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Abstract

Within the master thesis [1], the author considered the following random

variable

T = X−1 − 1,

where X follows the Kumaraswamy distribution, and obtains a so-called

inverted Kumaraswamy distribution, and studies some properties and

applications of this class of distributions in the context of the power series

family [2]. Within the paper [3], they introduced the exponentiated generalized

class of distributions and obtained some properties with applications. Based

on these developments we introduce a class of modified power series inverted

exponentiated generalized distributions and obtain some of their properties with

applications. Some characterization theorems are also presented. Avenues for

further research concludes the paper.

1 Introduction

The exponentiated class of distributions first appeared in [4], with the following

representation for its CDF
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F (x)β,

where F (x) is some baseline distribution and β > 0. An extension of this distribution

inspired by the Kumaraswamy’s double bounded distribution [5] appeared in [6] with

the following representation for its CDF

1− (1− F (x)a)b,

where F (x) is some baseline distribution with a, b > 0. If we exponentiate the above

CDF, and take a = 1, then we get the following CDF introduced in [3]

(1− (1− F (x))α)β,

where α, β > 0.

It is well known that the inverse distribution is the distribution of the reciprocal

of a random variable [8]. If we consider the random variable Y = 1
X , where X has

CDF F (x), then the reciprocal distribution, FY (y) has CDF

1− FX
(

1

y

)
.

In some recent works, authors have considered the following modification of the

transformation Y = 1
X , that is

Y ∗ =
1

X
− 1,

where X has CDF F (x). In this case, the reciprocal distribution, FY ∗(y
∗) has CDF

FY ∗(y
∗) = 1− FX

(
1

y∗ + 1

)
.

The power series class of distributions was proposed and studied in [2]. This class

of distributions includes binomial, geometric, logarithmic and Poisson distributions

as special cases. However, these distributions may not be useful when a random

variable takes the value of zero with high probability, that is, zero-inflated. In such
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situations, it is more appropriate to consider the distribution which is truncated at

zero.

Power series distributions are usually motivated by the stochastic representations

Z = min(X1, · · · , XN )

if the components are in series, or

Z = max(X1, · · · , XN )

if the components are in parallel, and many lifetime data admit such representations,

and the related distributions are very useful in modeling such data. We suppose

X1, · · · , XN are independent and identically distributed random variables from a

parent distribution with PDF f(x) and CDF F (x), and consider N to be a discrete

random variable from a power series distribution (truncated at zero) and whose PDF

is given by

P (N = n) =
anλ

n

C(λ)
, n = 1, 2, 3, · · ·

where C(λ) =
∑∞

n=1 anλ
n, an depends on n, and λ > 0. C(λ) is finite, and its first,

second, and third derivatives with respect to λ are defined and given by C ′(λ), C ′′(λ),

and C ′′′(λ), respectively. The table below represents some useful quantities including

an, C(λ), C−1(λ), C ′(λ), C ′′(λ), and C ′′′(λ), respectively, for the Poisson, geometric,

logarithmic and binomial (with m being the number of replicas) distributions which

belong to the power series family of distributions.

Table 1: Useful quantities for some power series distributions.

Distribution C(λ) C ′(λ) C ′′(λ) C ′′′(λ) C−1(λ) an Parameter Space

Poisson eλ − 1 eλ eλ eλ log(1 + λ) (n!)−1 (0,∞)

Geometric λ(1− λ)−1 (1− λ)−2 2(1− λ)−3 6(1− λ)−4 λ(1 + λ)−1 1 (0, 1)

Logarithmic − log(1− λ) (1− λ)−1 (1− λ)−2 2(1− λ)−3 1− e−λ n−1 (0, 1)

Binomial (1 + λ)m − 1 m
(1+λ)1−m

m(m−1)
(1+λ)2−m

m(m−1)(m−2)
(1+λ)3−m (λ+ 1)

1
m − 1

(
m
n

)
(0,∞)
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If X(1) = min{X1, · · · , XN ), then the conditional CDF of X(1)|N = n is given by

FX(1)|N=n(x) = 1− [1− F (x)]n.

The CDF of the power series class of distributions associated with some parent

distribution with PDf f(x) and CDF F (x) is the marginal CDF of X(1), which is

given by

1− C(λ(1− F (x)))

C(λ)
.

From [3], the Exponentiated (Standard Uniform) Generalized distribution has cdf

F (x) = (1− (1− x)α)β,

where α, β > 0 are two additional shape parameters. Suppose X follows

the Exponentiated Standard Uniform Generalized Distribution, and consider the

transformation discussed earlier

Y ∗ = X−1 − 1.

