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Abstract 

In this paper, a new generalized distribution known as Weibull Logistic-Exponential 

Distribution (WLED) is proposed using the T-R{Y} framework. Several mathematical 

properties of this new distribution are studied. The maximum likelihood estimation 

method was used in estimating the parameters of the proposed distribution. Finally, an 

application of the proposed distribution to a real lifetime data set is presented and its fit 

was compared with the fit obtained by some comparable lifetime distributions.  

1. Introduction 

The logistic model is a symmetric distribution that has found application in vast areas 

of growth model in human populations. [11] and [9] used the logistic function in 

modelling data related to population. Several generalizations of the logistic distribution 

have been introduced in literature to improve the symmetric and tail (heavy & light) 

properties of the distribution. Examples of such generalization of logistic distribution are 

found in the works of [3], [7], [8], [14], [13], and [4]. 

This paper is motivated by the flexibility of the generalized distribution in terms of 

exhibiting and accommodating diverse kind of data sets. The proposed distribution have 

found an application in finance for modelling risk management and explain the return of 

an investment due to the strictly platykurtic nature of kurtosis ( 3).SK <
 
The distribution 
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spans through left skewed, right skewed and symmetric shapes. The remaining sections 

of this paper are organized as follows: In Section 2, we present the density function and 

cumulative distribution function of the proposed distribution. General statistical 

properties which include the survival function, hazard rate function, moments, the 

relationship between WLED and Weibull distribution, quantile function, median, Rényi 

and Shannon entropy of WLED are obtained in Section 3. In Section 4, we estimated the 

maximum likelihood parameters of the proposed WLED. In Section 5, we fit the 

proposed distribution to a real lifetime data set and compared its fit with the fit attained 

by some existing related lifetime distributions and the paper concludes in Section 6. 

2. CDF and PDF of the Proposed Weibull-Logistic {Exponential} Distribution 

(WLED) 

Let T, R and Y be random variables from a known probability distribution with the 

cumulative distribution functions defined by ( ) ( ),TF x P T x= ≤  ( ) ( )RF x P R x= ≤  and 

( ) ( )TF x P T x= ≤  and probability density functions given by ( ),Tf x
 

( )Rf x  and ( )Yf x  

respectively. Let the corresponding quantile functions be given as ( ),TQ p  ( )RQ p  and 

( ).YQ p  [2] gave a unified definition of the random variables reported in [1] by defining 

the cumulative distribution function of a random variable X as 

( ) ( ) ( )( ){ } ( )( )[ ]
( )( )Y RQ F x

X T Y R T Y R
a

F x f t dt P T Q F x F Q F x= = ≤ =   (1) 

and the corresponding density function defined as 

( ) ( )
( )( ){ }

( )( ){ }.= R
X T Y R

Y Y R

f x
f x f Q F x

f Q F x
 

Let R be a random variable following a logistic distribution with pdf and cdf define by  

( ) ( )
( )2
1

x

R x

e
f x

λ

λ
λ=
+ ℓ

 

and 

( ) .
1

=
+
ℓ

ℓ

x

R x
F x

λ

λ  

Then the cdf of the proposed distribution is gotten by using the quantile function of a 

random variable Y defined by the relation. 
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( ) ( )( )log 1 .= − −Y RQ P F x  

By following the technique in Equation (1) we obtain the cdf of the proposed distribution.  

���� = 1 − �	
��
��������� ���,    �, �, � > 0, � ∈ ".        (2) 

The corresponding pdf of the WLED can be obtained by finding the derivative of its cdf 

in (2) with respect to �, this is given by: 

$��� = %&'����
��������� ��(�'()�
��������� *
�

+,-.'��/ ,    �, �, � > 0, � ∈ ".  (3) 

The graphical presentation of the density function of WLED for some fixed values of the 

parameters is shown in Figure 1. 

 

Figure 1. Probability density function of the WLED. 

3. Properties of the Proposed Distribution (WLED) 

3.1. Survival function  

Let X be a continuous random variable with density function $��� and cumulative 

distribution function ����. The survival (reliability) function of the proposed WLED are 

defined by: 0��� = 1 − ����, 
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where ���� is the cdf of the WLED define in Equation (2). 

