

Generalization of Quasi Convex Functions using Convolution

Khalida Inayat Noor¹, Samar Abbas^{2,*} and Bushra Kanwal³

- ¹ Mathematics Department, COMSATS University, Park Road, Islamabad, Pakistan e-mail: khalidanoor@hotmail.com; khalidan@gmail.com
- ² Mathematics Department, COMSATS University, Park Road, Islamabad, Pakistan e-mail: samarabbax@gmail.com
- ³ Mathematics Department, COMSATS University, Park Road, Islamabad, Pakistan e-mail: bushrakanwal27pk@gmail.com

Abstract

In this paper, an up-to-date generalization of the class C^\star of quasi-convex functions is given by introducing new class $C^\star_\mathfrak{g}[\mathfrak{a},\mathfrak{b}]$. Furthermore its basic properties, its relationship with other subclasses of S, inclusion relations and some other interesting properties are derived.

1 Introduction

Let A denote the class of analytic functions in the open unit disk $E = \{z : |z| < 1\}$ defined by the power series

$$\ell(z) = z + \sum_{\kappa=2}^{\infty} a_{\kappa} z^{\kappa}.$$
(1.1)

The convolution or Hadamard product of two analytic functions

$$\ell(z) = \sum_{\kappa=0}^{\infty} a_{\kappa} z^{\kappa+1}, \ j(z) = \sum_{\kappa=0}^{\infty} b_{\kappa} z^{\kappa+1}, \ z \in \mathsf{E}, \ \kappa = 0, 1, 2, \cdots$$
(1.2)

Received: July 24, 2020; Revised & Accepted: August 16, 2020

2010 Mathematics Subject Classification: 30C45, 30C50.

Keywords and phrases: analytic functions, open unit disk, quasi convex function, convolution, Janowski type functions.

 * Corresponding author

is defined as

$$(\ell * j)(z) = \sum_{\kappa=0}^{\infty} a_{\kappa} b_{\kappa} z^{\kappa+1}.$$
(1.3)

Moreover, we say that $\ell(z)$ is subordinate to j(z) written as $\ell(z) \prec j(z)$ if there exists a function $\omega(z)$ analytic in E with $\omega(0) = 0$ and $|\omega(z)| < 1$, for all $z \in E$, such that $\ell(z) = j(\omega(z))$.

Let S, C, S^{*}, K and C^{*} be the sub-classes of A, which contain univalent, convex, starlike, close-to-convex and quasi-convex functions respectively. For several interesting geometric properties and deatils of these classes, one can refer to the standard books [4, 12]. It is well known [4] that $\ell(z)$ defined in (1.1) is convex if and only if $z\ell'(z) \in S^*$ and that $\ell(z)$ is quasi convex if and only if $z\ell'(z)$ is close to convex, see [11, 10].

Let \mathcal{H} be the class of functions

$$p(z) = 1 + \sum_{\kappa=1}^{\infty} c_{\kappa} z^{\kappa}, \qquad (1.4)$$

that are regular in \mathbf{E} with p(0) = 1. Then $p \in \mathbf{P}[\mathfrak{a}, \mathfrak{b}], -1 \leq \mathfrak{b} < \mathfrak{a} \leq 1$ if and only if $p(z) \prec \frac{1+\mathfrak{a}z}{1+\mathfrak{b}z}$, or equivalently

$$p(z) = \frac{(\mathfrak{a}+1)h(z) - (\mathfrak{a}-1)}{(\mathfrak{b}+1)h(z) - (\mathfrak{b}-1)},$$

where $h \in P[1, -1] = P$, the class of functions with positive real part. Also $p \in P(\gamma)$ if and only if

$$\Re\{p(z)\} > \gamma, \quad 0 < \gamma < 1.$$

First time Janowski [6] considered and studied extensively this class of functions. The classes $C[\mathfrak{a}, \mathfrak{b}]$, $S^{\star}[\mathfrak{a}, \mathfrak{b}]$, $K[\mathfrak{a}, \mathfrak{b}]$ and $C^{\star}[\mathfrak{a}, \mathfrak{b}]$ were defined and discussed in [1, 13].

Let $\ell(z) \in A$. Denote by $\mathbb{D}^{\sigma} : A \longrightarrow A$, the operator defined by

$$\mathbf{D}^{\sigma}\ell(z) = \frac{z}{(1-z)^{(\sigma+1)}} * \ell(z) = z + \sum_{\kappa=2}^{\infty} \mathcal{F}_{\kappa}(\sigma) a_{\kappa} z^{\kappa}, \ (\sigma > -1),$$

with

$$F_{\kappa}(\sigma) = \frac{(\sigma+1)_{\kappa-1}}{(\kappa-1)!},$$

where $(\xi)_{\kappa}$ is Pochhammer symbol given as

$$(\xi)_{\kappa} = \begin{cases} 1, & \text{for } \kappa = 0, \\ \xi(\xi+1)(\xi+2)\cdots(\xi+\kappa-1), & \text{for } \kappa \in \mathbb{N}. \end{cases}$$

It is obvious that $\mathbb{D}^0\ell(z) = \ell(z), \ \mathbb{D}^1\ell(z) = z\ell'(z)$ and

$$\mathbb{D}^{n}\ell(z) = \frac{z(z^{n-1}\ell(z))^{n}}{n!}, \ \forall \ n = 0, 1, 2, 3\cdots.$$

The operator $\mathbb{D}^{\sigma}\ell(z)$ is called *Ruscheweyh derivative* of $\ell(z)$, see [15].

