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Abstract

The aim of this article is to introduce and study certain subclasses of

analytic functions and we investigate various properties of these classes such

as inclusion properties and convex convolution preserving properties. Also,

some related applications are discussed.

1 Introduction

Let A be the class of analytic functions of the form

f(z) = z +
∞∑
n=2

anz
n, (1.1)

in the open unit disk E = {z : |z| < 1}. We denote S, S∗, C, K and C∗ the

classes of univalent, starlike, convex, close-to-convex and quasi-convex functions,

respectively. If f and g are analytic in E, we say that f is subordinate to g,

written f ≺ g or f(z) ≺ g(z), if there exists a schwartz function w in E such that

f(z) = g(w(z)).
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The convolution or Hadamard product of two functions f, g ∈ A is denoted

by f ∗ g and is defined as

(f ∗ g)(z) = z +
∞∑
n=2

anbnz
n, z ∈ E.

Analytic functions p in the class P [A,B] can be defined by using subordination

as follows [5].

Let p be analytic in E with p(0) = 1. Then p ∈ P [A,B], if and only if,

p(z) ≺ 1 +Az

1 +Bz
, − 1 ≤ B < A ≤ 1, z ∈ E.

For k > 0, the conic domains Ωk, defined as;

Ωk =

{
u+ iv : u > k

√
(u− 1)2 + v2

}
.

The domains Ωk (k = 0) represents right half plane, Ωk (0 < k < 1) represents

hyperbola, Ωk (k = 1) represents a parabola and Ωk (k > 1) represents an ellipse.

The extremal functions for these conic regions are given as

pk(z) =



1+z
1−z , k = 0

1 + 2
π2

(
log 1+

√
z

1−
√
z

)2
, k = 1

1 + 2
1−k2

[(
2
π arccos k

)
arctanh

√
z
]
, 0 < k < 1

1 + 1
k2−1 sin

(
π

2R(t)

∫ u(z)√
t

0

1√
1−x2
√

1−(tx)2
dx

)
+ 1

k2−1 , k > 1,

(1.2)

where u(z) = z−
√
t

z−
√
tz
, t ∈ (0, 1) , z ∈ E and z is chosen such that k =

cosh
(
πR′(t)
4R(t)

)
, R(t) is Legendre’s complete elliptic integral of the first kind and

R′(t) is complementary integral of R(t). See [6, 7] for more information. These

conic regions are being studied by several authors. See [1, 14, 17].

Let φλ(z) = z
(1−z)λ+1 , (λ > −1) and φ−1λ (z) be defined such that φλ(z) ∗

φ−1λ (z) = z
1−z . Then

Iλf(z) = φ−1λ (z) ∗ f(z)

=

(
z

(1− z)λ+1

)−1
∗ f(z). (1.3)
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The operator Iλ is known as Noor integral operator, we refer to [12, 15]. We can

easily verify the following recursive relation for this operator by using (1.3).

z(Iλ+1f)′ = (λ+ 1)Iλf − λIλ+1f . (1.4)

Dziok and Noor [3], introduced the concepts of some general classes as follows:

Let A0 be the class of functions f ∈ A with f(0) = 1. Assume that µ, δ, m be

real parameters, µ ≥ 0, m ≥ 2 and let Φ = (φ, ϕ) ∈ A×A, ξ ∈ A, G = (g1, g2)

and H = (h1, h2), where gi, hi (i = 1, 2) are analytic, univalent convex functions

with gi(0) = 1 and hi(0) = 1 (i = 1, 2) . Then

P (h) = {q ∈ A0 : q ≺ h} ,

Pµ(H) = {µq1 + (1− µ)q2 : q1 ≺ h1, q2 ≺ h2} ,

Pµ((h, h)) = Pµ(h) and Pµ(
1 + z

1− z
) = Pm,

(
µ =

m

4
+

1

2

)
.

Here Pm is the class introduced and studied by Pinchuk [18].

A function f ∈ A is said to be in the class M δ
µ(Φ, ξ,H), if and only if,

Jδ(f(z)) ∈ Pµ(H), where

Jδ(f(z)) = (1− δ)φ ∗ ξ ∗ f
ϕ ∗ ξ ∗ f

+ δ
φ ∗ f
ϕ ∗ f

.

We denote by Wµ(Φ, ξ,H) = M0
µ(Φ, ξ,H), the class of functions f ∈ A such

that
φ ∗ ξ ∗ f
ϕ ∗ ξ ∗ f

∈ Pµ(H).