0��� = 1 − )1 − �	�123,-.'��/+ ��* 

0��� = �	��
��������� �� ,    �,  �,  � > 0,  � ∈ ".                      (4) 

3.2. Hazard rate function 

Let X be a continuous random variable with density function $��� and cumulative 

distribution function ����. The hazard rate (failure rate) function of the proposed WLED 

are defined by: 

4��� = $���1 − ���� = $���0��� 

4��� =
���&5 �log,1 + �&5/� �%	- �	�123,-.'��/+ ��

��1 + �&5�
�	�123,-.'��/+ �� . 

Simplify further yields 

4��� = ���&5 �log,1 + �&5/� �%	-
��1 + �&5� ,   �,  �,  � > 0,   � ∈ ". 

The graph of the hazard rate function of the WLED for different values of �, � and � 

is given in Figure 2. 

 
Figure 2. Hazard rate function of the WLED. 
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Remark. From Figure 2, it is clearly shown that the hazard rate function of the 

WLED at different parameters values is strictly increasing. This implies that the 

hazard rate function of WLED shows an increasing property. 

3.3. Quantile function of the WLED 

The quantile function of the WLED can be expressed in a closed form and it can be 

obtained by equating the cdf in (2) to : and solving for � as shown below: 

���� = 1 − �	�123,-.'��/+ �� = :. 
Hence the quantile function of WLED is given by: 

;5�:� = 123
'��( �
���(<����	-�
& .        (5) 

The median of the WLE distribution can be obtained by setting = = 0.5 in equation (5) 

which gives 

( )

( )[ ]1
log 0.5

log 1

0.5 .

rk

med xX Q
λ

− 
− 

 = =
ℓ

                           (6) 

Table 1. Quantiles of the WLED. 

: 
� = 2, � = 2, � = 0.5 

� = 1, � = 2, � = 2 

� = 3, � = 2, � = 4 

� = 4, � = 2, � = 3 

� = 2, � = 2, � = 0.1 

0.1 −5.5451 −0.3112 −0.0115 0.0438 18.5193 
0.2 −0.1272 −0.2187 0.0472 0.1311 27.0309 
0.3 0.1563 −0.1584 0.0884 0.1943 34.1839 
0.4 0.3891 −0.1103 0.1231 0.2489 40.9019 
0.5 0.6004 −0.0681 0.1555 0.3006 47.6561 
0.6 0.8067 −0.0279 0.1877 0.3532 54.7927 
0.7 1.0229 0.0128 0.2224 0.4105 62.8079 
0.8 1.2716 0.0582 0.2631 0.4789 72.6179 
0.9 1.6109 0.1175 0.3202 0.5764 86.8589 
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From the quantiles, it is observed that all the values falls within the support (entire 

real line) which shows the validity of the proposed distribution. 

3.4. Moments of the Weilbull logistic exponential distribution  

Let X ~ WLED, then the rth moment about the origin of X is given by 

FGH = I1�JH K �−1�LM!
O

LPQ R-�SL , :, M, �, ��. 
Proof. Let X be a random variable following the Weilbull logistic exponential 

distribution with parameters �, � and �, then 

TUVHW = FGH = X �H$���O
	O Y�,                                             �7� 

where $��� is as defined in (3) above. 

Hence, 

TUVHW = F′H = X �HO
	O

���&5 �log,1 + �&5/� �%	- �	�123,-.'��/+ ��

��1 + �&5� Y�. 
Simplifying further yields  

F′H = ��� X �log,�+[ − 1/� �H ,�+[ − 1/\%	-�	[�
�+[ . ��+[���+[ − 1�O

Q Y], 
hence 

 

F′H = I1�JH K �−1�LM!
O

LPQ R-�SL , :, M, �, ��, 
where R-�SL, :, M, �, �� = ^ SL�log��+_�� − 1��HOQ YS. 
3.5. Numerical computation on the use of WLED 

Here a study is carried out to obtain the mean, standard deviation, median, skewness 

and kurtosis of the Weilbull logistic exponential distribution for varying parameters 

values.  
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Table 2. The Mean, Standard Deviation (SD) and the Median of the WLED. 