Definition 1. Let ℓ and $\mathfrak{g} \in A$, such that $(\mathfrak{g} * \ell) \neq 0$ in E. Then ℓ is said to belong to $S^{\star}_{\mathfrak{g}}[\mathfrak{a}, \mathfrak{b}]$ if and only if

$$\frac{z(\mathfrak{g} \ast \ell)'(z)}{(\mathfrak{g} \ast \ell)(z)} \in \mathbb{P}[\mathfrak{a}, \mathfrak{b}].$$
(1.5)

We note that if $\mathfrak{g} = \frac{z}{(1-z)}$, then $S^{\star}_{\mathfrak{g}}[\mathfrak{a}, \mathfrak{b}] = S^{\star}[\mathfrak{a}, \mathfrak{b}]$.

Definition 2. Let $\ell \in A$, $(\mathfrak{g} * \ell)' \neq 0$ in \mathbb{E} for $\mathfrak{g} \in A$. Then ℓ is said to belong to $C_{\mathfrak{g}}[\mathfrak{a},\mathfrak{b}]$ if and only if

$$\frac{(z(\mathfrak{g} \ast \ell)'(z))'}{(\mathfrak{g} \ast \ell)'(z)} \in \mathbb{P}[\mathfrak{a}, \mathfrak{b}].$$
(1.6)

Note that if $\mathfrak{g} = \frac{z}{(1-z)}$, then $C_{\mathfrak{g}}[\mathfrak{a},\mathfrak{b}] = C[\mathfrak{a},\mathfrak{b}]$.

Definition 3. Let $\ell \in A$. Then $\ell \in K_{\mathfrak{g}}[\mathfrak{a}, \mathfrak{b}]$ if and only if there exists $\mathfrak{u} \in S_{\mathfrak{g}}^{\star}[\mathfrak{a}, \mathfrak{b}]$ with $(\mathfrak{g} * \mathfrak{u}) \neq 0$ such that

$$\frac{z(\mathfrak{g}*\ell)'(z)}{(\mathfrak{g}*\mathfrak{u})(z)} \in \mathbb{P}[\mathfrak{a},\mathfrak{b}], \quad z \in \mathbb{E}.$$
(1.7)

Note that if $\mathfrak{g} = \frac{z}{(1-z)}$, then $K_{\mathfrak{g}}[\mathfrak{a}, \mathfrak{b}] = K[\mathfrak{a}, \mathfrak{b}]$.

Definition 4. Let $\ell \in A$. Then $\ell \in C_{\mathfrak{g}}^{\star}[\mathfrak{a},\mathfrak{b}]$ if and only if there exists $\mathfrak{u} \in C_{\mathfrak{g}}[\mathfrak{a},\mathfrak{b}]$ with $(\mathfrak{g} * \mathfrak{u}) \neq 0$ such that

$$\frac{(z(\mathfrak{g} \ast \ell)')'(z)}{(\mathfrak{g} \ast \mathfrak{u})'(z)} \in \mathbb{P}[\mathfrak{a}, \mathfrak{b}], \quad z \in \mathbb{E}.$$
(1.8)

If $\mathfrak{g} = \frac{z}{(1-z)}$, $\implies C^{\star}_{\mathfrak{g}}[\mathfrak{a},\mathfrak{b}] = C^{\star}[\mathfrak{a},\mathfrak{b}].$

Now we have $\ell \in C^{\star}_{\mathfrak{g}}[\mathfrak{a}, \mathfrak{b}, \sigma] \iff D^{\sigma}\ell \in C^{\star}_{\mathfrak{g}}[\mathfrak{a}, \mathfrak{b}]$, where D^{σ} is the Ruscheweyh derivative operator [15].

Definition 5. Let $\ell \in A$ and $\mathfrak{g} \in A$. Then $\ell \in Q_{\mathfrak{g}}[\mathfrak{a}, \mathfrak{b}; \alpha]$, $0 \le \alpha < 1$ if and only if there exists $\mathfrak{u} \in C_{\mathfrak{g}}[\mathfrak{a}, \mathfrak{b}]$ with $(\mathfrak{g} \ast \mathfrak{u}) \ne 0$ such that

$$(1-\alpha)\frac{(\mathfrak{g}\ast\ell)'}{(\mathfrak{g}\ast\mathfrak{u})'} + \alpha\frac{(z(\mathfrak{g}\ast\ell)')'}{(\mathfrak{g}\ast\mathfrak{u})'} \in \mathbb{P}[\mathfrak{a},\mathfrak{b}], \quad z \in \mathbb{E}.$$
(1.9)

We note that

$$\begin{aligned} & \mathbb{Q}_{\mathfrak{g}}[\mathfrak{a},\mathfrak{b};\mathfrak{o}] = & \mathbb{K}_{\mathfrak{g}}[\mathfrak{a},\mathfrak{b}] \\ & \mathbb{Q}_{\mathfrak{g}}[\mathfrak{a},\mathfrak{b};\mathfrak{1}] = & \mathbb{C}_{\mathfrak{a}}^{\star}[\mathfrak{a},\mathfrak{b}]. \end{aligned}$$

2 Some Preliminary Results

Lemma 2.1. [14] $\psi \in C$, $\mathfrak{g} \in S^*$ and F is analytic in E with F(0) = 1, then

$$\frac{\psi * F\mathfrak{g}}{\psi * \mathfrak{g}} \subset \bar{C}oF(\mathsf{E}),\tag{2.1}$$

where $\bar{C}o$ is the closed convex hull.