A function f ∈ A is said to be in the class CM δ
µ,ϑ(Φ, ξ, G,H), if there exists a

function g ∈Wϑ(Φ, ξ,H) such that

(1− δ)φ ∗ ξ ∗ f
ϕ ∗ ξ ∗ g

+ δ
φ ∗ f
ϕ ∗ g

∈ Pµ(H).

Moreover, let us define

S∗(ϕ,H) = W1((zϕ
′, ϕ), ξ1, H), C(ϕ,H) = W1((ϕ2, ϕ1), ξ1, H)

Tµ(ϕ,G,H) = CM0
µ,1((zϕ

′, ϕ), ξ1, G,H), T ∗µ(ϕ,G,H) = CM0
µ,1((ϕ2, ϕ1), ξ1, G,H),

where ϕ1(z) = zϕ′(z), ϕ2(z) = zϕ′1 and ξ1 = z
1−z .
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Definition 1. A function f ∈ A is said to be in class Tµ(ϕ,G,H) if there exists

a function g ∈ S∗(ϕ,G) such that

z(ϕ ∗ f)′

(ϕ ∗ g)
∈ Pµ (H) .

Analogous to this class in terms of Alexander type relation, we can define the

class T ∗µ(ϕ,G,H) as following.

Definition 2. Let f ∈ A. Then

f ∈ T ∗µ(ϕ,G,H) if and only if zf ′ ∈ Tµ(ϕ,G,H). (1.5)

For different values of µ, ϕ, G and H, we can obtain the well-known classes,

referred as [4, 8, 13, 15, 16, 23].

2 Main Results

To prove our main results we use the following lemmas:

Lemma 1. [11] Let h be analytic, univalent convex function in E with h(0) = 1

and Re (γh(z) + σ) > 0, σ, γ ∈ C and γ 6= 0. If p(z) is analytic in E and

p(0) = h(0), then {
p(z) +

zp′(z)

γp(z) + σ

}
≺ h(z),

implies p(z) ≺ q(z) ≺ h(z), where q(z) is best dominant and is given as,

q(z) =

[{∫ 1

0

(
exp

∫ tz

t

h(u)− 1

u
du

)
dt

}−1
− σ

γ

]
.

Lemma 2. [3] Let H = (h1, h2), where hi (i = 1, 2) are analytic, univalent convex

functions with hi(0) = 1 (i = 1, 2) and let κ : E → C (set of complex numbers)

with Re (κ) > 0. If p(z) is analytic, with p(0) = 1 in E, satisfies

p(z) + κzp′(z) ∈ Pµ(H),

then p(z) ∈ Pµ(H).
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Lemma 3. [10] Let h be convex functions with h(0) = 1 and let κ : E → C (set

of complex numbers) with Re (κ) > 0. If p(z) is analytic, with p(0) = 1 in E,

satisfies

p(z) + κzp′(z) ≺ h(z),

then p(z) ≺ h(z).

Lemma 4. [22] If f ∈ C, g ∈ S∗, then for each h analytic in E with h(0) = 1,

(f ∗ hg) (E)

(f ∗ g) (E)
⊂ Coh(E),

where Coh(E) denotes the convex hull of h(E).

Lemma 5. [21] Let p be an analytic function in E with p(0) = 1 and Re{p(z)} >
0, z ∈ E. Then, for η > 0 and ν 6= −1 (complex),

Re

{
p(z) +

ηzp′(z)

p(z) + ν

}
> 0, for |z| < r0,

where r0 is given by

r0 =
|ν + 1|√

s+

√
s2 − |ν2 − 1|2

, s = 2 (η + 1)2 + |ν|2 − 1

and this radius is best possible.

Lemma 6. Let Re {h(z) +m} > 0. Then

S∗(ϕ−1λ , h) ⊂ S∗(ϕ−1λ+1, h).

Proof. Let f ∈ S∗(ϕ−1λ , h). Then, for Iλ+1f(z) = ϕ−1λ+1 ∗ f(z), we set

z (Iλ+1f(z))′

Iλ+1f(z)
= p(z), (2.1)

where p(z) is analytic with p(0) = 1.

