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Abstract

In this paper, an up-to-date generalization of the class C? of quasi-convex
functions is given by introducing new class C?

g[a, b]. Furthermore its basic
properties, its relationship with other subclasses of S, inclusion relations and
some other interesting properties are derived.

1 Introduction

Let A denote the class of analytic functions in the open unit disk E = {z : | z| < 1}
defined by the power series

`(z) = z +
∞∑
κ=2

aκz
κ. (1.1)

The convolution or Hadamard product of two analytic functions

`(z) =
∞∑
κ=0

aκz
κ+1, (z) =

∞∑
κ=0

bκz
κ+1, z ∈ E, κ = 0, 1, 2, · · · (1.2)
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is defined as
(` ∗ )(z) =

∞∑
κ=0

aκbκz
κ+1. (1.3)

Moreover, we say that `(z) is subordinate to (z) written as `(z) ≺ (z) if there
exists a function ω(z) analytic in E with ω(0) = 0 and |ω(z)| < 1, for all z ∈ E,
such that `(z) = (ω(z)).

Let S, C, S?, K and C? be the sub-classes of A, which contain univalent,
convex, starlike, close-to-convex and quasi-convex functions respectively. For
several interesting geometric properties and deatils of these classes, one can refer
to the standard books [4, 12]. It is well known [4] that `(z) defined in (1.1) is
convex if and only if z`′(z) ∈ S? and that `(z) is quasi convex if and only if z`′(z)
is close to convex, see [11, 10].

Let H be the class of functions

p(z) = 1 +
∞∑
κ=1

cκz
κ, (1.4)

that are regular in E with p(0) = 1. Then p ∈ P[a, b],−1 ≤ b < a ≤ 1 if and only
if p (z) ≺ 1+az

1+bz , or equivalently

p (z) = (a + 1)h(z)− (a− 1)
(b + 1)h(z)− (b− 1) ,

where h ∈ P[1,−1] = P, the class of functions with positive real part. Also p ∈ P(γ)
if and only if

<{p(z)} > γ, 0 < γ < 1.

First time Janowski [6] considered and studied extensively this class of functions.
The classes C[a, b], S?[a, b], K[a, b] and C?[a, b] were defined and discussed in [1, 13].

Let `(z) ∈ A. Denote by Ðσ : A −→ A, the operator defined by

Ðσ`(z) = z

(1− z)(σ+1) ∗ `(z) = z +
∞∑
κ=2

zκ(σ)aκzκ, (σ > −1),

with
zκ(σ) = (σ + 1)κ−1

(κ− 1)! ,
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where (ξ)κ is Pochhammer symbol given as

(ξ)κ =
{

1, for κ = 0,
ξ(ξ + 1)(ξ + 2) · · · (ξ + κ− 1), for κ ∈ N.

It is obvious that Ð0`(z) = `(z), Ð1`(z) = z`′(z) and

Ðn`(z) = z(zn−1`(z))n

n! , ∀ n = 0, 1, 2, 3 · · · .

The operator Ðσ`(z) is called Ruscheweyh derivative of `(z), see [15].

Definition 1. Let ` and g ∈ A, such that (g ∗ `) 6= 0 in E. Then ` is said to belong
to S?g[a, b] if and only if

z(g ∗ `)′(z)
(g ∗ `)(z) ∈ P[a, b]. (1.5)

We note that if g = z
(1−z) , then S?g[a, b] = S?[a, b].

Definition 2. Let ` ∈ A, (g ∗ `)′ 6= 0 in E for g ∈ A. Then ` is said to belong to
Cg[a, b] if and only if

(z(g ∗ `)′(z))′

(g ∗ `)′(z) ∈ P[a, b]. (1.6)

Note that if g = z
(1−z) , then Cg[a, b] = C[a, b].

Definition 3. Let ` ∈ A. Then ` ∈ Kg[a, b] if and only if there exists � ∈ S?g[a, b]
with (g ∗ �) 6= 0 such that

z(g ∗ `)′(z)
(g ∗ �)(z) ∈ P[a, b], z ∈ E. (1.7)

Note that if g = z
(1−z) , then Kg[a, b] = K[a, b].