Lemma 2.2. [8] Let $u = u_1 + \iota u_2$ and $v = v_1 + \iota v_2$, and let Ψ be the set of functions $\Psi(u, v)$ satisfying:

(a) $\Psi(u, v)$ is continuous in a domain D of $\mathbb{C} \times \mathbb{C}$.

(b) $(1,0) \in D$ and $\Re \Psi(1,0) > 0$.

(c) $\Re \Psi(\iota u_2, v_1) \leq 0$ when $(\iota u_2, v_1) \in D$ and $v \leq -\frac{1}{2}(1+u_2^2)$.

If p(z), given by (1.4), is an analytic function in \mathbb{E} such that $(p(z), zp'(z)) \in D$ and $\Re \Psi(p(z), zp'(z)) > 0$, for $z \in \mathbb{E}$, then $\Re p(z) > 0$.

Lemma 2.3. [7] If \aleph and Λ are regular in \mathbb{E} , $\aleph(0) = \Lambda(0) = 0$, \aleph maps \mathbb{E} onto a many sheeted region which is starlike with respect to origin, and $\frac{\aleph'}{\Lambda'} \in \mathbb{P}$, then $\frac{\aleph}{\Lambda} \in \mathbb{P}$.

Lemma 2.4. [16] For a real number $\sigma(\sigma > 0)$, we have

$$z(\mathbb{D}^{\sigma}\ell(z))' = (\sigma+1)\mathbb{D}^{\sigma+1}\ell(z) - \sigma\mathbb{D}^{\sigma}\ell(z).$$

3 Main Results

We present our main work in this section.

Theorem 3.1. Let $\ell \in S^{\star}[\mathfrak{a}, \mathfrak{b}]$ and $\mathfrak{g} \in C$. Then $\ell \in S^{\star}_{\mathfrak{g}}[\mathfrak{a}, \mathfrak{b}]$.

Proof. Consider

$$\frac{z(\mathfrak{g}*\ell)'}{(\mathfrak{g}*\ell)} = \frac{(\mathfrak{g}*z\ell')}{(\mathfrak{g}*\ell)}$$
$$= \frac{\mathfrak{g}*\frac{z\ell'}{\ell}\ell}{(\mathfrak{g}*\ell)}$$
$$= \frac{\mathfrak{g}*F\ell}{(\mathfrak{g}*\ell)} \subset \bar{C}oF(\mathsf{E})$$

Since $F \in P[\mathfrak{a}, \mathfrak{b}]$ and $\mathfrak{g} \in C$, we use Lemma 2.1 to have the required result that $\ell \in S_{\mathfrak{g}}^{\star}[\mathfrak{a}, \mathfrak{b}]$.

Theorem 3.2. The class $S_{\mathfrak{g}}^{\star}[\mathfrak{a},\mathfrak{b}]$ is closed under convolution with convex functions.

Proof. Let $\ell \in S^{\star}_{\mathfrak{g}}[\mathfrak{a}, \mathfrak{b}]$. Then

$$\frac{z(\mathfrak{g} \ast \ell)'}{(\mathfrak{g} \ast \ell)} = p(z) \in \mathtt{P}[\mathfrak{a}, \mathfrak{b}].$$

Let $\psi \in C$, we have

$$\begin{aligned} \frac{z[\mathfrak{g}*(\psi*\ell)]'}{[\mathfrak{g}*(\psi*\ell)]} &= \frac{\psi*z(\mathfrak{g}*\ell)'}{\psi*(\mathfrak{g}*\ell)} \\ &= \frac{\psi*\frac{z(\mathfrak{g}*\ell)'}{(\mathfrak{g}*\ell)}(\mathfrak{g}*\ell)}{\psi*(\mathfrak{g}*\ell)} \\ &= \frac{\psi*p(\mathfrak{g}*\ell)}{\psi*(\mathfrak{g}*\ell)} \in \bar{C}op(\mathbf{E}) \end{aligned}$$

Since $\ell \in S_{\mathfrak{g}}^{\star}[\mathfrak{a}, \mathfrak{b}]$, it follows that $p \in P[\mathfrak{a}, \mathfrak{b}]$.

$$(\mathfrak{g} * \ell) \in S^{\star}[\mathfrak{a}, \mathfrak{b}] \subset S^{\star}.$$

We use Lemma 2.1 to conclude that $\frac{\psi * p(\mathfrak{g} * \ell)}{\psi * (\mathfrak{g} * \ell)}$ lies in the convex hull of $p(\mathsf{E})$ and therefore $\psi * \ell \in \mathsf{S}^{\star}_{\mathfrak{g}}[\mathfrak{a}, \mathfrak{b}]$.

Theorem 3.3. Let $\ell \in C_{\mathfrak{g}}^{\star}[\mathfrak{a}, \mathfrak{b}]$ with respect to $\mathfrak{u} \in C_{\mathfrak{g}}[\mathfrak{a}, \mathfrak{b}]$ and let $\psi \in C$. Then $\psi * \ell \in C_{\mathfrak{g}}^{\star}[\mathfrak{a}, \mathfrak{b}]$ with respect to $z(\mathfrak{g} * \mathfrak{u})' = \mathfrak{u}_{\mathfrak{l}}$.

