Observe that
the approximation F̂n will be a model-free estimate of F since it is entirely based
on the realized sample. In fact, if X(1), ..., X(n) denote the ordered sample of the
sample of independent observations from F such that X(1) ≤ X(2) ≤ ... ≤ X(n),
for any one of the X(i), exactly i of the n observations will have a value less or
equal to X(i). So, a sample-based estimate of the probability of an observation
being less than or equal X(i) is F̂n

(
X(i)

)
= i/n while to avoid F̂n

(
X(n)

)
= 1, a

slight adjustment is made and thus

F̂n (x) = i

n+ 1 , X(i) ≤ x ≤ X(i+1) (1)

is the data-based approximation of F . It follows that the sample-based quantile
X(i) can be realized from (1) using the relation

X(i) = F̂−1
n

(
i

n+ 1

)
, i = 1, 2, ..., n (2)

where F̂−1
n is the inverse F̂n.

Given that F̂n the sample-based estimate of F is without parameter(s),
essential statistical properties of F such as shape, moment and asymptotic
behaviors will be difficult to ascertain from F̂n. It is usually the practice
to develop a parameterized model F̂ and its inverse F̂−1 that can best be
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used to approximate F and F−1 respectively, and for any given application
to a sample, closely align with F̂n and F̂−1

n respectively. Several methods for
generating families of parameterized distribution functions have appeared in the
literature within the last three decades (see [7-12]). In the following section, a
parametric distribution function is developed to model the number of reported
daily infections from COVID-19 in Nigeria.

3 Model and Estimation

Here the new stochastic model for the reported daily infections from COVID-19 in
Nigeria is presented and defined in form of a distribution function. The estimation
of the model using the maximum likelihood method is also presented.

3.1 The model

Suppose X is a random variable representing the number of infections from
COVID-19 on a given day. Let X1, ..., Xn be independent observations of the
number of infections from day 1 to day n. In many cases the natural logarithm
of these observations are taken and modeled for a number of reasons. Random
variables of this nature tend to be highly skewed with the possibility of having
outliers. If the skewness of the random variable is to the right such that its
distribution is approximately a lognormal distribution, the distribution of the
natural logarithm of the random variable will be a normal distribution and the
readily available analysis and inference which holds for the normal distribution
can be applied. However, there is hardly a data set in reality whether original
or transformed with a perfect normal distribution. What obtains in reality
are distributions which exhibit some form of assymetry and in many cases
with different tail and shape behaviors ranging from heavy-tailed, light-tailed,
left-skewed, right-skewed and even bimodal shapes. Going forward, it is difficult
to know which, among these characteristics of a distribution, a given data arising
from random processes will assume and because of that, it will be helpful to
develop a model which posseses all of these characteristics. Models of such nature
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are classified as being flexible due to the fact that they can accomodate the
behavior of almost all data types. Again, the need to model the logarithm of the
actual data set rather than the actual data set itself, stems from the fact that the
logarithmic transformation of a data set can be useful in reducing variability in
the data set. Thus, Our goal is to develop an appropriate distribution function F̂
with a corresponding density function f̂ where f̂ is the first derivative of F̂ that
can be used to efficiently model the natural logarithm of the number of reported
daily infections from COVID-19 in Nigeria, and for a simple anti-logarithm
transformation lead us to the results for the original sample. We believed that
convoluting two or more distribution functions will be very useful in arriving at
such a flexible model in form of a distribution functions.

Suppose T is a random variable following an extreme value distribution
with distribution and density functions given respectively by

FT (x) = exp
[
−exp

(
−x− k

c

)]
,

fT (x) = 1
c
exp

(
−x− k

c

)
exp

[
−exp

(
−x− k

c

)]
.

−∞ < x <∞, c > 0, −∞ < k <∞.

