Earthline Journal of Mathematical Sciences
ISSN (Online): 2581-8147

Volume 5, Number 1, 2021, Pages 155-168
https://doi.org/10.34198 /ejms.5121.155168

Generalization of Quasi Convex Functions using

Convolution

Khalida Inayat Noor!', Samar Abbas*»" and Bushra Kanwal?®

! Mathematics Department, COMSATS University, Park Road, Islamabad, Pakistan

e-mail: khalidanoor@hotmail.com; khalidan@gmail.com

2 Mathematics Department, COMSATS University, Park Road, Islamabad, Pakistan

e-mail: samarabbax@gmail.com

3 Mathematics Department, COMSATS University, Park Road, Islamabad, Pakistan

e-mail: bushrakanwal27pk@gmail.com

Abstract

In this paper, an up-to-date generalization of the class C* of quasi-convex
functions is given by introducing new class Cj[a,b]. Furthermore its basic
properties, its relationship with other subclasses of S, inclusion relations and

some other interesting properties are derived.

1 Introduction

Let A denote the class of analytic functions in the open unit disk E = {z: | 2| < 1}
defined by the power series

oo
Uz) =2+ Z akz". (1.1)
k=2
The convolution or Hadamard product of two analytic functions

oo 00
U(z) = Z a,.;zmrl7 I)(z) = Z b,{z'f+1? 2€E, k=0,1,2,--- (1.2)
£=0 k=0
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is defined as

(£x9)( Z by 2" (1.3)

Moreover, we say that ¢(z) is subordinate to j(z) written as £(z) < j(z) if there
exists a function w(z) analytic in E with w(0) = 0 and |w(2)| < 1, for all z € E,
such that £(z) = 7(w(2)).

Let S, C, S*, K and C* be the sub-classes of A, which contain univalent,
convex, starlike, close-to-convex and quasi-convex functions respectively. For
several interesting geometric properties and deatils of these classes, one can refer
to the standard books [4, 12]. It is well known [4] that ¢(z) defined in (1.1) is
convex if and only if 2¢/(z) € 8* and that ¢(z) is quasi convex if and only if 2¢/(z)
is close to convex, see [11], [10].

Let H be the class of functions

oo
2)=1+ Z ez, (1.4)
k=1

that are regular in E with p(0) = 1. Then p € P[a,b],—1 < b < a < 1 if and only

if p(2) < THZ, or equivalently

(a+1)h(z) — (a—1)

PE) = ) — (e 1)

where h € P[1, —1] = P, the class of functions with positive real part. Alsop € P(7)
if and only if
R{p(2)} >7, 0<y <L

First time Janowski [6] considered and studied extensively this class of functions.
The classes Cla, b], S*[a, b], K[a, b] and C*[a, b] were defined and discussed in [I],[13].
Let £(z) € A. Denote by D7 : A — A, the operator defined by

o z
D E( ) m Z+ZF anz O'> —1),
with (0 +1)
_ o Kk—1
Fulo) ===
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where (£),; is Pochhammer symbol given as

L,
(5)/@—{ EE+1D)(E+2)---(E+Kk—1), for kKeEN.

for k=0,

It is obvious that D%/(2) = £(z), P'4(z) = 2¢'(2) and

22" ()"

b"(z) = p

LY n=0,1,2,3---.
The operator D7¢(z) is called Ruscheweyh derivative of ¢(z), see [15].

Definition 1. Let £ and g € A, such that (g * ¢) # 0 in E. Then ¢ is said to belong
to S;[a, b] if and only if
2(g*0)'(2)
(g 0)(2)

We note that if g = 7%, then Sg[a, b] = 5*[a, b].

€ Pla, b]. (1.5)

Definition 2. Let £ € A, (g*£) # 0 in E for g € A. Then / is said to belong to
Cgla, b] if and only if
(2(g % 0)'(2))
(g% 0)(2)
Note that if g = 7%, then Cyla, b] = Cla, b].

€ Pla, b]. (1.6)

Definition 3. Let £ € A. Then ¢ € Ky[a, b] if and only if there exists u € Sj]a, b]
with (g u) # 0 such that

2(g*0)(2)
(g% u)(z)

Note that if g = 7%, then Kqa, b] = K[a, b].

€ Pla,b], z€E. (1.7)

Definition 4. Let ¢ € A. Then ¢ € Cj[a, b] if and only if there exists u € Cyla, b]
with (g u) # 0 such that

(2(g0))'(2)
(g+w)'(2)

Ifg=rq5 = Cyla, b] = C*[a, b].