 � = 0.5 � = 2 � = 4 

r κ  Mean S.D Median Mean S.D Median Mean S.D Median 

0.8 

3 

5 

8 

4.3787 

8.8155 

15.1576 

8.9554 

13.4132 

20.4350 

2.8375 

5.3164 

8.6975 

1.0947 

2.2039 

3.7894 

2.2388 

3.3533 

5.1087 

0.7094 

1.3291 

2.1744 

0.5473 

1.1019 

1.8947 

1.1194 

1.6767 

2.5544 

0.3547 

0.6645 

2.5544 

2 

3 

5 

8 

4.4594 

8.0177 

13.1117 

3.4368 

5.0854 

7.7563 

4.5073 

7.8051 

12.5485 

1.1148 

2.0044 

3.2779 

0.8592 

1.2714 

1.9391 

1.1268 

1.9513 

3.1371 

0.5574 

1.0022 

1.6390 

0.4296 

0.6357 

0.9695 

0.5634 

0.9756 

1.5686 

5 

3 

5 

8 

5.1024 

8.7867 

14.1338 

1.5839 

2.4166 

3.7683 

5.3089 

9.0533 

14.5183 

1.2756 

2.1967 

3.5334 

0.3940 

0.6042 

0.9421 

1.3272 

2.2633 

3.6296 

0.6378 

1.0983 

1.7667 

0.1980 

0.3021 

0.4710 

0.6636 

1.1317 

1.8148 

Table 3. Skewness and Kurtosis of the WLED. 

 � = 0.5 � = 2 � = 4 

� ` 
Skewness �0+� 

Kurtosis �ab� 

Skewness �0+� 

Kurtosis �ab� 

Skewness �0+� 

Kurtosis �ab� 

0.8 

3 

5 

8 

0.8213 

1.2279 

1.4318 

0.6715 

1.1203 

1.4410 

0.8213 

1.2279 

1.4318 

0.6715 

1.1203 

1.4410 

0.8213 

1.2279 

1.4318 

0.6715 

1.1279 

1.4410 

2 

3 

5 

8 

-0.1320 

0.1603 

0.3169 

-0.2269 

-0.4626 

-0.5454 

-0.1320 

0.1603 

0.3169 

-0.2269 

-0.4626 

-0.5454 

-0.1320 

0.1603 

0.3169 

-0.2269 

-0.4626 

-0.5454 

5 

3 

5 

8 

-0.6830 

-0.5324 

-0.4620 

0.3476 

0.0077 

-0.1501 

-0.6830 

-0.5324 

-0.4620 

0.3476 

0.0077 

-0.1501 

-0.6830 

-0.5324 

-0.4620 

0.3476 

0.0077 

-0.1501 

From Table 2 we observed that when the shape parameter r and the rate parameter λ  

are held constant, the mean, standard deviation, and median increases as the scale 

parameter k increase. 

Also from Table 3 we observed that the WLED exhibited a right-skewed ( 0),≥kS  
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left-skewed ( 0)kS ≤  and approximately symmetric ( 0)kS ≈  shapes while the kurtosis 

are all strictly platykurtic ( 3).<SK  This assertion clearly supports and maintains the 

ideal behinds the graphical illustration of the density function of the WLE distribution in 

Figure 1. 

3.6. Moment generating function (MGF) of the WLED 

Let V be a continuous random variable with density function $���, then the mgf of V  

following the WLED is defined by; 

cd�e� = TU�f5W = X �f5$���%%O
Q Y�.  

Hence, 

cd�e� = I1�JH K K eH:! �−1�LM!
O

LPQ
O

HPQ X SL Ilog I�+_�� − 1JJHO
Q YS.                     �8� 

3.7. Shannon entropy of the WLED 

[12] defined the entropy of a random variable, V as a measure of variation of 

uncertainty denoted by g5 = TU− log $���W. The Shannon entropy of the WLED is given 

as: 

g5 = 1 + h I1 − 1�J + log I��J − �Γ I1 + 1�J − TUlog � + ��W + Tj2 log,1 + �&5/k, 
where h ≅ 0.5772 is the Euler’s constant. 

Proof. See Appendix I. 

3.8. Rényi entropy of WLED 

The entropy of a random variable, X, denoted by mn�o� is defined as a measure of the 

uncertainty about the outcome of a random experiment. Let X be a random variable with 

pdf (�), then the Rényi entropy is defined by mn�o� = --	b logU^ $p���Y�W for o > 0 and o ≠ 1 [10]. 