Using identity (1.4) and (2.1), we have

(1 + λ)
(Iλf(z))

(Iλ+1f(z))
= p(z) + λ.
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Logarithmic differentiation yields

z (Iλf(z))′

(Iλf(z))
= p(z) +

zp′(z)

p(z) + λ
. (2.2)

Since f ∈ S∗(ϕ−1λ , h), from (2.2) we have

p(z) +
zp′(z)

p(z) + λ
≺ h(z). (2.3)

By applying Lemma 1, we conclude that p(z) ≺ h(z) and consequently,

z(Iλ+1f(z))′

Iλ+1f(z)
≺ h(z).

This implies f(z) ∈ S∗(ϕ−1λ+1, h).

2.1 Inclusion Properties

We assume µ, k ≥ 0, m ≥ 2, −1 ≤ B < A ≤ 1, ϕ(z) = ϕ−1λ (z) =
(

z
(1−z)λ+1

)−1
,

(λ > −1) , and H = (h1, h2) where hi (i = 1, 2) and g1 are analytic, univalent

convex functions with g1(0) = 1 and hi(0) = 1 (i = 1, 2) throughout our

investigations, otherwise stated.

Theorem 1. For λ ≥ 0

Tµ(ϕ−1λ , g1, H) ⊂ Tµ(ϕ−1λ+1, g1, H).

Proof. Let f ∈ Tµ(ϕ−1λ , g1, H). Then, by Definition 1, there exists g ∈ S∗(ϕ−1λ , g1)

such that
z(Iλf(z))′

Iλg(z)
∈ Pµ (H) , (2.4)

where Iλf(z) = ϕ−1λ ∗ f(z) and Iλg(z) = ϕ−1λ ∗ g(z).

Consider
z(Iλ+1f(z))′

Iλ+1g(z)
= p(z), (2.5)

where p(z) is analytic in E with p(0) = 1.
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Using identity (1.4), we get

z(Iλf(z))′

Iλg(z)
=

z(Iλ+1(zf(z))
′)′

Iλ+1g(z)
+

λz(Iλ+1f(z))
′

Iλ+1g(z)

z(Iλ+1g(z))
′

Iλ+1g(z)
+ λ

. (2.6)

Differentiate logarithmically both sides of (2.5), we obtain

(z (Iλ+1f(z))′)′

z(Iλ+1f(z))′
=

(Iλ+1g(z))′

Iλ+1g(z)
+
p′(z)

p(z)

z(Iλ+1 (zf(z))′)′

Iλ+1g(z)
=
z(Iλ+1f(z))′

Iλ+1g(z)

[
z(Iλ+1g(z))′

Iλ+1g(z)
+
zp′(z)

p(z)

]
(z(Iλ+1f(z))′)′

Iλ+1g(z)
= p(z).q(z) + zp′(z), (2.7)

where q(z) =
z(Iλ+1g(z))

′

Iλ+1g(z)
. From (2.6) and (2.7), we get

z(Iλf(z))′

Iλg(z)
=
p(z).q(z) + zp′(z) + λp(z)

q(z) + λ

z(Iλf(z))′

Iλg(z)
= p(z) +

zp′(z)

q(z) + λ
. (2.8)

From (2.4) and (2.8), we have

p(z) +
zp′(z)

q(z) + λ
∈ Pµ (H) . (2.9)

Since g ∈ S∗(ϕ−1λ , g1), by Lemma 6, this implies g ∈ S∗(ϕ−1λ+1, g1). Thus q ∈
P (g1) ⊂ P implies Re(q(z)) > 0 and Re( 1

q(z)+λ) > 0 in E. By Lemma 2 and

(2.9), we conclude p(z) ∈ Pµ (H). Hence f ∈ Tµ(ϕ−1λ+1, g1, H).

Corollary 1. For λ ≥ 0, µ = m
2 + 1

2 (m ≥ 2) and H = (h1, h1)

Tm(ϕ−1λ , g1, h1) ⊂ Tm(ϕ−1λ+1, g1, h1).

Proof. Let f ∈ Tm(ϕ−1λ , g1, h1). Then, by Definition 1, there exists g ∈ S∗(ϕ−1λ , g1)

such that
z(Iλf(z))′

Iλg(z)
∈ Pm (h1) , (2.10)
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where Iλf(z) = ϕ−1λ (z) ∗ f(z) and Iλg(z) = ϕ−1λ (z) ∗ g(z).

Consider

z(Iλ+1f(z))′

Iλ+1g(z)
= Q(z) (2.11)

=

(
m

2
+

1

2

)
q1(z)−

(
m

2
− 1

2

)
q2(z), (2.12)

where Q(z) is analytic with Q(0) = 1.