Let R be a Weibull random variable with distribution and density functions given
respectively by

FR (x) = 1− exp
[
−
(
x

λ

)α]
,

fR (x) = α

λ

(
x

λ

)α−1
exp

[
−
(
x

λ

)α]
,

x > 0, α > 0, λ > 0.

Let Y be a standard logistic random variable with quantile function

QY (p) = log
(

p

1− p

)
,

0 < p < 1.
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The distribution function

F (x) =
∫ QY (FR(x))

−∞
fT (t) dt = FT (QY (FR (x))) (3)

is a valid convoluted distribution function. If β is a positive real number, the
distribution function

F̂ (x) = (F (x))β = (FT (QY (FR (x))))β (4)

is a more flexible distribution function than the one in (3) and for β = 1 reduces
to the distribution function in (3). Using (4), we define a new model for the
logarithm of the reported daily number of infections from COVID-19 in Nigeria
expressed in terms of the distribution and density functions given respectively by

F̂ (x) = exp
{
−βek/c

(
e(x/λ)α − 1

)−1/c
}
, (5)

f̂ (x) = αβek/c

λc

(
x

λ

)α−1
e(x/λ)α

(
e(x/λ)α − 1

)−1−1/c
exp

{
−βek/c

(
e(x/λ)α − 1

)−1/c
}
,

(6)
x > 0, α > 0, β > 0, c > 0, λ > 0, −∞ < k <∞.

Observe that the model in (5) has 5 parameters with the parameters α, β, c and
k playing the role of shape paramters. These parameters allow the model to be
flexible enough to accommodate various shape and tail behaviors arising from the
data it is applied to. The parameter λ is a scale parameter. In Figures 1, 2
and 3 various shapes of the density in (6) are shown for different combinations of
the parameters. The Figures clearly show that the density can be skewed to the
right, skewed to the left and also exhibit bimodal shapes, a situation which points
to its flexibility. Consequently, daily infection quantiles at some probability p is
obtained from the relation

N(p) = exp (Q(p)) = exp

λ
log

1 +
(
−e−k/c

β
log(p)

)−c1/α
 , (7)

Q(p) = F̂−1(p) = inf
{
x : F̂ (x) ≥ p

}
, 0 < p < 1.
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A surface plot of the daily infection quantiles N(p) for some range of values of α
and β with p = 0.4, k = 2, c = 0.5 and λ = 1 is shown in Figure 4. The same plot
for some range of values of k and c is shown in Figure 5 for p = 0.3, α = 4 and
β = 5 and λ = 3.

3.2 Model for infection threshold

Suppose it is of interest to determine the possibility of a given day’s number of
infections exceeding or equating a certain threshold X(t). The quantity X(t) is
interpreted as the number of infections which is exceeded at least once in t > 1
days with probability pt. In fact, X(t) is expected to be exceeded on average
once in 1/pt days. Determining X(t) is important for planning by the authorities
given that the bed spaces for admitting infected individuals are limited and has
a finite carrying capacity. It can also come handy when the interest is to know
when the available isolation facilities will no longer have space for admitting newly
infected individuals. Suppose that the event X ≥ X(t) have just occurred. That
is, a given day’s infections number have just exceeded the threshold X(t). The
number of days it will take for it to happen again is the “recurrence interval” and
the expected recurrence interval is the return period t of the event X ≥ X(t).
Thus t is the average number of days that it will take for the event X ≥ X(t)
to happen again. It follows that the probability pt of the occurrence of the event
X ≥ X(t)) is related to t and is computed from the relation

pt = 1− F̂ (log(X(t))) = 1
t
. (8)

Consequently, using the proposed model, X(t) for a given t can be obtained by
solving for X(t) in the equation

1− t
(
1− F̂ (log(X(t)))

)
= 0. (9)

Solving (9) for X(t) gives

X(t) = exp

λ
log

1 +
(
−e−k/c

β
log (1− 1/t)

)−c1/α
 . (10)
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Thus (10) is used to estimate the infection threshold for any return period t.
Observe that large values of t will result in large values of X(t) and vice versa.