Proof. By definition $C^{\star}_{\mathfrak{g}}[\mathfrak{a},\mathfrak{b}]$ implies $\mathfrak{g} \ast \mathfrak{u} \in C[\mathfrak{a},\mathfrak{b}]$.

Let

$$p(z) = \frac{(z(\mathfrak{g} * \ell)')'}{(\mathfrak{g} * \mathfrak{u})'}$$

Then $p \in P[\mathfrak{a}, \mathfrak{b}]$ in E. Also, it is known [4] that $C[\mathfrak{a}, \mathfrak{b}] \subset C \subset S^*$. Now,

$$\frac{(z(\mathfrak{g}*(\psi*\ell))')'}{(\mathfrak{g}*\psi*\mathfrak{u})'} = \frac{z(\mathfrak{g}*z(\psi*\ell)')'}{\psi*z(\mathfrak{g}*\mathfrak{u})'}$$
$$= \frac{\psi*\frac{(z(\mathfrak{g}*\ell)')'}{(\mathfrak{g}*\mathfrak{u})'}z(\mathfrak{g}*\mathfrak{u})'}{\psi*z(\mathfrak{g}*\mathfrak{u})'}$$
$$= \frac{\psi*pz(\mathfrak{g}*\mathfrak{u})'}{\psi*z(\mathfrak{g}*\mathfrak{u})'}$$
$$= \frac{\psi*p\mathfrak{u}_1}{\psi*\mathfrak{u}_1} \subset \bar{C}op(\mathbf{E}).$$

Since $\psi \in C$ and $\mathfrak{u}_1 \in S^*$, the required result follows using Lemma 2.1. That is $(\psi * \ell) \in C^*_{\mathfrak{g}}[\mathfrak{a}, \mathfrak{b}].$

Corollary 3.3.1. If $\mathfrak{g} = \frac{z}{(1-z)}$, then Theorem 3.3 leads that $(\psi * \ell) \in C^{\star}_{\mathfrak{g}}[\mathfrak{a}, \mathfrak{b}] = C^{\star}[\mathfrak{a}, \mathfrak{b}].$

Theorem 3.4. $C_{\mathfrak{g}}[\mathfrak{a},\mathfrak{b}] \subset S_{\mathfrak{g}}^{\star}[\mathfrak{a},\mathfrak{b}].$

Proof. Consider

$$\frac{z(\mathfrak{g} \ast \ell)'}{(\mathfrak{g} \ast \ell)} = p(z). \tag{3.1}$$

Let $\ell \in C_{\mathfrak{g}}[\mathfrak{a},\mathfrak{b}]$, it can be simply seen that p is analytic and p(0) = 1 for $z \in E$.

By logarithmically differentiation, we have

$$[1 + \frac{(\mathfrak{g} \ast \ell)''}{(\mathfrak{g} \ast \ell)'}] = p(z) + \frac{zp'(z)}{p(z)} \in \mathbb{P}[\mathfrak{a}, \mathfrak{b}].$$

Since $\ell \in C_{\mathfrak{g}}[\mathfrak{a},\mathfrak{b}]$. Now using Lemma 2.2 it follows that $p \in P[\mathfrak{a},\mathfrak{b}]$ which implies $\ell \in S_{\mathfrak{g}}^{\star}[\mathfrak{a},\mathfrak{b}]$.

Corollary 3.4.1. If $\mathfrak{g} = \frac{z}{(1-z)}$, then Theorem 3.4 follows that $C[\mathfrak{a}, \mathfrak{b}] \subset S^*[\mathfrak{a}, \mathfrak{b}]$. **Theorem 3.5.** Let $0 < \alpha < 1$. Then

$$\mathsf{Q}_{\mathfrak{g}}[\mathfrak{a},\mathfrak{b};\alpha]\subset\mathsf{K}_{\mathfrak{g}}[\mathfrak{a},\mathfrak{b}]$$

Proof. From Definition 5, it follows that $\ell \in Q_{\mathfrak{g}}[\mathfrak{a}, \mathfrak{b}]$ if and only if

$$\pounds(z) = (1 - \alpha)\ell(z) + \alpha z\ell'(z) \in \mathsf{K}_{\mathfrak{g}}[\mathfrak{a}, \mathfrak{b}].$$
(3.2)

We can express (3.2) as

$$\ell(z) = \frac{1}{\alpha} z^{(1-\frac{1}{\alpha})} \int_0^z \tau^{(\frac{1}{\alpha}-2)} \pounds(\tau) d\tau, \quad \pounds \in \mathsf{K}_\mathfrak{g}[\mathfrak{a},\mathfrak{b}]$$
$$= \frac{c+1}{z^c} \int_0^z \tau^{(c-1)} \pounds(\tau) d\tau; \quad (\frac{1}{\alpha} = c+1)$$
$$= (\sum_{\kappa=1}^\infty \frac{c+1}{c+\kappa} z^\kappa) * \pounds(z), \qquad \kappa = 1, 2, 3, \cdots$$
$$\ell(z) = (\phi_c * \pounds)(z), \tag{3.3}$$