Then the Rényi entropy of WLED is defined by: 

mn�o� = 11 − 0 log rX $p���Y�s, 
where $��� is the pdf of the WLED defined in (3) above. 
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 Hence 

mn�o� = 11 − 0 log
⎣⎢⎢
⎢⎢⎡ X

⎝
⎜⎛���&5 �log,1 + �&5/a �%	- �	 �log,1 + �&5/a �%

��1 + �&5� ⎠
⎟⎞

p
O

	O Y�
⎦⎥⎥
⎥⎥⎤. 

Simplified further yields 

mn�o� = 11 − o 
K �−1�LM!
O

LPQ �p log X ,SL/pO
Q YS .                         �9� 

Proof. See Appendix II. 

[5] provided some essential properties of Rényi entropy:  

 (i) The Rényi entropy can be negative; 

(ii) For any o- < o�,  "p� ≤ "p� 
and equality holds if and only if X is a uniform 

random variable. 

Numerical computations of the Rényi entropy of the WLED for varying values of 

parameter are shown in Table 4. 

Table 4. Numerical computations of the Rényi entropy of the WLED. 

0 �� = 4, � = 3, � =  2� �� =  1, � =  5, � =  3� �� =  2, � =  1, � =  4� 

0.02 0.5418 3.3969 1.8192 

0.05 0.3566 1.9843 1.1475 

0.1 0.0518 0.5542 0.9819 

0.2 -0.2953 -0.3830 0.5551 

0.6 -0.4209 -0.4708 0.3896 

3 -0.5247 -0.9404 0.0759 

4 -0.7481 -1.0766 -0.0412 

6 -0.8379 -1.1107 -0.0714 

8 -0.89066 -1.1545 -0.1108 

9 -0.9813 -1.1821 -0.1359 
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From Table 4, we clearly observe that for any two consecutive values of parameter is , 

Say (o- 
and o�), the Rényi entropy "p� say ,"p�  and "p�/, satisfies the condition  o- < o� "p� ≤  "p�  as suggested by [5]. 

4. Maximum Likelihood Estimates 

Let 1 2 3, , , ..., nx x x x  be random samples from the WLED with density function 

defined in equation (3), then the likelihood function is given by 

( )

( )
( )

( )

log 1
1

1 1

log 1

( , )
1

 +
 − −
 
 

= =

 +
   
   

 = =
+∏ ∏

ℓ

ℓ

ℓ ℓ

ℓ

rx

rx
k

x

n n

i x
i i

r
k

L x f x
k

λ

λ
λ

λ

λ

φ  

and the log likelihood is    

( )( )
( ) 1

1 0 0 0 0

log 1
( , ) log log log log

−

= = = = =

+
= = + + +

 
 
  

    
ℓ

ℓ

rxn n n n n

i i

i i i i i

x f x r x
k

λ

φ λ λ  

( ) ( )
0 00

log log 1
log 1

,

= ==
− +

 +
 − −
 
 

  ℓ

ℓ n n
x

i i

rxn

i

k
k

λ
λ

 

( )( ) ( )
( )

1 0 0

log 1
log log log 1 log

= = =

 +
 = + + + −
 
 

  
ℓ

xn n n

i i

i i i

f x n r n x r
k

λ

λ λ  

( ) ( )
0 0

log 1
log log 1 .

= =

 +
 − − − +
 
 

 
ℓ

ℓ

rxn n
x

i i

n k
k

λ
λ

 

Taking the derivatives with respect to the various parameters, the following are 

obtained: 

1 1

log 1 log 1 log 1
log log

i i i
rx x xn n

i i

L n

r r k k k
= =

          + + +∂          = + −
    ∂
    

 
ℓ ℓ ℓ

λ λ λ
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( ) ( )1 1 1

1
1 1 log 1

i i

i i i

n n nx x
i i

i x x x
i i i

x xL n
x r

= = =

∂ = + − + −
∂  + + +

 
  

ℓ ℓ

ℓ ℓ ℓ

λ λ

λ λ λλ λ
 

( )

1

1

log 1

1

i

i

i

rx

x
i

n

x
i

r x
k

k

−

=

   +  
 
 −

+


ℓ

ℓ

ℓ

λ
λ

λ  

( )

1

2
1

log 1
log 1

1
.