Figure 1: Model density for various parameters values.

Figure 2: Model density for various parameters values.
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Figure 3: Model density for various parameters values.

Figure 4: Surface plot of daily infection quantiles.
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Figure 5: Surface plot of daily infection quantiles.

3.3 Model parameters estimation

For a random independent sample x1, ..., xn of size n representing the logarithm of
the daily number of infections, to estimate the parameters α, β, c, k, and λ of the
model in (5) using the maximum likelihood method, we would have to maximize
the log-likelihood function

L =
n∑
i=1

log
(
f̂(xi)

)
, (11)

with respect to the parameters α, β, c, k, and λ. Let Θ = (α, β, c, k, λ)T be the
unknown parameter vector. Then the associated score function is given by

U(Θ) =
(
∂L

∂α
,
∂L

∂β
,
∂L

∂c
,
∂L

∂k
,
∂L

∂λ

)T
,

where ∂L

∂α
,
∂L

∂β
,
∂L

∂c
,
∂L

∂k
and ∂L

∂λ
are the first partial derivatives of the

log-likelihood function in (11) w.r.t. each parameter. The maximum likelihood
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point estimate of Θ can be obtained by solving the non-linear system of equations
U(Θ) = 0. Since a simple analytic solution do not exist for all the equations
in the system, the solutions can be obtained numerically using some specialized
numerical optimization method like the Newton-type numerical methods. These
numerical schemes can be implemented in software packages like R, Mathlab and
MATHEMATICA.

For interval estimation of the parameters, the Fisher Information Matrix
(FIM) is required and it is the 5× 5 symmetric matrix

I (Θ) = −EΘ



Iαα Iαβ Iαc Iαk Iαλ

Iβα Iββ Iβc Iβk Iβλ

Icα Icβ Icc Ick Icλ

Ikα Ikβ Ikc Ikk Ikλ

Iλα Iλβ Iλc Iλk Iλλ


,

where the elements Iij (Θ) =
[

∂2L

∂Θi∂Θj

]
. The total FIM, I (Θ), can be

approximated by

J
(
Θ̂
)
≈
[
− ∂2L

∂Θi∂Θj

∣∣∣∣
Θ=Θ̂

]
5×5

.

For real data, J
(
Θ̂
)
is obtained after the maximum likelihood estimate of Θ is

obtained at the point of convergence of the iterative numerical scheme involved
in the estimation process.

Suppose Θ̂ is the maximum likelihood estimate of Θ. Under the usual
regularity conditions and that the parameters are in the interior of the parameter
space, but not on the boundary, we have:

√
n
(
Θ̂−Θ

)
d−→ N5

(
0, I−1 (Θ)

)
, where

I−1 (Θ) is the inverse of the expected FIM, which is also the variance-covariance
matrix of the parameters. The asymptotic behavior is still valid if I−1 (Θ)
is replaced by the inverse of the observed information matrix evaluated at
Θ̂, that is J

(
Θ̂
)
. The multivariate normal distribution with mean vector

0 = (0 0 0 0 0)T and variance-covariance matrix I−1 (Θ) can be used to
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construct confidence intervals for the parameters. The approximate 100(1− θ)%
two-sided confidence interval for the estimates of the parameters α, β, c, k, and λ
are given by

α̂± Zθ/2
√

I−1
αα

(
Θ̂
)
, β̂ ± Zθ/2

√
I−1
ββ

(
Θ̂
)
, ĉ± Zθ/2

√
I−1
cc

(
Θ̂
)
,

k̂ ± Zθ/2
√

I−1
kk

(
Θ̂
)
, λ̂± Zθ/2

√
I−1
λλ

(
Θ̂
)
,

respectively, where I−1
αα

(
Θ̂
)
, I−1
ββ

(
Θ̂
)
, I−1
cc

(
Θ̂
)
, I−1
kk

(
Θ̂
)
and I−1

λλ

(
Θ̂
)
are diagonal

elements of I−1
(
Θ̂
)
and Zθ/2 is the upper (θ/2)th percentile of a standard normal

distribution.