By the transformation technique, the cdf of Y ∗ is given by

G(y∗) = 1−

[
1−

(
y∗

y∗ + 1

)α]β
for α, β > 0. The cdf above, represents the cdf of the Inverted Exponentiated

(Standard Uniform) Generalized distribution.

Based on the stochastic representation X(1) = min{X1, · · · , XN ) we study some

properties and applications of a certain modified power series inverted Exponentiated

Generalized distribution (by relaxing the domain space of y∗- see new family

defined).
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2 Organization of Manuscript

This manuscript is organized as follows. In Section 3, we present the PDF and CDF

of the new family. In Section 4, we introduce some sub-models of the new family

and demonstrate some of their reliablity properties visually. In Section 5, some

statistical measures are presented, and they include expansion formulas for the CDF

and PDF, quantile function, ordinary moments, Renyi entropy, moment generating

function, stochastic ordering, incomplete moments, inequality measures, mean

residual life, order statistics, and moments of order statistics. The representation

of the distribution as a transformed random variable is also discussed. In Section

6, estimation of model parameters in the modified Poisson-X family of distributions

is discussed. In Section 7 we assess the performance of the maximum likelihood

method in estimating model parameters. For this, a sub-model of the broad family

is considered, namely, the modified Poission inverted exponentiated generalized

distribution (MPIEG), and a monte carlo simulation study is conducted. The

result indicates that using the method of maximum likelihood in estimating model

parameters is adequate. In Section 8, we show sub-models of the new family are

useful in fitting real-life data coming from the chemical/material sciences. In Section

9, we present some characterizations of the Modified Poisson-X distribution. Section

10 concludes the paper, and some directions for further research are proposed.

3 The New Family Defined

The PDF of the new family is given by

λf(x)C ′(λ(1− F (x)))

C(λ)
,

where C and C ′ are some useful quantities from Table 1, and

F (x) = 1−

[
1−

(
x

x+ 1

)α]β
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for α, β, x > 0 with f(x) = ∂F (x)
∂x . The CDF of the new family is given by

1− C(λ(1− F (x)))

C(λ)
,

where C is some useful quantity from Table 1, and F (x) is as given above. The

parameter space for λ is (−∞, 0) ∪ (0,∞).

4 Some Sub-Models

We introduce four sub-models and visualize some of their basic reliability properties.

The reliability properties include survival function (SF), hazard rate function(HF),

and the cumulative hazard rate function (CHF).

4.1 Modified Poisson Inverted Exponentiated Generalized

Distribution

The PDF of the Modified Poisson Inverted Exponentiated Generalized distribution

is given by

P (x;α, β, λ) =
αβλxα−1(x+ 1)−α−1

(
1−

(
x
x+1

)α)β−1
eλ(1−( x

x+1)
α
)
β

eλ − 1

and the CDF is given by

p(x;α, β, λ) =
eλ − eλ(1−( x

x+1)
α
)
β

eλ − 1
.

The survival function, hazard rate function, and the cumulative hazard rate function,

respectively, are given by

S(x;α, β, λ) = 1− P (x;α, β, λ)

H(x;α, β, λ) =
p(x;α, β, λ)

1− P (x;α, β, λ)

http://www.earthlinepublishers.com
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CHF (x;α, β, λ) = − log

(
S(x;α, β, λ)

)
.

Notation 4.1. We write

W ∗ ∼MPIEG(α, β, λ)

if W ∗ is a Modified Poisson Inverted Exponentiated Generalized random variable.

Figure 1: The CDF(red), PDF(blue), SF(green), CHF(purple), and the HF(brown)

of MPIEG(8.3, 20.5, -2.9).

4.2 Modified Geometric Inverted Exponentiated Generalized

Distribution

The PDF of the Modified Geometric Inverted Exponentiated Generalized

distribution is given by

Earthline J. Math. Sci. Vol. 5 No. 1 (2021), 121-154
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g(x;α, β, λ) = −
αβ(λ− 1)xα−1(x+ 1)−α−1

(
1−

(
x
x+1

)α)β−1
(
λ
(

1−
(

x
x+1

)α)β
− 1

)2

and the CDF is given by

G(x;α, β, λ) =
1

λ+ λ−1
(1−( x

x+1)
α
)
β−1

.

The survival function, hazard rate function, and the cumulative hazard rate function,

respectively, are given by

S(x;α, β, λ) = 1−G(x;α, β, λ)

H(x;α, β, λ) =
g(x;α, β, λ)

1−G(x;α, β, λ)

CHF (x;α, β, λ) = − log

(
S(x;α, β, λ)

)
.

Notation 4.2. We write

W ∗∗ ∼MGIEG(α, β, λ)

if W ∗∗ is a Modified Geometric Inverted Exponentiated Generalized random variable.

http://www.earthlinepublishers.com



The Modified Power Series Inverted Exponentiated Generalized Class ... 129

Figure 2: The CDF(red), PDF(blue), SF(green), CHF(purple), and the HF(brown)

of MGIEG(5.2, 15.5, -30.3).

