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Abstract

The spread of Avian influenza in Asia, Europe and Africa ever since its

emergence in 2003, has been endemic in many countries. In this study,

a non-linear SI-SI-SEIR Mathematical model with re-infection as a result

of continuous contact with both infected poultry from farm and market is

proposed. Local and global stability of the three equilibrium points are

established and numerical simulations are used to validate the results.

1 Introduction

Avian Influenza is a virus majorly spread in birds but can also be transmitted to

humans with the human infections acquired through direct contact with infected

animals or contaminated environment. Human are infected with avian influenza

Received: June 12, 2020; Accepted: July 9, 2020

2010 Mathematics Subject Classification: 37N25, 34D20, 65P40.

Keywords and phrases: avian influenza A(H7N9), reproduction number, Lyapunov functions,
next generation matrix, re-infections.
*Corresponding author Copyright c© 2021 Authors



44 O. I. Bada, A. S. Oke, W. N. Mutuku and P. O. Aye

Analysis of the Dynamics of SI-SI-SEIR Avian Influenza
A(H7N9) Epidemic Model with Re-infection

Oluwafemi I. BADA
Department of Mathematics,
University of Benin, Nigeria

email: badaoluwafemiisaac@gmail.com

Abayomi S. OKE
Department of Mathematical Sciences,
Adekunle Ajasin University, Nigeria

email: okeabayomisamuel@gmail.com

Winfred N. MUTUKU
Department of Mathematics and Actuarial

Science,
Kenyatta University, Kenya

email: mutukuwinnie@gmail.com

Patrick O. AYE
Department of Mathematical Sciences,
Adekunle Ajasin University, Nigeria

email: ayepatricko@gmail.com

Abstract
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model with re-infection as a result of continuous contact with both infected poultry from
farm and market is proposed. Local and global stability of the three equilibrium points are
established and numerical simulations are used to validate the results.

Keywords: avian influenza A(H7N9); reproduction number; Lyapunov functions; next generation
matrix; re-infections
Classification: 37N25; 34D20; 65P40

Nomenclature
Sh(t) Susceptible human Λh recruitment rates of human
Eh(t) exposed human Λf recruitment rates of poultry
Ih(t) infected human µh natural mortality rates of human
Rh(t) recovered human µa natural mortality rates of poultry
Sf (t) susceptible poultry in farm µd disease-related death rates of infected human
If (t) infected poultry in farm µf disease-related death rates of infected poultry
Sm(t) susceptible poultry in market α0 proportion of poultry from farms to markets
Im(t) infected poultry in market r recovery rate of infected human
ψ re-infection rate βh human transmission rate
αh human progression rate from the latent

period of infection to the infected class
βf transmission coefficient from infective poultry

of farms to susceptible poultry of farms
βm contact rate from infective poultry of

markets to susceptible poultry of
markets

βh transmission rate from infected poultry of
markets and farm to susceptible human

1

virus subtypes A(H5N1), A(H7N9), and A(H7N9). In 2013, the disease was

reported for the first time across China, with over 1500 human cases reported

and many deaths. The period of incubation ranges from 1 to 10 days, with

an average of 5 days. The signs and symptoms are upper respiratory infection

(fever and cough) which may progress to severe pneumonia, acute respiratory

distress syndrome and death. The novel Coronavirus disease 2019 (COVID-19)

has similar disease presentation with the Influenza virus; they are both zoonotic.

Both the influenza virus and coronavirus cause respiratory disease ranging from

mild illness to severe disease and death. The two viruses are transmitted by

contact or droplets. For this reason, they can both be prevented by proper hand

hygiene and good respiratory etiquette [1, 2, 3].

Iwami et al. [4] proposed a mathematical model that considered two types

of avian influenza outbreak which may occur if humans fail to stop the spread

of the disease. Liu and Fang [5] developed a dynamical model of avian influenza

A(H7N9) to check the effect of the spread between poultry and poultry, poultry

and human, and human and human and it was established that the likelihood of

human-to-human transmission of the avian influenza A(H7N9) is low. Though

the probability is low, the possibility of human-to-human transmission should
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still be considered. Che et al. [6] furthered the research by including saturated

contact rate in the model for a highly pathogenic avian influenza epidemic. Chen

and Wen [7] diversified the model by treating a bilinear disease incidence case

with mutant avian influenza A(H7N9) virus, meanwhile, the highly pathogenic

avian influenza epidemic model in the presence of vertical transmission function

in poultry was proposed in [8]. The model proposed and investigated in [9]

describes the transmission dynamics of avian influenza A(H7N9) between human

and poultry. The model in [9] was further extended in [10] by introducing

the possibility of re-infection. The results of the research indicated that a

recovered individual who continue to have contact with an infected poultry may be

re-infected with the disease. More recently, the spread of the avian influenza has

attracted the attention of many researchers who working vehemently to unravel

the dynamics of the transmission and as a result, bring an end to the spread of

the disease. Advancement in the study of avian influenza include the models

with Vaccination and Seasonality, the study of the Antigenic Variant, effects

of other illnesses on patients infected with Avian Influenza A (H7N9) Virus,

spatiotemporal variation and hotspot detection of the Avian Influenza A(H7N9)