−

=

   +
   +

  −∂  = − − +
∂ 

ℓ

ℓ

i

i

rx

x

n

i

r
k

n rL n

k k k k

λ
λ

 

The maximum likelihood estimator ϕ̂  of ϕ  can be derived by using Newton 

Raphson’s iterative method given by the relation: 

ˆˆ ,
1 ˆˆ ˆ( ) ( ), ( , , )−= − = T

q q q r kH Uϕ ϕ ϕ ϕ ϕ λ  

where 

( )

2 2 2

2

2 2 2

2

2 2 2

2

 ∂ ∂ ∂
 

∂ ∂ ∂ ∂∂ 
 ∂ ∂ ∂ =  .
 ∂ ∂ ∂ ∂∂
 

∂ ∂ ∂ 
 ∂ ∂ ∂ ∂ ∂ 

ℓ ℓ ℓ

ℓ ℓ ℓ

ℓ ℓ ℓ

q

r r kr

H
r k

k r k k

λ

ϕ
λ λλ

λ

       (10) 

Proof. See Appendix III. 

5. Application and Discussion of Results 

In this section, some generalized probability distribution such as Exponentiated- 

Weilbull Distribution, Weibull-Exponential Distribution, and Logistic-Exponential 

Distribution are applied in fitting real life data set and the result is being compared with 

the proposed Weilbull-Logistic Exponential Distribution. The comparison criterion used 

in the study were, Alkaike Information Criteria (AIC), and Kolmogorov-Smirnov test (K-

S) and the Log-likelihood. The data set used represents the breaking stress of carbon 
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fibers of 50 mm length in (GPa). The data was obtained from [6]. The data set is unimodal 

with (skewness = -0.128 and kurtosis = 0.1261208). The data is shown in Table. 

Table 5. Breaking stress of carbon fibers of 50mm in length (GPA). 

3.70 2.74 2.73 2.50 3.60 3.11 3.27 2.87 1.47 3.11 

3.56 4.42 2.41 3.19 3.22 1.69 3.28 3.09 1.87 3.15 

4.90 1.57 2.67 2.93 3.22 3.39 2.81 4.20 3.33 2.55 

3.31 3.31 2.85 1.25 4.38 1.84 0.39 3.68 2.48 0.85 

1.61 2.79 4.70 2.03 1.89 2.88 2.82 2.05 3.65 3.75 

2.43 2.95 2.97 3.39 2.96 2.35 2.55 2.59 2.03 1.61 

2.12 3.15 1.08 2.56 1.80 2.53     

Source: [6]. 

Table 6. Comparison criterion for the data set. 

Distribution Exponentiated 

Weibull 

Weibull 

Exponential 

Logistic- 

Exponential 

WLED 

Parameter 

estimates  

� =0.30952 

(0.03304) 

�� =0.8002 

(0.3525) 

�̂ =3.9104 

(1.0666) 

 

��  = 51.99153 

�� = 3.069453 

�̂ = 0.07921 

� = 29.3190 

�41.1783) 

� =  0.01862 

(0.02611) 

 

�̂ =3.64151 

(0.4656) 

�� =1.3731 

(0.92225) 

�� =4.2485 

(2.76820) 

 

AIC  177.889 177.8337 340.2702 176.1749 
Log  −85.9447 -85.91686 -167.1351 −85.5870 
K-S 0.07292 

(0.7809) 
0.07977 

(0.795) 
0.62999 

(p-value < 

2.2�	-�) 

0.07866 

(0.8087) 
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Table 6 reveals the summary statistics for the 

50mm in length data set. The parameter estimates, Log

Criterion (AIC), Kolmogorov

the distributions were estimated for the data set

Weibull-logistics exponential distribution gives the best fit for the dataset and thus 

exhibits superiority over the examined lifetime distributions considered in mode

lifetime data set. This decision was further supported by examining the probability

probability plots and the density plot distributions for the real lifetime data sets.

Figure 4
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the distributions were estimated for the data set. The Table indicates that the proposed
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6. Concluding Remark 

In this paper, a new distribution known as Weibull logistic-exponential distribution is 

proposed. Several Mathematical properties of this new distribution are study which 

include the cumulative distribution function, survival function, the density function, 

hazard rate function, moment generating function, quantile function, Shannon and Rényi 

entropy are obtained, the maximum likelihood estimation method was used in estimating 

the parameters of the proposed distribution. The application of the proposed distribution 

to a real lifetime data set reveals its superiority over some well-known generalized 

distribution. 
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Appendix I 

Shannon [12] defined the entropy of a random variable V as 

g5 = TU− log $���W. 
However, Alzaatreh et al. [2] define the probability density as 

$��� = $n���. $� �;[,�n���/�
$[ �;[,�n���/�. 