4 Model Application

Application of the model to the reported daily number of
infections from COVID-19 in Nigeria is carried out in this
section. The original data set was obtained from Worldometer
(https://www.worldometers.info/coronavirus/country/nigeria/).

4.1 Analysis and results

The data set which is contained in Table 1 is for the period March 18th - June 11th,
2020. The mean, standard deviation, skewness and excess kurtosis of the original
data set are 170.4405, 159.0805, 0.9139 and 0.5417 respectively. Observe that the
positive value of skewness of the data implies that the data set is skewed to the
right and the excess kurtosis value being positive implies that the distribution is
peaked and possesses thick tails. A logarithmic transformation of the data set
yields a mean value of 4.3655, a standard deviation value of 1.5337, a skewness
value of -0.5780 and an excess kurtosis value of -1.0859. Observe that the log
transformed data set possesses less variability as evident in its standard deviation
value in comparison with that of the original data set. The skewness of the log
transformed data set is to the left and the kurtosis value being negative implies
that the distribution of the log-transformed data set is flat with thin tails. Scatter
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plots and boxplots of the original and the log transformed data are shown in
Figure 6(a-d). The histogram and the kernel density of both the original and the
log transformed data sets are shown in Figure 7(a-d). The empirical cumulative
probability and empirical quantile plots using (1) and (2) for both the original
and log transformed data are shown in Figure 8(a-d).

Table 1: Reported daily infections from COVID-19 in Nigeria
March 18th - June 11th, 2020

5 4 10 8 10 4 7 14 5 28 14 20 4 39 10
26 4 18 6 16 22 12 17 13 5 20 30 34 35 51
49 85 38 117 91 108 114 87 91 64 195 196 204 238 218
170 244 148 195 381 386 239 248 146 184 193 288 176 338 216
226 276 339 245 265 313 229 276 389 182 387 553 307 416 241
347 350 328 389 253 315 663 409 681

Using the model in (5) to fit the log transformed data and by employing the use of
the R software package gives the following maximum likelihood estimate for the
parameters (standard error of estimates in parenthesis): α̂ = 8.6624(0.0063), β̂ =
1.0987(1.2520), ĉ = 7.5255(0.6474), k̂ = −0.8845(8.6022) and λ̂ = 4.3155(0.0030).
The estimate of the log-likelihood value is -130.6145, the value of the model’s
Kolmogorov - Smirnov (K-S) statistic is 0.0846 with a corresponding p-value of
0.5566. The theoretical cumulative probabilities based on the model alongside the
data- or sample based counterpart, the Q-Q plot, theoretical density plot based
on the model over the histogram of the data and the P-P plot are shown in Figure
9(a-d). The inverse of the observed information matrix which also corresponds to
the variance-covariance matrix of the estimate of the parameters is given in (12).
In Table 2, 95% confidence interval for the parameter estimates are presented.
Some daily infection thresholds for some given return periods are computed and
presented in Table 3.

J−1
(
Θ̂
)

=



3.91e− 05 1.06e− 05 7.28e− 05 −5.9e− 05 2.59e− 08
1.06e− 05 1.567490 0.061173 −10.0717 −1.2e− 05
7.28e− 05 0.061173 0.419081 −0.28717 −8.1e− 05
−5.9e− 05 −10.0717 −0.28717 70.3998 1.54e− 05
2.59e− 08 −1.2e− 05 −8.1e− 05 1.54e− 05 9.28e− 06


.

(12)
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Figure 6(a-d): Scatter plots and boxplots of the dataset.

Figure 7(a-d): Histogram and kernel density of the dataset.
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Figure 8(a-d): Empirical cumulative probabilities and quantile plots of the dataset.