4.3 Modified Binomial Inverted Exponentiated Generalized

Distribution

Here we assume the number of replicas is given by m = 2. Thus, the PDF of the

Modified Binomial Inverted Exponentiated Generalized distribution is given by

b(x;α, β, λ) =

2αβxα−1(x+ 1)−α−1
(

1−
(

x
x+1

)α)β−1(
λ
(

1−
(

x
x+1

)α)β
+ 1

)
λ+ 2

and the CDF is given by

B(x;α, β, λ) = 1−

(
λ
(

1−
(

x
x+1

)α)β
+ 1

)2

− 1

λ(λ+ 2)
.

The survival function, hazard rate function, and the cumulative hazard rate function,

respectively, are given by
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S(x;α, β, λ) = 1−B(x;α, β, λ)

H(x;α, β, λ) =
b(x;α, β, λ)

1−B(x;α, β, λ)

CHF (x;α, β, λ) = − log

(
S(x;α, β, λ)

)
.

Notation 4.3. We write

W ∗∗∗ ∼MBIEG(α, β, λ)

if W ∗∗∗ is a Modified Binomial Inverted Exponentiated Generalized random variable.

Figure 3: The CDF(red), PDF(blue), SF(green), CHF(purple), and the HF(brown)

of MBIEG(10.2,25.8,-0.7).
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4.4 Modified Logarithmic Inverted Exponentiated Generalized

Distribution

The PDF of the Modified Logarithmic Inverted Exponentiated Generalized

distribution is given by

l(x;α, β, λ) =
αβλxα−1(x+ 1)−α−1

(
1−

(
x
x+1

)α)β−1
log(1− λ)

(
1− λ

(
1−

(
x
x+1

)α)β)
and the CDF is given by

L(x;α, β, λ) = 1−
log

(
1− λ

(
1−

(
x
x+1

)α)β)
log(1− λ)

.

The survival function, hazard rate function, and the cumulative hazard rate function,

respectively, are given by

S(x;α, β, λ) = 1− L(x;α, β, λ)

H(x;α, β, λ) =
l(x;α, β, λ)

1− L(x;α, β, λ)

CHF (x;α, β, λ) = − log

(
S(x;α, β, λ)

)
.

Notation 4.4. We write

W ∗∗∗∗ ∼MLIEG(α, β, λ)

if W ∗∗∗∗ is a Modified Logarithmic Inverted Exponentiated Generalized random

variable.
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Figure 4: The CDF(red), PDF(blue), SF(green), CHF(purple), and the HF(brown)

of MLIEG(8.9, 34.1, -53.8).

5 Some Statistical Measures

Here we obtain some properties for the Modified Poisson-X distribution, that is, we

consider

1− C(λ(1− F (x)))

C(λ)

with C(λ) = eλ − 1.

Explicitly, the CDF can be written as

1− eλ(1−F (x)) − 1

eλ − 1
,

where λ ∈ (−∞, 0) ∪ (0,∞) and F (x) is some baseline CDF.
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5.1 CDF Power Series

Theorem 5.1. The CDF of the Modified Poisson-X distribution admit the following

representation

eλ −
∑∞

k=0

∑k
q=0

λk

k!

(
k
q

)
(−1)qF (x)q

eλ − 1
,

where λ ∈ (−∞, 0) ∪ (0,∞) and F (x) is some baseline CDF.

5.2 PDF Power Series

By differentiation, the PDF of the Modified Poisson-X family is given by

λ

eλ − 1
f(x)eλ(1−F (x)).

Theorem 5.2. The PDF of the Modified Poisson-X distribution admit the following

representation

λk+1

(eλ − 1)k!

∞∑
k=0

k∑
q=0

(−1)q
(
k

q

)
f(x)F (x)q,

where λ ∈ (−∞, 0) ∪ (0,∞), and the random variable X has PDF f(x) and CDF

F (x).

5.3 Transformation of Random Variables

Theorem 5.3. Let U be a random variable uniform on [0, 1). Then the following

random variable follows the Modified Poisson-X class of distributions

X = QF

[
λ− log((eλ − 1)(1− U)

λ

]
,

where QF = F−1(·) is the quantile function of the distribution with CDF F, and

λ ∈ (−∞, 0) ∪ (0,∞).
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5.4 Quantile Function

Theorem 5.4. The quantile function of the Modified Poisson-X class of

distributions is given by

QF

[
λ− log((eλ − 1)(1− p)

λ

]
,

where QF = F−1(·) is the quantile function of the distribution with CDF F, λ ∈
(−∞, 0) ∪ (0,∞), and 0 < p < 1.