Virus, specificity, kinetics and longevity of antibody responses to avian influenza

A(H7N9) [11, 12, 13, 14, 15, 16]. The studies have been very successful so far.

It is important to note that despite the intense concentration on the dynamics

of the avian influenza A(H7N9) virus, the SI-SI-SEIR model with re-infection

has not been explored. In this paper, as a further advancement to [10], an

SI-SI-SEIR model for the transmission of an avian influenza A(H7N9) virus with

re-infection is proposed. The dynamics of the transmission is unraveled by the

available mathematical tools. This paper is organized as follows: Section 2

presents the SI-SI-SEIR model with re-infection to study avian influenza A(H7N9)

transmission, the reproduction number and the existence of the equilibria points

are established in Section 3 and Section 4 shows that the equilibria are locally,

and globally asymptotically stable using the Lyapunov functions. We present the

numerical simulation to validate our results in Section 5 and give the conclusion

in Section 6.
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2 The Model

Considering the work of [10] and [9], the novelty of this work is included in the

following four assumptions; 1) the natural and the disease-induced death rate

are the same for the poultry population. 2) the human population is classified

with the inclusion of Exposed class to the susceptible, infected and the recovered

compartments. 3) every bird is moved to market at once, if the progression rate

of susceptible poultry from farm to market is α0, then the progression rate of

infected poultry to market will be (1 − α0). 4) human get infected not only in

market but also in farm. 5) Human re-infection with the disease is expressed as

ψβh (If + Im)Rh, where ψ is the re-infection rate, βh is the human transmission

rate.

We propose the epidemic dynamics model of avian influenza A(H7N9) virus

as

S′f = Λf − βfSfIf − (µa + α0)Sf , (2.1)

I ′f = βfSfIf − (1− α0)If − (µa + µf )If , (2.2)

S′m = α0Sf − βmSmIm − µaSm, (2.3)

I ′m = βmSmIm + (1− α0)If − (µa + µf )Im, (2.4)

S′h = Λh − βh(If + Im)Sh − µhSh, (2.5)

E′h = βh(If + Im)(Sh + ψRh)− (αh + µh)Eh, (2.6)

I ′h = αhEh − (r + µd + µh)Ih, (2.7)

R′h = rIh − βh(If + Im)ψRh − µhRh. (2.8)

The disease free equilibrium is obtained from Eq. (2.1-2.8) as

(
S0
f , I

0
f , S

0
m, I

0
m, S

0
h, E

0
h, I

0
h, R

0
h

)
=

(
Λf

(µa + α0)
, 0,

α0Λf

µa(µa + α0)
, 0, 0, 0, 0, 0

)
.

(2.9)

The reproduction number <0 is defined as the expected number of secondary

cases produced in a totally sensitive population by a typical infective individual
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during infectious period at a disease free equilibrium. The effective reproduction

number is used to ascertain the transmission ability of a disease. The reproduction

number is affected by the rate of contacts in the host population, the probability

of infection transmission during contact and the contagious duration, hence, we

obtain the reproduction number using the next generation matrix proposed by

[17]

f =


βfSfIf

βmSmIm

βh(If + Im)(Sh + ψRh)

0

 , (2.10)

v =


(1− α0) If + (µa + µf ) If

(µa + µf ) Im − (1− α0) If

(αh + µh)Eh

(r + µd + µh) Ih − αhEh

 . (2.11)

Then

<0 = ρ
(
F 0V −1

)
= max (<01,<02) , (2.12)

where

<01 =
βfΛf

(α0 + µa) (1− α0 + µa + µf )
and <02 =

α0βmΛf

µa (α0 + µa) (µa + µf )
.

3 Existence of Equilibria

We prove the theorem on the existence of equilibria.