where $\sum_{\kappa=1}^{\infty} \frac{c+1}{c+\kappa} z^{\kappa}$ is convex, see [1] and $\pounds \in K_{\mathfrak{g}}[\mathfrak{a},\mathfrak{b}]$ is preserved under convex convolution. In fact from Theorem 3.2, $\phi_c * \ell_1 \in S_{\mathfrak{g}}^{\star}[\mathfrak{a},\mathfrak{b}]$ if $\ell_1 \in S_{\mathfrak{g}}^{\star}[\mathfrak{a},\mathfrak{b}]$, and

$$\frac{z(\phi_c * \mathfrak{g} * \mathfrak{L})'}{\phi_c * (\mathfrak{g} * \ell_1)} = \frac{z(\mathfrak{g} * (\phi_c * \mathfrak{L}))'}{\mathfrak{g} * (\phi_c * \ell_1)}.$$
$$= \frac{z(\mathfrak{g} * \ell)'}{\mathfrak{g} * \mathfrak{L}_1},$$

where $(\phi_c * \ell_1) = \pounds_1 \in \mathbf{S}_{\mathfrak{g}}^{\star}[\mathfrak{a}, \mathfrak{b}]$, by Theorem 3.2 and ℓ is given by equation (3.2), consequently $\ell \in \mathsf{K}_{\mathfrak{g}}[\mathfrak{a}, \mathfrak{b}]$ in E.

Corollary 3.5.1. Let $\mathfrak{g} = \frac{z}{(1-z)}$, it follows from Theorem 3.5 that $\mathbb{Q}[\mathfrak{a},\mathfrak{b};\alpha] \subset \mathbb{K}[\mathfrak{a},\mathfrak{b}]$, for $0 < \alpha < 1$.

Theorem 3.6. Let $\mathfrak{g} \in S^{\star}[\mathfrak{a}, \mathfrak{b}], -1 \leq \mathfrak{b} < \mathfrak{a} \leq 1$ and let $\frac{z\ell'}{\mathfrak{g}} \in P(\beta)$ for $z \in E$. Then $\Re \frac{(z\ell')'}{\mathfrak{g}'} > \beta, \ 0 \leq \beta < 1$, for $|z| < r_1$ where r_1 is the least positive root in (0, 1) of the equation

$$1 - (\mathfrak{a} + 2)r + (2\mathfrak{b} - 1)r^2 + \mathfrak{a}r^3 = 0.$$
(3.4)

Proof. For $z \in E$, we have

$$\frac{z\ell'}{\mathfrak{g}} = h_{\mathfrak{g}}$$

where $\mathfrak{g} \in \mathbf{S}^{\star}[\mathfrak{a}, \mathfrak{b}]$ and $h \in \mathbf{P}(\beta)$.

Differentiating logarithmically, we have

$$\frac{(z\ell')'}{\mathfrak{g}'} = h + \frac{\mathfrak{g}}{\mathfrak{g}'}h',$$

it follows that

$$\Re(\frac{(z\ell')'}{\mathfrak{g}'} - \beta) \ge \Re(|h - \beta| - |\frac{\mathfrak{g}}{\mathfrak{g}'}||h'|).$$
(3.5)

Using distortion results, that are given in [4] as

$$\left| \begin{array}{c} \mathfrak{g}\\ \mathfrak{g}' \end{array} \right| \leq \frac{r(1-\mathfrak{b}r)}{1-\mathfrak{a}r} \tag{3.6}$$

$$h' \mid \leq \frac{2\Re[h-\beta]}{1-r^2}.$$
 (3.7)

Using these results in equation (3.5), we have

$$\Re[\frac{(z\ell')'}{\mathfrak{g}'} - \beta] \ge \frac{\Re(h-\beta)[1 - (\mathfrak{a}+2)r + (2\mathfrak{b}-1)r^2 + \mathfrak{a}r^3]}{(1-\mathfrak{a}r)(1-r^2)}.$$
(3.8)

The right hand side of equation (3.8) is positive for $|z| = r < r_1$, where r_1 is the least positive root of (3.4), which completes our proof.

Corollary 3.6.1. As a special case, when $\mathfrak{a} = 0, \mathfrak{b} = -1$ and $\beta = 0$ we have $\Re \frac{z\ell'}{\mathfrak{g}} > 0, \mathfrak{g} \in S^{\star}(\frac{1}{2})$ for $z \in E$. In this case $\Re \frac{(z\ell')'}{\mathfrak{g}'} > 0$ for $|z| < \frac{1}{3}$.

Theorem 3.7. Let $\ell \in S^{\star}_{\mathfrak{g}}[\mathfrak{a}, \mathfrak{b}]$. Then $\ell \in C_{\mathfrak{g}}[\mathfrak{a}, \mathfrak{b}]$ for $|z| < r_o = 2 - \sqrt{3}$.