Using identity (1.4), to get

z(Iλf(z))′

Iλg(z)
=

z(Iλ+1(zf(z))
′)′

Iλ+1g(z)
+

λz(Iλ+1f(z))
′

Iλ+1g(z)

z(Iλ+1g(z))
′

Iλ+1g(z)
+ λ

. (2.13)

Differentiate logarithmically both sides of (2.11), we get

(z (Iλ+1f(z))′)′

z(Iλ+1f(z))′
=

(Iλ+1g(z))′

Iλ+1g(z)
+
Q′(z)

Q(z)
,

this implies

z(Iλ+1 (zf(z))′)′

Iλ+1g(z)
=
z(Iλ+1f(z))′

Iλ+1g(z)

[
z(Iλ+1g(z))′

Iλ+1g(z)
+
zQ′(z)

Q(z)

]
(z(Iλ+1f(z))′)′

Iλ+1g(z)
= Q(z).R(z) + zQ′(z), (2.14)

where R(z) =
z(Iλ+1g(z))

′

Iλ+1g(z)
. From (2.13) and (2.14), we obtain

z(Iλf(z))′

Iλg(z)
=

Q(z).R(z) + zQ′(z) + λQ(z)

R(z) + λ

= Q(z) +
zQ′(z)

R(z) + λ
. (2.15)

From (2.12) and (2.15), we have

z(Iλf(z))′

Iλg(z)
=

(
m

2
+

1

2

)(
q1(z) +

zq′1(z)

R(z) + λ

)
−
(
m

2
− 1

2

)(
q2(z) +

zq′2(z)

R(z) + λ

)
.

(2.16)
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Thus (2.10) and (2.16), we conclude that(
m

2
+

1

2

)(
q1(z) +

zq′1(z)

R(z) + λ

)
−
(
m

2
− 1

2

)(
q2(z) +

zq′2(z)

R(z) + λ

)
∈ Pm (h1) ,

this implies

qi(z) +
zq′i(z)

R(z) + λ
≺ h1(z), for i = 1, 2. (2.17)

Since g ∈ S∗(ϕ−1λ , g1), by Lemma 6, we have g ∈ S∗(ϕ−1λ+1, g1), implies R(z) ≺
g1(z) ∈ P . This means Re(R(z)) > 0 or Re( 1

R(z)+λ) > 0 in E. Thus, by Lemma

3 and (2.17), we conclude qi(z) ≺ h1 (i = 1, 2). Hence f ∈ Tm(ϕ−1λ+1, g1, h1).

Theorem 2. For λ ≥ 0

T ∗µ(ϕ−1λ , g1, H) ⊂ T ∗µ(ϕ−1λ+1, g1, H).

Proof. Let

f ∈ T ∗µ(ϕ−1λ , g1, H).

⇔ zf ′ ∈ Tµ(ϕ−1λ , g1, H), (by Definition 2)

⇒ zf ′ ∈ Tµ(ϕ−1λ+1, g1, H), (by Theorem 1)

⇔ f ∈ T ∗µ(ϕ−1λ+1, g1, H). (by Definition 2)

We can easily prove the following corollary by using similar technique as used

in Theorem 2.

Corollary 2. For λ ≥ 0, µ = m
2 + 1

2 , (m ≥ 2) , and H = (h1, h1)

T ∗m(ϕ−1λ , g1, h1) ⊂ T ∗m(ϕ−1λ+1, g1, h1).

Special casses:

On using the same technique as used in Corollary 1 and Corollary 2, we can

easily prove same result for the following different choices of g1 and h1.

Earthline J. Math. Sci. Vol. 5 No. 1 (2021), 87-102
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(i) g1 = h1 =
1 +Az

1 +Bz
.

(ii) g1 = h1 = pk(z), where pk(z) is given by (1.2).

(iii) g1 =
1 +Az

1 +Bz
and h1 = pk(z).

(iv) g1 = pk(z) and h1 =
1 +Az

1 +Bz
.

2.2 Convex Convolution Preserving Properties

Theorem 3. Let f ∈ Tµ(ϕ, g1, H) and ψ be any convex univalent function in E.

Then

ψ ∗ f ∈ Tµ(ϕ, g1, H).