Definition 4. Let ` ∈ A. Then ` ∈ C?g[a, b] if and only if there exists � ∈ Cg[a, b]
with (g ∗ �) 6= 0 such that

(z(g ∗ `)′)′(z)
(g ∗ �)′(z)

∈ P[a, b], z ∈ E. (1.8)

If g = z
(1−z) , =⇒ C?g[a, b] = C?[a, b].
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Now we have ` ∈ C?g[a, b, σ] ⇐⇒ Ðσ` ∈ C?g[a, b], where Ðσ is the Ruscheweyh
derivative operator [15].

Definition 5. Let ` ∈ A and g ∈ A. Then ` ∈ Qg[a, b;α], 0 ≤ α < 1 if and only if
there exists � ∈ Cg[a, b] with (g ∗ �) 6= 0 such that

(1− α) (g ∗ `)′

(g ∗ �)′
+ α

(z(g ∗ `)′)′

(g ∗ �)′ ∈ P[a, b], z ∈ E. (1.9)

We note that

Qg[a, b; 0] =Kg[a, b]

Qg[a, b; 1] =C?g[a, b].

2 Some Preliminary Results

Lemma 2.1. [14] ψ ∈ C, g ∈ S? and F is analytic in E with F (0) = 1, then

ψ ∗ Fg
ψ ∗ g

⊂ C̄oF (E), (2.1)

where C̄o is the closed convex hull.

Lemma 2.2. [8] Let u = u1 + ιu2 and v = v1 + ιv2, and let Ψ be the set of
functions Ψ(u, v) satisfying:
(a) Ψ(u, v) is continuous in a domain D of C× C.
(b) (1, 0) ∈ D and <Ψ(1, 0) > 0.
(c) < Ψ(ιu2, v1) ≤ 0 when (ιu2, v1) ∈ D and v ≤ −1

2(1 + u2
2).

If p(z), given by (1.4), is an analytic function in E such that (p(z), zp′(z)) ∈ D
and < Ψ(p(z), zp′(z)) > 0, for z ∈ E, then < p(z) > 0.

Lemma 2.3. [7] If ℵ and Λ are regular in E, ℵ(0) = Λ(0) = 0, ℵ maps E onto
a many sheeted region which is starlike with respect to origin, and ℵ′

Λ′ ∈ P, then
ℵ
Λ ∈ P.

Lemma 2.4. [16] For a real number σ(σ > 0), we have

z(Ðσ`(z))′ = (σ + 1)Ðσ+1`(z)− σÐσ`(z).
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3 Main Results

We present our main work in this section.

Theorem 3.1. Let ` ∈ S?[a, b] and g ∈ C. Then ` ∈ S?g[a, b].

Proof. Consider

z(g ∗ `)′

(g ∗ `) =(g ∗ z`′)
(g ∗ `)

=
g ∗ z`′` `
(g ∗ `)

=g ∗ F`
(g ∗ `) ⊂ C̄oF (E).

Since F ∈ P[a, b] and g ∈ C, we use Lemma 2.1 to have the required result that
` ∈ S?g[a, b].

Theorem 3.2. The class S?g[a, b] is closed under convolution with convex
functions.

Proof. Let ` ∈ S?g[a, b]. Then

z(g ∗ `)′

(g ∗ `) = p(z) ∈ P[a, b].

Let ψ ∈ C, we have

z[g ∗ (ψ ∗ `)]′

[g ∗ (ψ ∗ `)] =ψ ∗ z(g ∗ `)′

ψ ∗ (g ∗ `)

=
ψ ∗ z(g∗`)

′

(g∗`) (g ∗ `)
ψ ∗ (g ∗ `)

=ψ ∗ p(g ∗ `)
ψ ∗ (g ∗ `) ∈ C̄o p(E).

Since ` ∈ S?g[a, b], it follows that p ∈ P[a, b].

(g ∗ `) ∈ S?[a, b] ⊂ S?.

We use Lemma 2.1 to conclude that ψ∗p(g∗`)
ψ∗(g∗`) lies in the convex hull of p(E) and

therefore ψ ∗ ` ∈ S?g[a, b].
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Theorem 3.3. Let ` ∈ C?g[a, b] with respect to � ∈ Cg[a, b] and let ψ ∈ C. Then
ψ ∗ ` ∈ C?g[a, b] with respect to z(g ∗ �)′ = �1.