Proof. Since $\ell \in S^{\star}_{\mathfrak{g}}[\mathfrak{a}, \mathfrak{b}]$, therefore we can write

$$\frac{z(\mathfrak{g}*\ell)'}{(\mathfrak{g}*\ell)} = h,$$

where h is a Carathéodory function $h \in \mathbb{P}$, this implies $\frac{z\ell_1'}{\ell_1} = h$, where $\ell_1 = \mathfrak{g} * \ell$. Differentiating logarithmically, we have

$$\frac{z\ell_1'}{\ell_1} = h + \frac{zh'}{h}.$$

Using distortion results for the class P, see [3, 4, 5]. We have

$$\Re \frac{z(\mathfrak{g} * \ell)'}{(\mathfrak{g} * \ell)} = \Re \frac{z\ell_1'}{\ell_1} \ge \frac{1-r}{1+r} - \frac{2r}{1-r^2} = \frac{1-4r+r^2}{1-r^2},$$

by using mean value theorem and with some computations we get

$$T(r) = 2 - \sqrt{3} \in (0, 1), \quad T(r) = 2 - \sqrt{3} \in (0, 1).$$

Thus

$$\Re \frac{z(\mathfrak{g} * \ell)'}{(\mathfrak{g} * \ell)} \ge \frac{1 - 4r + r^2}{1 - r^2} > 0, \quad \text{for } r < r_o = 2 - \sqrt{3}.$$

Corollary 3.7.1. Let $\mathfrak{g} = \frac{z}{(1-z)}$, so Theorem 3.7 follows that if $\ell \in S^*[\mathfrak{a}, \mathfrak{b}]$, then $\ell \in C[\mathfrak{a}, \mathfrak{b}]$ for $|z| < r_o = 2 - \sqrt{3}$.

A converse case of Theorem 3.5, we have following result

Theorem 3.8. Let $\ell \in K_{\mathfrak{g}}[\mathfrak{a}, \mathfrak{b}]$. Then $\ell \in Q_{\mathfrak{g}}[\mathfrak{a}, \mathfrak{b}; \alpha]$ for

$$|z| < r_{\alpha} = \frac{1}{2\alpha + \sqrt{4\alpha^2 - 2\alpha + 1}}.$$
 (3.9)

Proof. Consider $\ell \in K_{\mathfrak{g}}[\mathfrak{a}, \mathfrak{b}]$. Then we can write

$$(1-\alpha)\ell + \alpha z\ell' = \phi_c * \ell,$$

where

$$\phi_c(z) = \sum_{\kappa=1}^{\infty} [(\kappa - 1)\alpha + 1] z^{\kappa}.$$

It can be verified with simple computations that $\phi_c(z) \in \mathbb{C}$ for $|z| < r_{\alpha}$, where r_{α} is given by (3.9). Then, using Remark 1 that the class $K_{\mathfrak{g}}[\mathfrak{a},\mathfrak{b}]$ is preserved under convex convolution, it follows that $\ell \in Q_{\mathfrak{g}}[\mathfrak{a},\mathfrak{b};\alpha]$ for $|z| < r_{\alpha}$, r_{α} is given by (3.9).

Corollary 3.8.1. For $\mathfrak{g} = \frac{z}{(1-z)}$, Theorem 3.8 follows that if $\ell \in K[\mathfrak{a}, \mathfrak{b}]$, then $\ell \in \mathbb{Q}[\mathfrak{a}, \mathfrak{b}; \alpha]$, where as $|z| < r_{\alpha}$ and r_{α} is given by (3.9).

Theorem 3.9. If $z\ell' \in K_{\mathfrak{g}}[\mathfrak{a},\mathfrak{b}]$, then $\ell \in C^{\star}_{\mathfrak{g}}[\mathfrak{a},\mathfrak{b}]$.

Proof. Consider $\ell \in C^{\star}_{\mathfrak{g}}[\mathfrak{a}, \mathfrak{b}]$ and defined by (1.8), so

$$\implies \frac{((\mathfrak{g} \ast z\ell'))'}{(\mathfrak{g} \ast \mathfrak{u})'} \in \mathtt{P}[\mathfrak{a},\mathfrak{b}].$$

Let $F = z\ell'$,

$$\implies \frac{(\mathfrak{g} \ast F)'}{(\mathfrak{g} \ast \mathfrak{u})'} \in \mathtt{P}[\mathfrak{a}, \mathfrak{b}].$$

This shows that $F \in K_{\mathfrak{g}}[\mathfrak{a}, \mathfrak{b}]$. Using Alexander type relation between C and S^* we get

$$\frac{z(\mathfrak{g}*F)'}{(\mathfrak{g}*G)} \in \mathtt{P}[\mathfrak{a},\mathfrak{b}],$$

where $G = z\mathfrak{u}'$. This completes our proof.

Remark 1. Using Theorem 3.9 and alike techniques of Theorem 3.3, we can easily prove that the class $K_{\mathfrak{g}}[\mathfrak{a},\mathfrak{b}]$ is preserved under convex convolution that is, if $\ell \in K_{\mathfrak{g}}[\mathfrak{a},\mathfrak{b}]$ and $\phi \in C$, then $\phi * \ell \in K_{\mathfrak{g}}[\mathfrak{a},\mathfrak{b}]$ in E.

Some Inclusion Relations

 $\mathbf{Remark} \ \mathbf{2.} \ C^\star_\mathfrak{g}[\mathfrak{a},\mathfrak{b}] \not\subset S^\star_\mathfrak{g}[\mathfrak{a},\mathfrak{b}] \ \mathrm{and} \ S^\star_\mathfrak{g}[\mathfrak{a},\mathfrak{b}] \not\subset C^\star_\mathfrak{g}[\mathfrak{a},\mathfrak{b}].$

Proof. Noor proved that the class C^* does not properly contained in the class S^* and $S^* \not\subset C^*$, see [11]. If $\mathfrak{g} = \frac{z}{(1-z)}$, then our result is obvious.