Proof. Let f ∈ Tµ(ϕ, g1, H). Then, by Definition 1, there exists g ∈ S∗(ϕ, g1)

such that
z(ϕ ∗ f)′(z)

(ϕ ∗ g) (z)
= F (z) ∈ Pµ (H) .

Consider, for ψ ∈ C

z (ϕ ∗ (ψ ∗ f))′ (z)

(ϕ ∗ (ψ ∗ g)) (z)
=

z (ψ ∗ (ϕ ∗ f))′ (z)

(ψ ∗ (ϕ ∗ g)) (z)

=
ψ(z) ∗ z (ϕ ∗ f)′ (z)

(ψ ∗ (ϕ ∗ g)) (z)

=
ψ(z) ∗ z(ϕ∗f)

′(z)
(ϕ∗g)(z) (ϕ ∗ g) (z)

(ψ ∗ (ϕ ∗ g)) (z)

=
ψ(z) ∗ F (z). (ϕ ∗ g) (z)

(ψ ∗ (ϕ ∗ g)) (z)
.

Since g ∈ S∗(ϕ, g1) implies (ϕ ∗ g) ∈ S∗(g1) ⊂ S∗, by Lemma 4, It conclude

ψ ∗ f ∈ Tµ(ϕ, g1, H).

Theorem 4. Let f ∈ T ∗µ(ϕ, g1, H) and ψ be any convex univalent function in E.

Then ψ ∗ f ∈ T ∗µ(ϕ, g1, H).

http://www.earthlinepublishers.com



On Certain Generalizations of Close-to-convex Functions 97

Proof. We can easily prove this result by using Theorem 3 along with relation

(1.5).

We can deduce some special casses of Theorem 3 and Theorem 4, for different

choices of ϕ, g1 and H = (h1, h1). We mention some of the cases as follows.

(i) g1 and h1 be analytic, univalent convex functions in E and ϕ(z) = ϕ−1λ , for

λ ≥ 0.

(ii) ϕ ∈ A and g1(z) = h1(z) =
1 +Az

1 +Bz
, − 1 ≤ B < A ≤ 1.

(iii) ϕ ∈ A and g1(z) = h1(z) = pk(z), where pk(z) is given by (1.3).

(iv) ϕ ∈ A and g1(z) =
1 +Az

1 +Bz
and h1(z) = pk(z).

(v) ϕ ∈ A and g1(z) = pk(z) and h1(z) =
1 +Az

1 +Bz
.

2.2.1 Application of Convex Convolution Preserving Properties

Corollary 3. The classes Tµ(ϕ, g1, H) and T ∗µ(ϕ, g1, H) are closed under the

following operators.

(i) f1(z) =

∫ z

0

f(t)

t
dt.

(ii) f2(z) =
2

z

∫ z

0
f(t)dt, (Libera’s operator [9]).

(iii) f3(z) =

∫ z

0

f(t)− f(xt)

t− xt
dt, |x| ≤ 1, x 6= 1.

(iv) f4(z) =
c+ 1

zc

∫ z

0
tc−1f(t), Re(c) ≥ 0, (Generalized Bernardi operator [2]).

Proof. We may write, fi(z) = ςi(z) ∗ f(z), where ςi(z), i = 1, 2, 3, 4, are convex

and given by

ς1(z) = − log (1− z) =
∞∑
n=1

1

n
zn,

ς2(z) =
−2 [z − log (1− z)]

z
=

∞∑
n=1

2

n+ 1
zn,

Earthline J. Math. Sci. Vol. 5 No. 1 (2021), 87-102
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ς3(z) =
1

1− x
log

(
1− xz
1− z

)
=
∞∑
n=1

1− xn

(1− x)n
zn, |x| ≤ 1, x 6= 1,

ς4(z) =
∞∑
n=1

1 + c

n+ c
zn, Re(c) ≥ 0.

The proof follows easily by using Theorem 3 and Theorem 4.

2.3 Radius Problem

Theorem 5. Let f ∈ Tµ(ϕ−1λ+1,
1+Az
1+Bz ,

1+Az
1+Bz ). Then

f ∈ Tµ(ϕ−1λ ,
1 +Az

1 +Bz
,
1 + z

1− z
) for |z| < rλ

rλ =
2 (1 + λ)

L+
√
L2 − 4M

, (2.18)

where L = 3A2 + λ (A+B)−B, M = (1 + λ)
(
A2 + λAB

)
. The value of rλ is

sharp.