Proof. By definition C?g[a, b] implies g ∗ � ∈ C[a, b].
Let

p(z) = (z(g ∗ `)′)′

(g ∗ �)′
.

Then p ∈ P[a, b] in E. Also, it is known [4] that C[a, b] ⊂ C ⊂ S?.
Now,

(z(g ∗ (ψ ∗ `))′)′

(g ∗ ψ ∗ �)′
= z(g ∗ z(ψ ∗ `)′)′

ψ ∗ z(g ∗ �)′

=
ψ ∗ (z(g∗`)′)′

(g∗�)′ z(g ∗ �)′

ψ ∗ z(g ∗ �)′

= ψ ∗ pz(g ∗ �)′

ψ ∗ z(g ∗ �)′

= ψ ∗ p�1
ψ ∗ �1

⊂ C̄o p(E).

Since ψ ∈ C and �1 ∈ S?, the required result follows using Lemma 2.1. That is
(ψ ∗ `) ∈ C?g[a, b].

Corollary 3.3.1. If g = z
(1−z) , then Theorem 3.3 leads that (ψ ∗ `) ∈ C?g[a, b] =

C?[a, b].

Theorem 3.4. Cg[a, b] ⊂ S?g[a, b].

Proof. Consider
z(g ∗ `)′

(g ∗ `) = p(z). (3.1)

Let ` ∈ Cg[a, b], it can be simply seen that p is analytic and p(0) = 1 for z ∈ E.
By logarithmically differentiation, we have

[1 + (g ∗ `)′′

(g ∗ `)′
] = p(z) + zp′(z)

p(z) ∈ P[a, b].

Since ` ∈ Cg[a, b]. Now using Lemma 2.2 it follows that p ∈ P[a, b] which implies
` ∈ S?g[a, b].

http://www.earthlinepublishers.com



Generalization of Quasi Convex Functions using Convolution 161

Corollary 3.4.1. If g = z
(1−z) , then Theorem 3.4 follows that C[a, b] ⊂ S?[a, b].

Theorem 3.5. Let 0 < α < 1. Then

Qg[a, b;α] ⊂ Kg[a, b].

Proof. From Definition 5, it follows that ` ∈ Qg[a, b] if and only if

£(z) = (1− α)`(z) + αz`′(z) ∈ Kg[a, b]. (3.2)

We can express (3.2) as

`(z) = 1
α
z(1− 1

α
)

∫ z

0
τ ( 1

α
−2)£(τ)dτ, £ ∈ Kg[a, b]

=c+ 1
zc

∫ z

0
τ (c−1)£(τ)dτ ; ( 1

α
= c+ 1)

=(
∞∑
κ=1

c+ 1
c+ κ

zκ) ∗£(z), κ = 1, 2, 3, · · ·

`(z) = (φc ∗£)(z), (3.3)

where
∑∞
κ=1

c+1
c+κz

κ is convex, see [1] and £ ∈ Kg[a, b] is preserved under convex
convolution. In fact from Theorem 3.2, φc ∗ `1 ∈ S?g[a, b] if `1 ∈ S?g[a, b], and

z(φc ∗ g ∗£)′

φc ∗ (g ∗ `1)
=z(g ∗ (φc ∗£))′

g ∗ (φc ∗ `1)
.

=z(g ∗ `)′

g ∗£1
,

where (φc ∗ `1) = £1 ∈ S?g[a, b], by Theorem 3.2 and ` is given by equation (3.2),
consequently ` ∈ Kg[a, b] in E.

Corollary 3.5.1. Let g = z
(1−z) , it follows from Theorem 3.5 that

Q[a, b;α] ⊂ K[a, b], for 0 < α < 1.