Theorem 3.10. $C_{\mathfrak{g}}^{\star}[\mathfrak{a},\mathfrak{b}] * S_{\mathfrak{g}}^{\star}[\mathfrak{a},\mathfrak{b}] \subset K_{\mathfrak{g}}[\mathfrak{a},\mathfrak{b}].$

Proof. Let $\ell \in C^{\star}_{\mathfrak{g}}[\mathfrak{a}, \mathfrak{b}]$ and $\mathfrak{u} \in S^{\star}_{\mathfrak{g}}[\mathfrak{a}, \mathfrak{b}]$.

Consider that

$$\begin{aligned} (\ell * \mathfrak{u}) = & (\ell * z\mathfrak{u}'), & \text{where } \mathfrak{u} \in \mathsf{C}_{\mathfrak{g}}[\mathfrak{a}, \mathfrak{b}]. \\ = & z(\ell * \mathfrak{u})' \\ = & z\ell' * \mathfrak{u}. \end{aligned}$$

It follows from Alexander type relations that $\ell * \mathfrak{u} \in K_{\mathfrak{g}}[\mathfrak{a}, \mathfrak{b}]$.

Next theorem is given as a special case of Lemma 2.3.

Theorem 3.11. $C^{\star}_{\mathfrak{g}}[\mathfrak{a},\mathfrak{b}] \subset K_{\mathfrak{g}}[\mathfrak{a},\mathfrak{b}].$

Proof. Let $\aleph(z) = z(\mathfrak{g} * \ell)'(z)$ and $\Lambda(z) = (\mathfrak{g} * \mathfrak{u})(z)$ be analytic functions in \mathbb{E} with $\aleph(0) = \Lambda(0) = 0$ and $\Lambda \in S^*$. Then Lemma 2.3 implies

$$\frac{\aleph'}{\Lambda'} \in \mathtt{P} \implies \frac{\aleph}{\Lambda} \in \mathtt{P}, \quad \text{for } z \in \mathtt{E},$$

which leads to our required result.

Theorem 3.12. Let $\sigma \geq 1$. Then

$$C^{\star}_{\mathfrak{q}}[\sigma+1,\mathfrak{a},\mathfrak{b}] \subset C^{\star}_{\mathfrak{q}}[\sigma,\mathfrak{a},\mathfrak{b}].$$

Proof. For $\ell \in A$. Using Lemma 2.4 we can easily derive the identity

$$z(\mathcal{D}^{\sigma}(\mathfrak{g}*\ell))' = (\sigma+1)\mathcal{D}^{(\sigma+1)}(\mathfrak{g}*\ell)(z) - \sigma\mathcal{D}^{\sigma}(\mathfrak{g}*\ell)(z).$$
(3.10)

 Set

$$\frac{(z(\mathbb{D}^{\sigma}(\mathfrak{g}*\ell))')'(z)}{(\mathbb{D}^{\sigma}(\mathfrak{g}*\mathfrak{u}))'(z)} = h(z).$$
(3.11)

Then h(z) is analytic in E with h(0) = 1. We shall show that

 $\Re h(z) > 0, \quad z \in \mathsf{E}.$

First we show that

$$C_{\mathfrak{g}}[\sigma+1,\mathfrak{a},\mathfrak{b}] \subset C_{\mathfrak{g}}[\sigma,\mathfrak{a},\mathfrak{b}].$$

For this, let $\mathfrak{u} \in C_{\mathfrak{g}}[\sigma + 1, \mathfrak{a}, \mathfrak{b}]$ and set

$$\frac{(z(\mathbb{D}^{\sigma}(\mathfrak{g}*\mathfrak{u}))')'(z)}{(\mathbb{D}^{\sigma}(\mathfrak{g}*\mathfrak{u}))'(z)} = H_o(z).$$
(3.12)

Then $H_o(z)$ is analytic and $H_o(0) = 1$. Using identity (3.10) for \mathfrak{u} together with (3.12) we have

$$\frac{(\sigma+1)(\mathbf{D}^{\sigma+1}(\mathfrak{g}*\mathfrak{u}))'(z)}{(\mathbf{D}^{\sigma}(\mathfrak{g}*\mathfrak{u}))'(z)} = H_o(z) + \sigma.$$
(3.13)

Differentiating both sides of (3.13) logarithmically and using (3.12), with some computations we obtain

$$\frac{(z(\mathbb{D}^{\sigma+1}(\mathfrak{g}*\mathfrak{u}))'(z)}{(\mathbb{D}^{\sigma+1}(\mathfrak{g}*\mathfrak{u}))'(z)} = H_o(z) + \frac{zH'_o(z)}{H_o(z) + \sigma}.$$
(3.14)

Since $\mathfrak{u} \in C_{\mathfrak{g}}[\sigma + 1, \mathfrak{a}, \mathfrak{b}]$, therefore right hand of (3.14) belongs to $P[\mathfrak{a}, \mathfrak{b}]$. From (3.12), (3.14) and a well-known Lemma 2.2 due to Miller [8], also see [9], it follows that $\Re H_o(z) \in P[\mathfrak{a}, \mathfrak{b}]$ in E. This proves that $\mathfrak{u} \in C[\sigma, \mathfrak{a}, \mathfrak{b}]$.