€ Pla,b], z €E. (1.8)
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Now we have £ € Cla,b,0] <= D7/ € Cja, b], where D7 is the Ruscheweyh

derivative operator [15].

Definition 5. Let ¢ € A and g € A. Then ¢ € Qq4fa, b;a], 0 < a < 1 if and only if
there exists u € Cq[a, b] with (g * u) # 0 such that

(g 0) CCE 0))

(1 _a) (g*u)/ (g*u)/

€ Pla,b], z €E. (1.9)

We note that

2 Some Preliminary Results

Lemma 2.1. [I4] ¢ € C, g € S* and F is analytic in E with F(0) = 1, then

12}**29 c CoF(E), (2.1)

where Co is the closed convex hull.

Lemma 2.2. [§] Let u = uy + tug and v = vy + wa, and let ¥ be the set of
functions W(u,v) satisfying:

(a) ¥(u,v) is continuous in a domain D of C x C.

(b) (1,0) € D and R¥(1,0) > 0.

(c) R ¥(wug,v1) <0 when (tug,v1) € D and v < —3(1 + u3).

If p(2), given by (1.4), is an analytic function in E such that (p(z),2p'(z)) € D
and R ¥(p(z),2zp'(2)) > 0, for z € E, then R p(z) > 0.

Lemma 2.3. [7] If X and A are regular in E, X(0) = A(0) = 0, X maps E onto
a many sheeted region which is starlike with respect to origin, and X—: € P, then
R

1 €P.

A

Lemma 2.4. [16] For a real number o(c > 0), we have

2(D%(2)) = (6 + 1D T (2) — eDU(2).
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3 Main Results

We present our main work in this section.
Theorem 3.1. Let ¢ € $*[a,b] and g € C. Then ( € Sia, b].
Proof. Consider

z(g* L) :(g*zé')
(gx0)  (ax0)

El
9 =
(g% 0)
gx FY —
= C CoF (E).
(g+¢)
Since F' € Pla,b] and g € C, we use Lemma [2.1] to have the required result that
¢ € Sga, b]. O

Theorem 3.2. The class Sja,b] ds closed under convolution with convex

functions.

Proof. Let £ € Sj[a, b]. Then

z(g )
(g 1)

= p(z) € P[a, b].

Let ¢ € C, we have
2l x (6 ) w w2(g )
g+ (¥ =+ 0)] * (g *0)
_1/} x 20 (g 1)

P * (g * L)

_Yp(exl) A
(g ) € Cop(E).

Since ¢ € Sj[a, b], it follows that p € Pla, b].

(gx¢) € S*[a,b] C 8™

We use Lemma to conclude that qf;f((* )) lies in the convex hull of p(E) and

therefore ¢ * £ € Si[a, b]. O
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Theorem 3.3. Let ¢ € Cjla, b] with respect to u € Cyla,b] and let y» € C. Then
Y+ £ € Cyla, b] with respect to z(g * u) =u,.

Proof. By definition Cj[a, b] implies g x u € C[a, b].

Let
z(gxl
Sy (320
(9w
Then p € Pa, b] in E. Also, it is known [4] that C[a,b] C C C S*.

Now,

(2(a* W+ 0)) _ =(g*=(*0))

(g* v *u) W z(gxu)

W) * %z(g*u)

P * z(gxu)
_ Yxpz(gu)
Y * z(g xu)

* u_]_ =,
= 12}:1 C Cop(E).

Since 1 € C and u, € S*, the required result follows using Lemma That is
(1 % £) € C}[a, b]. [

Corollary 3.3.1. If g = 7=, then Theorem leads that (¢ % £) € Cyla, b] =
C*[a, b].
Theorem 3.4. Cyla, b] C Sj[a, b].
Proof. Consider
) 3.)
(0 0) = p(2). )

Let ¢ € Cqla, b], it can be simply seen that p is analytic and p(0) = 1 for z € E.

By logarithmically differentiation, we have

(g+0)" 2p'(2)
1+ =p(z) + € Pla, b|.
1+ E = 0l + 2 e
Since ¢ € Cqla, b]. Now using Lemma it follows that p € P[a, b] which implies
¢ € Sga, b]. O
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Corollary 3.4.1. If g = 7=, then Theorem.follows that Cla, b] C S*[a, b].