But from equation (1),  � = ;[,�n���/, then 

$��� = $n���. $����$[���                                                         �11� 

where, $n���, $���� and $[��� are the pdf of logistic, Weilbuland exponential 

distribution define by: 

$n��� = ��&5�1 + �&5�� , $���� = �� I��J%	- �	��+�� , 
and $[��� = �	�respectively. 
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Taking the log of both sides of equation (11), we obtain, 

log $��� = log $n��� + log $���� − log $[��� 

or 

TU− log $���W = TU− log $n���W + TU− log $����W + TUlog $[���W, 
then 

TU− log $���W = −Tjlog ��&5k + Tjlog,1 + �&5/k� + TU− log $����W 
+TUlog $[���W                                                                             (12) 

but 

g� = TU− log $����W = 1 + h I1 − 1�J + log I��J 

TU�W = F� = TUlog $[���W = −�Γ I1 + 1�J. 
Substituting  g� and F� into equation (12) yields 

g5 = −Tjlog ��&5k + Tjlog,1 + �&5/k� + 1 + h I1 − 1�J + log I��J − �Γ I1 + 1�J 

g5 = 1 + h I1 − 1�J + log I��J − �Γ I1 + 1�J − TUlog � + ��W + Tjlog,1 + �&5/k�. 

Appendix II 

Theorem 2. Let X ~ WLED, then the Rényi entropy of the WLED is given by 

mn�o� = 11 − o 
K �−1�LM!
O

LPQ �p log X ,SL/pO
Q YS. 

Proof. The Rényi entropy of WLED is defined by 

mn�o� = 11 − 0 log rX $p���Y�s, 
where $��� is the pdf of the WLED defined in (3) above. Hence 
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mn�o� = 11 − o log
⎣⎢⎢
⎢⎢⎡ X

⎝
⎜⎛���&5 �log,1 + �&5/a �%	- �	 �log,1 + �&5/a �%

��1 + �&5� ⎠
⎟⎞

p
O

	O Y�
⎦⎥⎥
⎥⎥⎤ 

mn�o� = 11 − o I��a Jb log
⎣⎢⎢
⎢⎢⎡ X

⎝
⎜⎛�&5 �log,1 + �&5/� �%	- �	 �log,1 + �&5/� �%

�1 + �&5� ⎠
⎟⎞

p
Y�O

	O ⎦⎥⎥
⎥⎥⎤ .             �13� 

Let                                             
log(1 )

.
+= ℓ

x

y
k

λ
                           (14) 

When ,= −∞x  0=y  and when ,= ∞ = ∞x y  

log(1 )= + ℓ x
ky

λ  

( 1)x kyλ = −ℓ ℓ
                                                             

(15) 

Y� = �'��&�'��	-� Y].              (16) 

Substituting (14), (15) and (16) into equation (13), we obtain, 

mn�o� = 11 − o I��� Jp log X �,�+� − 1/]%	-�	�%�+� �pO
Q . � ��+����+� −  1��p Y]. 

Simplify further yields 

mn�o� = %�-	b log ^ �]%	-�	�%�pOQ Y].     (17) 

Let                                                            S = ]%                    (18) 

1

.= ry w                                                            (19) 

Then 

1
11

.
−

= rdy w dw
r                                                            

(20) 
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Substituting (18), (19) and (20) into (17), we obtain, 

mn�o� = �p1 − o log X �IS-%J%	- �	_. 1� S�-%	-��p YSO
Q  

mn�o� = 11 − o log X ��	_�pO
Q YS, 

but �	_ =  ∑ �	-��_�L!OLPQ , then 

mn�o� = 11 − o log X 
K �−1�LSLM!
O

LPQ �p YSO
Q  

mn�o� = 11 − o 
K �−1�LM!
O

LPQ �p log X ,SL/pO
Q YS. 

This completes the proof. 

Appendix III 

The second derivative with respect to each of the parameters. 
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