Proof. Let f ∈ Tµ(ϕ−1λ+1,
1+Az
1+Bz ,

1+Az
1+Bz ). Then, by Definition 1, there exists g ∈

S∗(ϕ−1λ+1,
1+Az
1+Bz ) such that

z(Iλ+1f(z))′

Iλ+1g(z)
= p(z) ∈ Pµ

(
1 +Az

1 +Bz

)
, (2.19)

where Iλ+1f(z) = ϕ−1λ+1(z) ∗ f(z) and Iλ+1g(z) = ϕ−1λ+1(z) ∗ g(z).

Using identity (1.4), we get

z(Iλf(z))′

Iλg(z)
=

z(Iλ+1(zf(z))
′)′

Iλ+1g(z)
+

λz(Iλ+1f(z))
′

Iλ+1g(z)

z(Iλ+1g(z))
′

Iλ+1g(z)
+ λ

. (2.20)

Logarithmic Differentiating (2.19), we get

(z (Iλ+1f(z))′)′

z(Iλ+1f(z))′
=

(Iλ+1g(z))′

Iλ+1g(z)
+
p′(z)

p(z)

or equivalently,

z(Iλ+1 (zf(z))′)′

Iλ+1g(z)
=
z(Iλ+1f(z))′

Iλ+1g(z)

[
z(Iλ+1g(z))′

Iλ+1g(z)
+
zp′(z)

p(z)

]
.
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From (2.19), this implies

(z(Iλ+1f(z))′)′

Iλ+1g(z)
= p(z).q(z) + zp′(z), (2.21)

where q(z) =
z(Iλ+1g(z))

′

Iλ+1g(z)
. From (2.20) and (2.21), we get

z(Iλ+1f(z))′

Iλ+1g(z)
=
p(z).q(z) + zp′(z) + λp(z)

q(z) + λ

z(Iλf(z))′

Iλg(z)
= p(z) +

zp′(z)

q(z) + λ
. (2.22)

If we take p(z) = µq1 + (1 − µ)q2 in (2.22), where q1, q2 ∈ P1

(
1+Az
1+Bz

)
, then we

obtain

p(z) +
zp′(z)

q(z) + λ
= µ

(
q1(z) +

zq′1(z)

q(z) + λ

)
+ (1− µ)

((
q2(z) +

zq′2(z)

q(z) + λ

))

Since g ∈ S∗(ϕ−1λ+1,
1+Az
1+Bz ), it implies q(z) ∈ P

(
1+Az
1+Bz

)
= P [A,B]. To prove

qi(z) +
zq′i(z)
q(z)+λ ≺

1+z
1−z (i = 1, 2), we use distortion result for the functions of class

P [A,B] (see [19]),

Re

(
qi(z) +

zq′i(z)

q(z) + λ

)
≥ Re (qi(z))

[
(1−Ar) {(1−Ar) + λ (1−Br)} − (A−B) r

(1−Ar) {(1−Ar) + λ (1−Br)}

]
.

The right hand side of the above inequality is positive, for |z| < rλ, where rλ is

given by (2.18). Thus

p(z) +
zp′(z)

q(z) + λ
= µh1 + (1− µ)h2, where h1, h2 ≺

1 + z

1− z
. (2.23)

Consequently, from (2.22) and (2.23), we conclude that

f ∈ Tµ
(
ϕ−1λ ,

1 +Az

1 +Bz
,
1 + z

1− z

)
for |z| < rλ,

where rλ is given by (2.18).
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Corollary 4. For µ = m
4 + 1

2 (m ≥ 2), A = 1 and B = −1, if f ∈
Tm(ϕ−1λ+1,

1+z
1−z ,

1+z
1−z ), then

f ∈ Tm
(
ϕ−1λ ,

1 + z

1− z
,
1 + z

1− z

)
, for |z| < rλ, where

rλ =
(1 + λ)

2 +
√

3 + λ2
. (2.24)

The value of rλ is sharp.

Corollary 5. For m = 2, A = 1 and B = −1, if f ∈ T2(ϕ−1λ+1,
1+Az
1+Bz ,

1+Az
1+Bz ), then

f ∈ T2
(
ϕ−1λ ,

1 + z

1− z
,
1 + z

1− z

)
, for |z| < rλ,

where rλ is given by (2.24). Furthermore, for λ = 0, we have well-known radius

problem

K ⊂ C∗, for |z| < r0,

where r0 = 1
2+
√
3
.
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