Theorem 3.5. Let 0 < o« < 1. Then

Qgla, b; o] C Kqla, b].

Proof. From Definition [5 it follows that ¢ € Qq[a, b] if and only if

£(z) = (1 — a)l(z) + azl'(z) € Kqa, b]. (3.2)
We can express as
0(z) 1—“/ (22 £(r)dr, £ € Kyla, b]
1 1
:C:—c /0 T(C_l)£(7)dT; (a =c+1)
> 1

:(Eziﬁzn)*"g(z)? H:172737”'
(z) = (¢c * £)(2), (3-3)
where Y 07, gi‘iz" is convex, see [I] and £ € Kg[a, b] is preserved under convex

convolution. In fact from Theorem ¢c * £y € Sgla, b] if £, € Sjla, b], and

2(pe * g * £)/ :Z(g * (e * £))/
Ge * (g% 1) g (gexly)

_z(g L)

Cogx £y
where (¢¢ * (1) = £1 € Sj[a, b], by Theorem and ¢ is given by equation (3.2)),
consequently ¢ € Kq[a, b] in E. O
Corollary 3.5.1. Let g = (152); it follows from Theorem that

Q[a, b;a] CKla,b], for 0 < a < 1.

Theorem 3.6. Let g € S*[a,b], —1 < b<a <1 and let == € P(B) for z € E.
Then §R(Z€ > f,0< 8 <1, for| z |<r where r is the least positive root in
(0,1) of the equation

1—(a+2)r+(26—1)r2+ar®=0. (3.4)
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Proof. For z € E, we have

where g € S*[a, b] and h € P(f).

Differentiating logarithmically, we have

N/
(zg/) — h+ g/h/,
g g
it follows that .
74 g
m(,j—mzmn—mwg,uh'w. (3.5)

Using distortion results, that are given in [4] as

< r(1—br)

g
e (36)
! 2%[h B 5]
< — . .
w1 2 (37)
Using these results in equation (3.5)), we have
20" R(h—B)[1 - (a+2)r+ (26 —1)r% + ar®
0 RO A= @D oot rard]

(I —ar)(1—1?) '

The right hand side of equation (3.8)) is positive for | z |= r < r;, where r; is the
least positive root of (3.4), which completes our proof.
O

Corollary 3.6.1. As a special case, when a = 0,b = —1 and 8 = 0 we have
%%ﬁl > 0,9 € 8*(3) for z €E. In this case %%,/)/ >0 for|z|< 3.

Theorem 3.7. Let £ € S}[a,b]. Then { € Cgla,b] for | z |[<r, =2— /3.

Proof. Since £ € Sj[a, b], therefore we can write

z(g *E)’ _

(g*¢) ’

http://www. earthlinepublishers.com
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where h is a Carathéodory function h € P, this implies Zfll/ = h, where ¢, = g * £.

Differentiating logarithmically, we have

20, zh!
—h4 2L
ly + h

Using distortion results for the class P, see [3], 4, [5]. We have

8%z(g*é)/ :%zﬁl/ 21—7“ 2
(g=?) 6, T14r 1-1r2

_1—4r+7“2

o 1—r2

by using mean value theorem and with some computations we get
T(’f’) :2_\/§E (071)7 T(T) :2_\/§€ (0,1)
Thus

z(g* L) S 1—dr +r?
(gx0) — 1—1r2

>0, forr<r,=2—+3.
O

Corollary 3.7.1. Let g = ﬁ,

50 Theoremfollows that if £ € S*[a, b], then
¢ eCla,b] for|z|<r,=2—+/3.

A converse case of Theorem we have following result

Theorem 3.8. Let { € Ky[a, b]. Then £ € Qgla, b;a] for

1
20 + Va2 —2a+ 1

Proof. Consider £ € Kg4[a, b]. Then we can write

|z |<7e = (3.9)

(1 —a)l+ azl! = ¢.* ¥,

where

e}

e(2) = Z[(/{ — Da + 1)2".

k=1
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It can be verified with simple computations that ¢.(z) € C for | z |< rq, where
ro is given by (3.9). Then, using Remark 1 that the class Kqla, b] is preserved

under convex convolution, it follows that ¢ € Qq[a, b; ] for | z |< rq, 7o is given

by . O

Corollary 3.8.1. For g = (lf—z), Theoremfollows that if ¢ € K[a,b], then
¢ € Qla, b;al, where as | z |< ro and rq is given by (3.9).