Figure 5: The quantile function of Modified Poisson-Standard Uniform for 0 < λ <

10 and 0 < p < 10.

5.5 Ordinary Moments

If X is standard uniform, then the PDF of the Modified Poisson-Standard Uniform

distribution is given by

http://www.earthlinepublishers.com
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λ

eλ − 1
eλ(1−x)

for x ∈ [0, 1] and λ ∈ (−∞, 0) ∪ (0,∞). Thus we have the following

Theorem 5.5. The ordinary moments of the Modified Poisson-Standard Uniform

class of distributions are given by

µ′r =
λ

eλ − 1
eλλ−r−1(Γ(r + 1)− Γ(r + 1, λ)),

where r ∈ N, λ ∈ (−∞, 0)∪ (0,∞), Γ(·) is the Euler Gamma function, and Γ(·, ·) is

the incomplete gamma function.

Remark 5.6. By definition,

Γ(z) =

∫ ∞
0

tz−1e−tdt

and

Γ(a, z) =

∫ ∞
z

ta−1e−tdt.

Table 2: Some values of the ordinary moments of the Modified Poisson-Standard

Uniform distribution for some choice parameter λ.

µ′r λ = 0.5 λ = 2.5

µ′1 0.458506 0.310575

µ′2 0.29253 0.159034

µ′3 0.213683 0.101415

µ′4 0.167973 0.0728392

µ′5 0.13824 0.056253
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5.6 Renyi Entropy

Let X be a random variable with PDF f(x). By definition, the Renyi entropy [9] is

defined as

IR(δ) =
1

1− δ
Log

(∫ ∞
−∞

f δ(x)dx

)
,

where δ > 0, and δ 6= 1. The main result of this section is the following whose proof

is omitted.

Theorem 5.7. The Renyi entropy of the Modified Poisson-X family of distributions

can be expressed as

IR(δ) =
1

1− δ
log

[(
λ

eλ − 1

)δ ∞∑
k=0

k∑
m=0

ωk,m

∫ ∞
−∞

f(x)δF (x)mdx

]
,

where the random variable X has CDF F (x) and PDF f(x), 1 6= δ > 0, λ ∈
(−∞, 0) ∪ (0,∞), and

ωk,m =

(
k

m

)
δkλk(−1)m

k!
.

Table 3: The Renyi entropy of the Modified Poisson-Standard Uniform distribution

for some choice parameter λ.

IR(δ) λ = 0.5 λ = 2.5

IR(0.2) −0.00207797 −0.0490209

IR(0.7) −0.00725856 −0.163813

IR(1.3) −0.0134301 −0.281075

IR(1.5) −0.0154721 −0.314715

IR(2.7) −0.0274999 −0.467369
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5.7 Moment Generating Function

Given a random variable X, one defines the moment generating function as

MX(z) = E[ezX ],

where E[·] is an expectation. Now using the series expansion for ezX , one can write

MX(z) =

∞∑
r=0

zrµ′r
r!

,

where µ′r is the rth non-central moment of the random variable X. Thus from

Theorem 5.5, the following is an immediate consequence

Theorem 5.8. The moment generating function of the Modified Poisson-Standard

Uniform class of distributions is given by

MX(z) =

∞∑
r=0

zrλ

r!(eλ − 1)
eλλ−r−1(Γ(r + 1)− Γ(r + 1, λ)),

where λ ∈ (−∞, 0) ∪ (0,∞), Γ(·) is the Euler Gamma function, and Γ(·, ·) is the

incomplete gamma function.

5.8 Stochastic Ordering

Stochastic ordering is a common concept to show the ordering mechanism in lifetime

distributions [10]. A random variable X is said to be stochastically smaller than

the random variable Y in the likelihood ratio order (X ≤lr Y ) if the ratio of the

associated PDFs given by fX(x)
fY (x) decreases in x. The main result is the following

whose proof we omit.

Theorem 5.9. Let X follow the Modified Poisson Standard Uniform distribution

with parameter λ1, and let Y follow Poisson Standard Uniform distribution with

parameter λ2. Let fX(x) and fY (y) denote the PDF’s of X and Y, respectively. If

λ2 < λ1, then X ≤lr Y .
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5.9 Incomplete Moments

The rth incomplete moment is given by Mr(y) =
∫ y
−∞ x

rf(x)dx. For the Modified

Poisson-X family of distributions, we have the following

Theorem 5.10. The rth incomplete moment for the Modified Poisson-X family of

distributions, can be expressed as

Mr(y) =
λk+1

(eλ − 1)k!

∞∑
k=0

k∑
q=0

(−1)q
(
k

q

)∫ y

−∞
xrf(x)F (x)qdx,

where λ ∈ (−∞, 0) ∪ (0,∞), and the random variable X has PDF f(x) and CDF

F (x).