Theorem 3.6. Let g ∈ S?[a, b], −1 ≤ b < a ≤ 1 and let z`′

g ∈ P(β) for z ∈ E.
Then < (z`′)′

g′ > β, 0 ≤ β < 1, for | z |< r1 where r1 is the least positive root in
(0, 1) of the equation

1− (a + 2)r + (2b− 1)r2 + ar3 = 0. (3.4)
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Proof. For z ∈ E, we have
z`′

g
= h,

where g ∈ S?[a, b] and h ∈ P(β).
Differentiating logarithmically, we have

(z`′)′

g′
= h+ g

g′
h′,

it follows that
<((z`′)′

g′
− β) ≥ <(| h− β | − | g

g′
|| h′ |). (3.5)

Using distortion results, that are given in [4] as

| g
g′
|≤ r(1− br)

1− ar
(3.6)

| h′ |≤ 2<[h− β]
1− r2 . (3.7)

Using these results in equation (3.5), we have

<[ (z`
′)′

g′
− β] ≥ <(h− β)[1− (a + 2)r + (2b− 1)r2 + ar3]

(1− ar)(1− r2) . (3.8)

The right hand side of equation (3.8) is positive for | z |= r < r1, where r1 is the
least positive root of (3.4), which completes our proof.

Corollary 3.6.1. As a special case, when a = 0, b = −1 and β = 0 we have
< z`′g > 0, g ∈ S?(1

2) for z ∈ E. In this case < (z`′)′

g′ > 0 for | z |< 1
3 .

Theorem 3.7. Let ` ∈ S?g[a, b]. Then ` ∈ Cg[a, b] for | z |< ro = 2−
√

3.

Proof. Since ` ∈ S?g[a, b], therefore we can write

z(g ∗ `)′

(g ∗ `) = h,
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where h is a Carathéodory function h ∈ P, this implies z`1
′

`1
= h, where `1 = g ∗ `.

Differentiating logarithmically, we have

z`1
′

`1
=h+ zh′

h
.

Using distortion results for the class P, see [3, 4, 5]. We have

<z(g ∗ `)
′

(g ∗ `) = <z`1
′

`1
≥1− r

1 + r
− 2r

1− r2

=1− 4r + r2

1− r2 ,

by using mean value theorem and with some computations we get

T (r) = 2−
√

3 ∈ (0, 1), T (r) = 2−
√

3 ∈ (0, 1).

Thus
<z(g ∗ `)

′

(g ∗ `) ≥
1− 4r + r2

1− r2 > 0, for r < ro = 2−
√

3.

Corollary 3.7.1. Let g = z
(1−z) , so Theorem 3.7 follows that if ` ∈ S?[a, b], then

` ∈ C[a, b] for | z |< ro = 2−
√

3.

A converse case of Theorem 3.5, we have following result

Theorem 3.8. Let ` ∈ Kg[a, b]. Then ` ∈ Qg[a, b;α] for

| z |< rα = 1
2α+

√
4α2 − 2α+ 1

. (3.9)

Proof. Consider ` ∈ Kg[a, b]. Then we can write

(1− α)`+ αz`′ = φc ∗ `,

where

φc(z) =
∞∑
κ=1

[(κ− 1)α+ 1]zκ.
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It can be verified with simple computations that φc(z) ∈ C for | z |< rα, where
rα is given by (3.9). Then, using Remark 1 that the class Kg[a, b] is preserved
under convex convolution, it follows that ` ∈ Qg[a, b;α] for | z |< rα, rα is given
by (3.9).

Corollary 3.8.1. For g = z
(1−z) , Theorem 3.8 follows that if ` ∈ K[a, b], then

` ∈ Q[a, b;α], where as | z |< rα and rα is given by (3.9).

Theorem 3.9. If z`′ ∈ Kg[a, b], then ` ∈ C?g[a, b].

Proof. Consider ` ∈ C?g[a, b] and defined by (1.8), so

=⇒ ((g ∗ z`′))′

(g ∗ �)′
∈ P[a, b].

Let F = z`′,

=⇒ (g ∗ F )′

(g ∗ �)′
∈ P[a, b].

This shows that F ∈ Kg[a, b]. Using Alexander type relation between C and S? we
get

z(g ∗ F )′

(g ∗G) ∈ P[a, b],

where G = z�′. This completes our proof.

Remark 1. Using Theorem 3.9 and alike techniques of Theorem 3.3, we can
easily prove that the class Kg[a, b] is preserved under convex convolution that is,
if ` ∈ Kg[a, b] and φ ∈ C, then φ ∗ ` ∈ Kg[a, b] in E.

Some Inclusion Relations

Remark 2. C?g[a, b] 6⊂ S?g[a, b] and S?g[a, b] 6⊂ C?g[a, b].