Now with similar procedure and from (3.11), we get

$$\frac{(z(\mathbb{D}^{\sigma+1}(\mathfrak{g}\ast\ell))')'(z)}{(\mathbb{D}^{\sigma+1}(\mathfrak{g}\ast\mathfrak{u}))'(z)} = h(z) + \frac{zh'(z)}{h_o(z) + \sigma}.$$
(3.15)

Again applying Lemma 2.2, we obtain from (3.15) that $\Re h(z) \in \mathsf{P}[\mathfrak{a}, \mathfrak{b}]$ in E , which proves that $\ell \in \mathsf{C}^{\star}_{\mathfrak{g}}[\sigma, \mathfrak{a}, \mathfrak{b}]$ in E . This establishes our required inclusion result. \Box

Theorem 3.13. The class $C^{\star}_{\mathfrak{g}}[\mathfrak{a},\mathfrak{b}]$ is preserved under the following integral operators defined in [2, 7]

(a)

$$\ell_1(z) = \int_0^z \frac{\ell(\tau)}{\tau} d\tau$$

= $(\mathfrak{g}_1 * \ell)(z), \quad (\mathfrak{g}_1)(z) = -\log(1-z).$

(b)

$$\ell_2(z) = \frac{2}{z} \int_0^z \frac{\ell(\tau)}{\tau} d\tau$$

= (g₂ * ℓ)(z), (g₂)(z) = -2[z + log(1 - z)]

(c)

$$\begin{split} \ell_{3}(z) &= \frac{1+\varsigma}{z^{\varsigma}} \int_{0}^{z} \tau^{\varsigma-1} \ell(\tau) d\tau \\ &= (\mathfrak{g}_{3} \ast \ell)(z), \quad (\mathfrak{g}_{3})(z) = \sum_{\sigma+1}^{\infty} \frac{1+\varsigma}{\sigma+\varsigma} z^{\sigma}, \quad where \quad \sigma \in \mathbb{N}. \end{split}$$

It can be easily seen that $\mathfrak{g}_1, \mathfrak{g}_2 \in \mathbb{C}$. In [15], Ruscheweyh showed that $\mathfrak{g}_3 \in \mathbb{C}$ in E. Consequently using Theorem 3.3, it follows that $\ell_i \in C^*_{\mathfrak{g}}[\mathfrak{a}, \mathfrak{b}]$, where $\mathfrak{i} = 1, 2, 3$.

References

- O. Altintaş and Ö. Ö. Kiliç, Coefficient estimates for a class containing quasi-convex functions, *Turk. J. Math.* 42 (2018), 2819-2825. https://doi.org/10.3906/mat-1805-90
- [2] S. M. Barnardi, Convex and starlike univalent functions, Trans. Amer. Math. Soc. 135 (1969), 429-446. https://doi.org/10.1090/S0002-9947-1969-0232920-2
- [3] P. L. Duren, Univalent Functions, Springer-Verlag, Berlin, 1983.
- [4] A. W. Goodman, Univalent Functions, Vols. I and II, Polygonal Publishing House, Washington, NJ, 1983.
- [5] W. K. Hayman, *Multivalent Functions*, Cambridge University Press, U.K., 1967.
- W. Janowski, Some extremal problems for certain families of analytic functions I, Ann. Polon. Math. 28 (1973), 297-326. https://doi.org/10.4064/ap-28-3-297-326
- [7] R. J. Libera, Some classes of regular univalent functions, Proc. Amer. Math. Soc. 16 (1965), 755-758. https://doi.org/10.1090/S0002-9939-1965-0178131-2

- S. S. Miller, Differential Inequalities and Carathéodory functions, Bull. Amer. Math. Soc. 81 (1975), 79-81. https://doi.org/10.1090/S0002-9904-1975-13643-3
- S. S. Miller and P. T. Mocanu, Differential Subordination: Theory and Applications, Vol. 225, Marcel Dekker Inc., New York, Basel, 2000. https://doi.org/10.1201/9781482289817
- [10] K. I. Noor and D. K. Thomas, On quasi convex univalent functions, Inter. J. Math. Math. Sci. 3 (1980), 255-266. https://doi.org/10.1155/S016117128000018X
- [11] K. I. Noor, On quasi convex functions and related topics I, J. Math. Math. Sci. 10(2) (1987), 241-258. https://doi.org/10.1155/S0161171287000310
- [12] Ch. Pommerenke, Univalent Functions, Vandenhoeck and Ruprecht, Gottingen, 1975.
- [13] M. S. Robertson, On the theory of univalent functions, Ann. of Math. 28 (1936), 297-326.
- [14] S. Ruscheweyh and T. Sheil-Small, Hadamard products of Schlicht functions and the Pólya-Schoenberg conjecture, *Comment. Math. Helv.* 48 (1973), 119-135. https://doi.org/10.1007/BF02566116
- [15] S. Ruscheweyh, New criteria for univalent functions, Proc. Amer. Math. Soc. 49 (1975), 109-115. https://doi.org/10.1090/S0002-9939-1975-0367176-1
- [16] K. Sakaguchi and S. Fukui, An extension of a theorem of S. Ruscheweyh, Bull. Fac. Edu. Wakayama Univ. Nat. Sci. 29 (1980), 1-3.

This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted, use, distribution and reproduction in any medium, or format for any purpose, even commercially provided the work is properly cited.