5.10 Inequality Measures

The Lorenz curve, LF (y) for incomplete moments is defined as LF (y) =
1
µ

∫ y
−∞ xf(x)dx. For the Modified Poisson-X family of distributions, we have the

following

Theorem 5.11. The Lorenz curve for the Modified Poisson-X family of distributions

is given by

LF (y) =
λk+1

µ(eλ − 1)k!

∞∑
k=0

k∑
q=0

(−1)q
(
k

q

)∫ y

−∞
xf(x)F (x)qdx,

where λ ∈ (−∞, 0) ∪ (0,∞), the random variable X has PDF f(x) and CDF F (x),

and µ is the mean of the Poisson-X family.

The Bonferroni curve, BF (y) is defined as BF (y) = LF (y)
F (y) . For the Modified

Poisson-X family of distributions, we have the following

Theorem 5.12. The Bonferroni curve of the Modified Poisson-X family can be

expressed as

BF (y) =

λk+1

µ(eλ−1)k!
∑∞

k=0

∑k
q=0(−1)q

(
k
q

) ∫ y
−∞ xf(x)F (x)qdx

eλ−
∑∞
k=0

∑k
q=0

λk

k! (kq)(−1)qF (x)q

eλ−1

,
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where λ ∈ (−∞, 0) ∪ (0,∞), the random variable X has PDF f(x) and CDF F (x),

and µ is the mean of the Poisson-X family.

5.11 Mean Residual Life

The mean residual life is defined as m̄(y) = 1
1−F (y)

[
µ−

∫ y
−∞ xf(x)dx

]
− y. For the

Modified Poisson-X family of distributions, we have the following

Theorem 5.13. The mean residual life for the Modified Poisson-X family of

distributions is given by

m̄(y) =

(
1−

eλ −
∑∞

k=0

∑k
q=0

λk

k!

(
k
q

)
(−1)qF (y)q

eλ − 1

)−1

×

[
µ− λk+1

(eλ − 1)k!

∞∑
k=0

k∑
q=0

(−1)q
(
k

q

)∫ y

−∞
xf(x)F (x)qdx

]
− y,

where λ ∈ (−∞, 0) ∪ (0,∞), the random variable X has PDF f(x) and CDF F (x),

and µ is the mean of the Poisson-X family.

5.12 Order Statistics

The pdf for the pth order statistics Xp:n of an independent identically distributed

random sample, X1, X2, · · · , Xn, of size n, fXp:n(x), is given by

fXp:n(x) =
n!

(p− 1)!(n− p)!
F (x)p−1(1− F (x))n−pf(x)

for p = 1, 2, · · · , n.

Lemma 5.14. The pdf for the pth order statistics Xp:n of an independent identically

distributed random sample, X1, X2, · · · , Xn, of size n, fXp:n(x), can be expressed as

fXp:n(x) =

n−p∑
j=0

ωjf(x)F (x)p−1+j ,
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where

ωj =
n!

(p− 1)!(n− p)!

(
n− p
j

)
(−1)j .

Lemma 5.15. Let F (x) be given by the CDF of the Modified Poisson-X family of

distributions. Then F (x)p−1+j can be expressed as

p−1+j∑
v=0

∞∑
m=0

ωv,mF (x)m,

where

ωv,m =
eλ(p−1+j)

(eλ − 1)p−1+j

(
p− 1 + j

v

)
(−1)m+vvmλm

m!

λ ∈ (−∞, 0) ∪ (0,∞)

and F (x) is some baseline CDF.

Corollary 5.16. The PDF in Theorem 5.2 can be expressed as

∞∑
k=0

k∑
q=0

ωk,qf(x)F (x)q,

where

ωk,q =
λk+1

(eλ − 1)k!
(−1)q

(
k

q

)
λ ∈ (−∞, 0) ∪ (0,∞)

and F (x) is some baseline CDF, and f(x) is some baseline PDF.

By combining Lemma 5.14, Lemma 5.15, and Corollary 5.16, we get the following

Theorem 5.17. The pdf, fXp:n(x), for the pth order statistics Xp:n of an

independent identically distributed random sample, X1, X2, · · · , Xn, of size n, from

the Modified Poisson-X family is given by

fXp:n(x) =

n−p∑
j=0

p−1+J∑
v=0

∞∑
m,k=0

k∑
q=0

ωj ωv,m ωk,qf(x)F (x)m+q.
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5.13 Moments of Order Statistics

The rth non-central moments of the pth order statistics is given by

E(Xr
p:n) =

∫ ∞
−∞

xrfXp:n(x)dx.

For the Poisson-X family of distributions we have the following using Theorem 5.17.