Theorem 3.9. If 2" € Ky[a, b], then ¢ € Cj[a, b].
Proof. Consider ¢ € Cjla, b] and defined by (L.8), so

(g 20")’

(g ) € Pla, b].

Let I = 20,
(g F)’
(g%u)
This shows that F' € K4[a, b]. Using Alexander type relation between C and S* we

€ Pla, b].

get
z(gx F)

(9 G)

where G = zu/. This completes our proof.

€ Pla, b],

O]

Remark 1. Using Theorem [3.9| and alike techniques of Theorem [3.3] we can
easily prove that the class Ky[a, b] is preserved under convex convolution that is,
if £ € Kg[a, b] and ¢ € C, then ¢ * £ € Kq4[a, b] in E.

Some Inclusion Relations
Remark 2. Cjla, b]  S;[a, b] and Sjla, b] Z Cj[a, b].

Proof. Noor proved that the class C* does not properly contained in the class S*

and S* ¢ C*, see [11]. If g = (1fz), then our result is obvious.
O
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Theorem 3.10. Cjla, b]  Sj[a, b] C Kg[a, b].

Proof. Let £ € Cjla, b] and u € Sj[a, b].
Consider that

(€ xu) =(€x zu), where u € Cyla, b].
=z2(€xu)

=20 xu.
It follows from Alexander type relations that ¢  u € Kg[a, b]. O
Next theorem is given as a special case of Lemma |2.3
Theorem 3.11. Cj[a, b] C Kq[a, b].

Proof. Let N(z) = z(g * £)'(z) and A(z) = (g*u)(z) be analytic functions in E
with R(0) = A(0) =0 and A € S*. Then Lemma [2.3| implies

!/

N
NEP = KEP’ for z € E,

which leads to our required result. O

Theorem 3.12. Let 0 > 1. Then
Cylo +1,a,b] C C[o, a, b].

Proof. For £ € A. Using Lemma [2.4) we can easily derive the identity

2(D%(gx£)) = (o + 1)D((’+1)(g x0)(z) — oD (g x£)(2). (3.10)
> (D7 (g ) (2)
: g+ 2 p(2). .
D )yz) ) 30

Then h(z) is analytic in E with ~(0) = 1. We shall show that

Rh(z) >0, z€E.

Earthline J. Math. Sci. Vol. 5 No. 1 (2021), 155-168
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First we show that
Cylo +1,a,b] C Cyfo, a,b].
For this, let u € C4lo + 1,a,b] and set

(z2(D7(g*u)") (=)
=H . 3.12
D(aew)(s) o (312)
Then H,(z) is analytic and H,(0) = 1. Using identity (3.10) for u together with
(3-12]) we have

(0 + )BT (g *w))'(2)
(D7 (g *u))(2)
Differentiating both sides of (3.13) logarithmically and using (3.12)), with some

computations we obtain
(2(P7 (g x w)'(2)
(Dot (g = u))'(2)
Since u € Cyfo + 1,a,b], therefore right hand of (3.14) belongs to P[a, b]. From

(3:12), (3-14) and a well-known Lemma [2.2|due to Miller [8], also see [9], it follows
that RH,(z) € P[a, b] in E. This proves that u € C[o, a, b].
Now with similar procedure and from (3.11)), we get

(=D (g+0)))'(2)
(D7 (g*w)'(2)

Again applying Lemmal[2.2] we obtain from (3.15)) that ®h(z) € P[a, b] in E, which

proves that £ € Cj[o,a,b] in E. This establishes our required inclusion result. [

= H,(z) + 0. (3.13)

2H(2)
H,(2)+ o

= H,(z) + (3.14)

2h (2)
ho(2) + 0

=h(z) + (3.15)

Theorem 3.13. The class Cjla,b] is preserved under the following integral
operators defined in [2, [7]

(a)

01(2) :/OZ g(:)dT

=(g2 % 0)(2), (g2)(2) = —log(1 = ).
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(b)
to(2) _z/o'z“:)df
=(g. £)(2), (9:)(2) = —2[z + log(1 — 2)].
(c)
05(2) :1; /O Sy dr
(a5 0(), (g)(2) =3 ;iizo, where o €N,

o+1

It can be easily seen that g,,9, € C. In [15], Ruscheweyh showed that g; € C in E.
Consequently using Theorem it follows that ¢; € C;[a, b], wherei=1,2,3.
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