Figure 9(a-d): Summary plots of the fitted model.
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4.2 Discussion

Results from the analysis clearly support the adequacy of the model in fitting
the logarithm of the daily number of reported infections. This is evident in the
fact that the p-value of the K-S statistic being 0.5566 is significantly greater
than the nominal 0.05. Thus, we are 95% certain that the proposed model is
not different from the true process the logarithm of the infections number is
following. Put differently, we can confidently used (5) and (6) to determine
the cumulative and exact probabilities respectively of observing the logarithm
of a certain number of infections on a given day. This will no doubt be very
helpful for planning by the Task Force Team saddled with the responsibility of
managing the pandemic and indeed all health practitioners. To further buttress
the adequacy of the model in fitting the data set, it can be observed in Figure
9 panel (a) that the empirical cumulative probabilities based on the data set
closely aligns with the theoretical ones based on the model. Also, in panel
(b) of Figure 9, it can also be observed that the empirical quantiles (the 450

line) based on the data is almost the same as the theoretical ones generated by
the model. The same holds true in panel (d) of Figure 9 where the empirical
probabilities based on the data set closely aligns with the theoretical ones
based on the model. In panel (c) of Figure 9, it can be observed that the fitted
density based on the model adequately approximates the histogram of the data set
while also closely aligning with the kernel density of the data in Figure 7 panel (d).

Table 2: Parameters and their 95% confidence interval
paramters Estimates 95% confidence interval

α 8.6624 (8.6501 , 8.6747)
β 1.0987 (-1.3552 , 3.5526)
c 7.5255 (6.2566 , 8.7944)
k -0.8845 (-17.7448 , 15.9758)
λ 4.3155 (4.3096 , 4.3214)
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Table 3: Daily infection thresholds
t 2 5 7 10 14 21 30 40 50 60 70 80 90 100

X(t) 125 298 346 394 436 484 526 559 584 605 622 636 649 661

In Table 2, it can be observed that the maximum likelihood method of parameter
estimation provided very good estimates for the model’s parameters. This is
clearly shown by the short width of the confidence interval for each of the
parameter estimates. In Table 3, some daily infection thresholds X(t) are
computed and shown for some given return period t. For example, for t = 7, the
infection threshold is 346. This means that on average 346 number of reported
cases will be recorded or exceeded at least once in 7 days. We also observed
that as the return period t increases, the daily infection threshold increases also,
but increases more sharply at lower return periods than at higher ones while for t
within the neighborhood of 100 days, the daily infection threshold does not exceed
800 and this has been the reality of the pandemic in Nigeria since the first case
was recorded with the highest reported daily infections number not exceeding 800.

5 Conclusion

Stochastic quantification of several real life problems have been very helpful in
understanding the random nature of their incidence or occurrence. This has
further helped in finding solutions to the problems arising from them either in form
of minimization of their undesirability or maximizing their rewards. A pandemic
is usually a situation of untold inconvenience and as such, all hands must be on
deck to help bring it to a halt. Finding appropriate models that can help explain
one or more of its effects will no doubt help in the provision of solutions. In this
paper that has been carried out using Nigeria as a case study. This article is by no
means an exhaustive exposition on the scheme of things but a contribution in an
analytical and in a numerical way for the better understanding of the probabilistic
trajectory of the pandemic in Nigeria.

Earthline J. Math. Sci. Vol. 5 No. 2 (2021), 217-235



234 Patrick Osatohanmwen, Francis O. Oyegue and Sunday M. Ogbonmwan

References

[1] N.T.J. Bailey, The role of statistics in controlling and eradicating infectious diseases,
The Statistician 34 (1985), 3-17. https://doi.org/10.2307/2987500

[2] Z. Liu, P. Magal, O. Seydi and G. Webb, Predicting the cumulative number of cases
for the COVID-19 epidemic in China from early data, 2020. arXiv:2002.12298v1
https://doi.org/10.20944/preprints202002.0365.v1