Theorem 5.18. The rth noncentral moments of the pth order statistics for the

Poisson-X family is given by

E(Xr
p:n) =

n−p∑
j=0

p−1+J∑
v=0

∞∑
m,k=0

k∑
q=0

ωj ωv,m ωk,q

∫ ∞
−∞

xrf(x)F (x)m+qdx.

6 Parameter Estimation

The method of maximum likelihood is used in this paper to estimate model

parameters. Here we discuss this method for the Modified Poisson-X family of

distributions. Suppose x1, x2, · · · , xn is a random sample of size n from the Modified

Poisson-X family of distributions. It can be shown that the total log-likelihood

function is given by

l = n ln(λ)− n ln(eλ − 1) +

n∑
i=1

ln f(xi;ψ) + nλ− λ
n∑
i=1

F (xi;ψ),

where ψ is a vector of parameters associated with the baseline distribution. Partial

differentiation of the total log-likelihood function with respect to model parameters

gives the following as the score functions

∂l

∂λ
=
n

λ
− eλ

eλ − 1
+ n−

n∑
i=1

F (xi;ψ)

∂l

∂ψ
=

n∑
i=1

∂f(xi;ψ)
∂ψ

f(xi;ψ)
− λ

n∑
i=1

∂F (xi;ψ)

∂ψ
.
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Equating the score functions to zero and numerically solving the system of equations

using techniques such as the quasi Newton-Raphson method, gives the maximum

likelihood estimates for the model parameters. Let 4 = (λ;ψ), for the purposes

of constructing confidence intervals for the parameters in the Poisson-X family of

distributions, the observed information matrix, call it J(4), can be used due to

the complex nature of the expected information matrix. The observed information

matrix is given by

J(4) = −

[
∂2lnL
∂2λ

∂2lnL
∂λ∂ψ
∂2lnL
∂2ψ

]
.

The elements of the observed information matrix are given below

∂2lnL

∂2λ
=
−n
λ
− 1

2− 2 cosh(λ)

∂2lnL

∂λ∂ψ
= −

n∑
i=1

∂F (xi;ψ)

∂ψ

∂2lnL

∂2ψ
=

(∂f(xi;ψ)
∂ψ

)2 − f(xi;ψ)∂
2f(xi;ψ)
∂ψ

f(xi;ψ)2)
.

When the usual regularity conditions are satisfied and that the parameters are within

the interior of the parameter space, but not on the boundary, the distribution of
√
n(4̂ − 4) converges to the multivariate normal distribution Np+1(0, I

−1(4)),

where I(4) is the expected information matrix, and it is assumed that ψ =

(ψ1, · · · , ψp). The asymptotic behavior remains valid when I(4) is replaced by

the observed information matrix evaluated at J(4̂). The asymptotic multivariate

normal distribution Np+1(0, J
−1(4̂)) is a very useful tool for constructing an

approximate 100(1 − ξ)% two-sided confidence intervals for the model parameters,

where ξ is the significance level.
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7 Monte Carlo Simulation Study

In this section we show that the method of maximum likelihood is adequate in

estimating the parameters in the power series family of inverted exponentiated

generalized distributions. For this, a Monte Carlo simulation study is carried out to

assess the performance of the estimation method in the Modified Poisson inverted

exponentiated generalized distribution (MPIEG). Samples of sizes 200, 400, 500, and

700, are drawn from the MPIEG distribution, and the samples have been drawn for

the following set of parameters

(a) Set I: (α, β, λ) = (8.3, 20.5,−2.9)

(b) Set II: (α, β, λ) = (20.5, 8.3, 2.9)

(c) Set III: (α, β, λ) = (8.3, 8.3,−2.9)

The maximum likelihood estimators for the parameters α, β, and λ are obtained.

The procedure has been repeated 400 times, and the mean and standard deviation

for the estimates are computed, and the results are summarized in Tables 4-6 for

each of sets I, II, and III, respectively, considered above.

Table 4: Result of simulation study for Set I.

Parameter λ

Sample Size Average Estimate Standard Deviation

200 -3.061675 1.885471

400 -2.623562 1.344442

500 -2.731107 1.205112

700 -2.729688 1.010639

Parameter α

Sample Size Average Estimate Standard Deviation

200 8.592962 2.127773

400 8.875303 1.721993

500 8.715073 1.582886

700 8.662126 1.315252

Parameter β

Sample Size Average Estimate Standard Deviation

200 22.96349 9.664607

400 23.41261 7.411761

500 22.77176 6.893993

700 22.36556 5.542204
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From the table above, we find that the simulated estimates are close to the true

values of the parameters and hence the estimation method is adequate. We have also

observed that the estimated standard deviation consistently decrease with increasing

sample size as seen in the graphs below.