Proof. Noor proved that the class C? does not properly contained in the class S?

and S? 6⊂ C?, see [11]. If g = z
(1−z) , then our result is obvious.
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Theorem 3.10. C?g[a, b] ∗ S?g[a, b] ⊂ Kg[a, b].

Proof. Let ` ∈ C?g[a, b] and � ∈ S?g[a, b].
Consider that

(` ∗ �) =(` ∗ z�′), where � ∈ Cg[a, b].

=z(` ∗ �)′

=z`′ ∗ �.

It follows from Alexander type relations that ` ∗ � ∈ Kg[a, b].

Next theorem is given as a special case of Lemma 2.3.

Theorem 3.11. C?g[a, b] ⊂ Kg[a, b].

Proof. Let ℵ(z) = z(g ∗ `)′(z) and Λ(z) = (g ∗ �)(z) be analytic functions in E
with ℵ(0) = Λ(0) = 0 and Λ ∈ S?. Then Lemma 2.3 implies

ℵ′

Λ′ ∈ P =⇒ ℵ
Λ ∈ P, for z ∈ E,

which leads to our required result.

Theorem 3.12. Let σ ≥ 1. Then

C?g[σ + 1, a, b] ⊂ C?g[σ, a, b].

Proof. For ` ∈ A. Using Lemma 2.4 we can easily derive the identity

z(Ðσ(g ∗ `))′ = (σ + 1)Ð(σ+1)(g ∗ `)(z)− σÐσ(g ∗ `)(z). (3.10)

Set
(z(Ðσ(g ∗ `))′)′(z)

(Ðσ(g ∗ �))′(z) = h(z). (3.11)

Then h(z) is analytic in E with h(0) = 1. We shall show that

<h(z) > 0, z ∈ E.
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First we show that

Cg[σ + 1, a, b] ⊂ Cg[σ, a, b].

For this, let � ∈ Cg[σ + 1, a, b] and set

(z(Ðσ(g ∗ �))′)′(z)
(Ðσ(g ∗ �))′(z) = Ho(z). (3.12)

Then Ho(z) is analytic and Ho(0) = 1. Using identity (3.10) for � together with
(3.12) we have

(σ + 1)(Ðσ+1(g ∗ �))′(z)
(Ðσ(g ∗ �))′(z) = Ho(z) + σ. (3.13)

Differentiating both sides of (3.13) logarithmically and using (3.12), with some
computations we obtain

(z(Ðσ+1(g ∗ �))′(z)
(Ðσ+1(g ∗ �))′(z) = Ho(z) + zH ′o(z)

Ho(z) + σ
. (3.14)

Since � ∈ Cg[σ + 1, a, b], therefore right hand of (3.14) belongs to P[a, b]. From
(3.12), (3.14) and a well-known Lemma 2.2 due to Miller [8], also see [9], it follows
that <Ho(z) ∈ P[a, b] in E. This proves that � ∈ C[σ, a, b].

Now with similar procedure and from (3.11), we get

(z(Ðσ+1(g ∗ `))′)′(z)
(Ðσ+1(g ∗ �))′(z) = h(z) + zh′(z)

ho(z) + σ
. (3.15)

Again applying Lemma 2.2, we obtain from (3.15) that <h(z) ∈ P[a, b] in E, which
proves that ` ∈ C?g[σ, a, b] in E. This establishes our required inclusion result.

Theorem 3.13. The class C?g[a, b] is preserved under the following integral
operators defined in [2, 7]

(a)

`1(z) =
∫ z

0

`(τ)
τ
dτ

=(g1 ∗ `)(z), (g1)(z) = −log(1− z).
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(b)

`2(z) =2
z

∫ z

0

`(τ)
τ
dτ

=(g2 ∗ `)(z), (g2)(z) = −2[z + log(1− z)].

(c)

`3(z) =1 + ς

zς

∫ z

0
τ ς−1`(τ)dτ

=(g3 ∗ `)(z), (g3)(z) =
∞∑
σ+1

1 + ς

σ + ς
zσ, where σ ∈ N.

It can be easily seen that g1, g2 ∈ C. In [15], Ruscheweyh showed that g3 ∈ C in E.
Consequently using Theorem 3.3, it follows that `i ∈ C?g[a, b], where i = 1, 2, 3.
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