[3] K. Roosa, Y. Lee, R. Luo, A. Kirpich, R. Rothenberg, J.M. Hyman, P. Yan and G.
Chowell, Real-time forecasts of the COVID-19 epidemic in China from February 5th
to February 24th, 2020, Infectious Disease Modelling 5 (2020), 256-263.
https://doi.org/10.1016/j.idm.2020.02.002

[4] B. Tang, N.L. Bragazzi, Q. Li, S. Tang, Y. Xiao and J. Wu, An updated estimation
of the risk of transmission of the novel corona virus (2019-nCov), Infectious Disease
Modelling 5 (2020a), 248-255. https://doi.org/10.1016/j.idm.2020.02.001

[5] B. Tang, X. Wang, Q. Li, N.L. Bragazzi, S. Tang, Y. Xiao and J. Wu, Estimation
of the transmission risk of the 2019-nCov and its implication for public health
intervention, Journal of Clinical Medicine 9(2) (2020b), 462.
https://doi.org/10.2139/ssrn.3525558

[6] J.T. Wu, K. Leung and G.M. Leung, Nowcasting and forecasting the potential
domestic and international spread of the 2019-nCov outbreak originating in Wuhan,
China: a modelling study, The Lancet 395(10225) (2020), 689-697.
https://doi.org/10.1016/S0140-6736(20)30260-9

[7] N. Eugene, C. Lee and F. Famoye, Beta-normal distribution and its applications,
Communications in Statistics - Theory and Methods 31 (2002), 497-512.
https://doi.org/10.1081/STA-120003130

[8] M.C. Jones, Kumaraswamy’s distribution: A beta-type distribution with tractability
advantages, Statistical Methodology 6 (2009), 70-81.
https://doi.org/10.1016/j.stamet.2008.04.001

[9] G.M. Cordeiro and M. de Castro, A new family of generalized distributions, Journal
of Statistical Computation and Simulation 81 (2011), 883-898.
https://doi.org/10.1080/00949650903530745

http://www.earthlinepublishers.com

https://doi.org/10.2307/2987500
https://doi.org/10.20944/preprints202002.0365.v1
https://doi.org/10.1016/j.idm.2020.02.002
https://doi.org/10.1016/j.idm.2020.02.001
https://doi.org/10.2139/ssrn.3525558
https://doi.org/10.1016/S0140-6736(20)30260-9
https://doi.org/10.1081/STA-120003130
https://doi.org/10.1016/j.stamet.2008.04.001
https://doi.org/10.1080/00949650903530745


Modeling the Daily Number of Reported Cases of Infection ... 235

[10] A. Alzaatreh, C. Lee and F. Famoye, T - normal family of distributions: a new
approach to generalize the normal distribution, Journal of Statistical Distributions
and Applications 1 (2014), 16. https://doi.org/10.1186/2195-5832-1-16

[11] P. Osatohanmwen, F.O. Oyegue, F. Ewere and B. Ajibade, A new family of
generalized distributions on the unit interval: the T - Kumaraswamy family of
distributions, Journal of Data Science 18(2) (2020), 218-236.

[12] P. Osatohanmwen, F.O. Oyegue and S.M. Ogbonmwan, The T −R {Y } power series
family of probability distributions, Journal of the Egyptian Mathematical Society 28
(2020), 29. https://doi.org/10.1186/s42787-020-00083-7

This is an open access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted,
use, distribution and reproduction in any medium, or format for any purpose, even commercially
provided the work is properly cited.

Earthline J. Math. Sci. Vol. 5 No. 2 (2021), 217-235

https://doi.org/10.1186/2195-5832-1-16
https://doi.org/10.1186/s42787-020-00083-7

	Introduction
	Preliminary Arguments for a Stochastic Model
	Model and Estimation
	The model
	Model for infection threshold
	Model parameters estimation

	Model Application
	Analysis and results
	Discussion

	Conclusion