Table 5: Decreasing standard deviation for increasing sample size.

Table 6: Result of simulation study for Set II.

Parameter λ

Sample Size Average Estimate Standard Deviation

200 2.90078 2.045452

400 3.0843 1.562558

500 2.975228 1.344621

700 3.060976 1.263785

Parameter α

Sample Size Average Estimate Standard Deviation

200 20.00319 1.824284

400 20.24646 1.194761

500 20.27795 0.7811548

700 20.33272 0.7474834

Parameter β

Sample Size Average Estimate Standard Deviation

200 8.954466 3.60614

400 8.331257 2.756652

500 8.528862 2.502422

700 8.321384 2.327853
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From the table above, we find that the simulated estimates are close to the true

values of the parameters and hence the estimation method is adequate. We have also

observed that the estimated standard deviation consistently decrease with increasing

sample size as seen in the graphs below.

Table 7: Decreasing standard deviation for increasing sample size.

Table 8: Result of simulation study for Set III.

Parameter λ

Sample Size Average Estimate Standard Deviation

200 -2.852931 1.944682

400 -2.690511 1.366186

500 -2.801686 1.230114

700 -2.726701 1.07826

Parameter α

Sample Size Average Estimate Standard Deviation

200 8.867683 2.359042

400 8.864493 1.877261

500 8.68127 1.731915

700 8.727292 1.526116

Parameter β

Sample Size Average Estimate Standard Deviation

200 8.863993 2.245196

400 8.811248 1.671934

500 8.682323 1.578819

700 8.701399 1.346391
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From the table above, we find that the simulated estimates are close to the true

values of the parameters and hence the estimation method is adequate. We have also

observed that the estimated standard deviation consistently decrease with increasing

sample size as seen in the graphs below.

Table 9: Decreasing standard deviation for increasing sample size.

Overall the simulation study conducted, indicated that using the method of

maximum likelihood in estimating model parameters is adequate.

8 Application to Real-Life Data

Here we demonstrate usefulness of the new family to the breaking stress of carbon

fibers data, Table 2 [10]. The PDF’s and CDF’s of the distributions considered are

already given in Section 4. We assume the modified parameter and domain space of

Section 4. Using the R software, we report below in Table 10, the estimates for the

parameters in each of the four distributions alongside their standard errors.
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Table 10: Estimates for the parameter of fitted distribution.

Distribution Parameters Estimates Standard error

MPIEG α̂ 8.3575 1.7525

β̂ 20.4989 8.1846

λ̂ −3.0013 1.2541

MGIEG α̂ 5.1853 1.9665

β̂ 15.4842 5.7644

λ̂ −30.7747 40.2004

MBIEG α̂ 10.23557 1.53244

β̂ 25.79400 10.06697

λ̂ −0.74807 0.19661

MLIEG α̂ 8.9122 1.2876

β̂ 34.1047 10.0191

λ̂ −53.8299 74.1666

The fitted CDF’s to the carbon fibers data are shown below

Figure 6: The fitted CDFs of MBIEG(purple), M LIEG(green), MPIEG (red), and

MGIEG(blue) to the empirical distribution of Table 2 [10].
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and the fitted PDF’s are shown below

Figure 7: The fitted PDFs of MBIEG(purple), MLIEG(green), MPIEG (red), and

MGIEG(blue) to the histogram of Table 2 [10].

The measures of goodness of fit we consider include Akaike information criterion

(AIC), Bayesian information criterion (BIC), -2Log-Likelihood, and second-order

Akaike Information Criterion (AICc) and they are reported in Table 11. Whilst it

appears from the fits above, that all the distributions are competitive in fitting the

breaking stress of carbon fibers data, Table 11 reveals that the MGIEG distribution

is most compatible with this data set, and hence can be considered the best in this

instance.

Table 11: Goodness-of-fit measures.

Distribution AIC BIC AICc -2Log-Likelihood

MPIEG 183.5427 190.1117 183.9298 177.5427

MGIEG 178.0328 184.6018 178.4199 172.0328

MBIEG 186.7326 193.3016 187.1197 180.7326

MLIEG 181.4471 188.016 181.8342 175.4471
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9 Some Characterization Theorems

The characterization of statistical distributions plays a major role in stochastic

modeling. In this section we present some characterizations of the Modified

Poisson-X family of distributions. Our first characterization theorem is based on a

simple relationship between two truncated moments, and for related works in this

direction, the reader is referred to [11]-[16].

At first, we recall the following which will be useful in Section 9.1

Theorem 9.1. [12] Let (Ω,Σ,P) be a given probability space, and let I = [a, b] be an

interval for some a < b (a = −∞, b =∞ might as well be allowed). Let X : Ω 7→ I

be a continuous random variable with probability distribution function F, and let q1

and q2 be two real functions on I such that

E[q1(X)|X ≥ x] = E[q2(X)|X ≥ x]η(x), x ∈ I,

is defined with some real function η. Assume that q1, q2 ∈ C1(I), and η ∈ C2(I), and

F is twice continuously differentiable and strictly monotone increasing on the set I.

Finally, assume that the equation ηq2 = q1 has no real solutions in the interior of

I. Then F is uniquely determined by the functions q1, q2, η. In particular,

F (x) =

∫ x

a
C

∣∣∣∣∣ η′(u)

η(u)q2(u)− q1(u)

∣∣∣∣∣exp(−s(u))du,

where the function s is a solution of the differential equation

s′ =
η′q2

ηq2 − q1
and C is a constant chosen to make

∫
I dF = 1.

Remark 9.2. The characterization based on the ratio of two truncated moments is

stable in the sense of weak convergence, and for more details see [17].

In Section 9.2 we employ a single function ψ of X and state characterization

results in terms of ψ(X). At first we recall the following two results that will be

useful in the sequel.
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Proposition 9.3. [18] Let X : Ω 7→ (a, b) be a continuous random varable with CDF

F . Let ψ(x) be a differentiable function on (a, b) with limx→a+ ψ(x) = δ > 1 and

lim
x→b−

ψ(x) =∞.

Then

E[(ψ(X))δ|X ≤ x] = δ(ψ(x))δ−1, x ∈ (a, b),

implies

ψ(x) = δ[1− (F (x))
1

1−δ ]−1, x ∈ (a, b).

Proposition 9.4. [18] Let X : Ω 7→ (a, b) be a continuous random varable with CDF

F . Let ψ1(x) be a differentiable function on (a, b) with limx→a+ ψ1(x) = δ
2 >

1
2 and

lim
x→b−

ψ1(x) =∞.

Then

E[(ψ1(X))δ|X ≤ x] = δ(ψ1(x))δ−1, x ∈ (a, b),

implies

ψ1(x) = δ[1 + (1− F (x))
1

1−δ ]−1, x ∈ (a, b).

9.1 Characterization Based on Two Truncated Moments

The main result here is the following which we state without proof

Proposition 9.5. Let X : Ω 7→ R be a continuous random variable, and let q2(x) =

1 and

q1(x) = 1− eλ(1−F (x)) − 1

eλ − 1
,

where λ ∈ (−∞, 0) ∪ (0,∞) and F (x) is some baseline CDF. The PDF of X is

λ

eλ − 1
f(x)eλ(1−F (x)),

where f(x) is the PDF of the baseline distribution iff the function η of Theorem 8.1

is given by

η(x) =
1

2
− eλ(1−F (x)) − 1

2(eλ − 1)
.
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If q2 is given by the previous Proposition, then we have the following

Corollary 9.6. Let X : Ω 7→ R be a continuous random variable. The PDF of X is

λ

eλ − 1
f(x)eλ(1−F (x))

iff there exists functions q1 and η defined in Theorem 8.1 satisfying the following

differential equation

η′(x)

η(x)− q1(x)
=

λ
eλ−1f(x)eλ(1−F (x))

1− eλ(1−F (x))−1
eλ−1

.

Remark 9.7. The general solution of the above differential equation is given by

η(x) =

(
1− eλ(1−F (x)) − 1

eλ − 1

)−1[∫
q1(x)

λ

eλ − 1
f(x)eλ(1−F (x))dx+D

]
,

where D is a constant. One set of appropirate functions is given by the previous

Proposition with D = 0.

9.2 Characterization Based on Conditional Expectation

The main results here are as follows.

9.2.1 Characterization based on Proposition 9.3

Take (a, b) = (0,∞) and

ψ(x) = δ

[
2− eλ(1−F (x)) − 1

eλ − 1

]−1
gives a characterization of the Modified Poisson-X family of distributions.
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9.2.2 Characterization based on Proposition 9.4

Take (a, b) = (0,∞) and

ψ1(x) = δ

[
1 +

(
eλ(1−F (x)) − 1

eλ − 1

) 1
δ−1

]−1
gives a characterization of the Modified Poisson-X family of distributions.

10 Further Recommendations

The Chen distribution [19] has CDF given by

G(t) = 1− eγ(1−et
β
),

where γ, β, t > 0. We suggest obtaining some properties and applications of a

so-called power seres inverted Chen class of distributions (using the CDF of Section

1 which is based on the stochastic representation X1 = min{X1, · · · , Xn}) which is

given by

1− C(λ(1−K(x)))

C(λ)
,

where C is some useful quantity from Table 1, and

K(x) = 1−G
( 1

x+ 1

)
with G being the CDF of the Chen distribution.
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