Theorem 1. For system (2.1-2.8),

1. whenever <01 > 1, <02 > 1, there is the unique endemic equilibrium

U∗∗∗ =
(
S∗∗∗f , I∗∗∗f , S∗∗∗m , I∗∗∗f , S∗∗∗h , E∗∗∗h , I∗∗∗h , R∗∗∗h

)
.
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2. whenever <01 < 1, <02 > 1, there is the unique boundary equilibrium

U∗ =
(
S∗f , 0, S

∗
m, I

∗
f , S

∗
h, E

∗
h, I
∗
h, R

∗
h

)
.

3. whenever <01 > 1, <02 < 1, another unique boundary equilibrium

U∗∗ =
(
S∗∗f , I

∗∗
f , S

∗∗
m , 0, S

∗∗
h , E

∗∗
h , I

∗∗
h , R

∗∗
h

)
.

Proof. The three conditions stated above are considered

1. Consider the first case where If 6= 0 and Im 6= 0, then it is obtained from

Eq.(2.2) and (2.1) respectively that

S∗∗∗f =
(1− α0 + µa + µf )

βf
, I∗∗∗f =

(µa + α0)

βf
(<01 − 1) . (3.1)

Since all parameters are positive and I∗∗∗f > 0, then we require <01 > 1.

From Eq. (2.3),

S∗∗∗m =
α0S

∗∗∗
f

βmI∗∗m + µa
. (3.2)

Substituting (3.2) into Eq.(2.4) gives

aI∗∗∗2m + bI∗∗∗m + c = 0, (3.3)

where

a = −βm (µa + µf ) , b = α0βmS
∗∗∗
f + (1− α0)βmI

∗∗∗
f − µa (µa + µf ) ,

c = µa (1− α0) I
∗∗∗
f , (3.4)

then we can produce that 4 = b2 − 4ac > 0 if <02 > 1, thus, I∗∗∗m has a

unique positive root

I∗∗∗m =
− (1− α0) I

∗∗∗
f

βmS∗∗∗m − (µa + µf )
. (3.5)
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The other equilibrium points are obtained from Eq.(2.5-2.8) as

S∗∗∗h =
Λh

βh

(
I∗∗∗f + I∗∗∗m

)
+ µh

, R∗∗∗h =
rI∗∗∗h

ψβh

(
I∗∗f + I∗∗m

)
+ µh

, (3.6)

E∗∗∗h =
βh

(
I∗∗∗f + I∗∗∗m

)
(S∗∗∗h + ψR∗∗∗h )

(αh + µh)
, I∗∗∗h =

αhE
∗∗∗
h

(r + µd + µh)
. (3.7)

Therefore, the endemic equilibrium

U∗∗∗ =
(
S∗∗∗f , I∗∗∗f , S∗∗∗m , I∗∗∗m , S∗∗∗h , E∗∗∗h , I∗∗∗h , R∗∗∗h

)
is established whenever <01 > 1 and <02 > 1.

2. Now, we consider the condition If = 0, therefore, the model (2.1-2.8) reduces

to

S′f = Λf − (µa + α0)Sf , (3.8)

S′m = α0Sf − βmSmIm − µaSm, (3.9)

I ′m = βmSmIm − (µa + µf ) Im, (3.10)

S′h = Λh − βhImSh − µhSh, (3.11)

E′h = βhIm (Sh + ψRh)− (αh + µh)Eh, (3.12)

I ′h = αhEh − (r + µd + µh) Ih, (3.13)

R′h = rIh − ψβhImRh − µhRh. (3.14)

We obtain from Eq.(3.8) and (3.9) that

S∗f =
Λf

(α0 + µa)
, S∗m =

(µa + µf )

βm
. (3.15)

By using Eq.(3.15) in Eq.(3.10) then

I∗m =
µa
βm

(<02 − 1) , (3.16)

from which it is essential for <02 > 1. We obtain the other equilibria from

Eq.(3.11-3.14) as

S∗h =
Λh

βhI∗m + µh
, E∗h =

βhI
∗
m (S∗h + ψR∗h)

(αh + µh)
, I∗h =

αhE
∗
h

(r + µd + µh)
, R∗h =

rI∗h
ψβhI∗m + µh

.
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Therefore, the boundary equilibrium U∗ =
(
S∗f , 0, S

∗
m, I

∗
m, S

∗
h, E

∗
h, I
∗
h, R

∗
h

)
is established whenever <01 < 1 and <02 > 1.

3. Again, we consider a case where all the means of transmission of the disease

between the poultry in market is negligible including all infected poultry in

farm considered killed such that only susceptible poultry goes to market i.e.

Im = 0 and (1− α0) If = 0. The model (2.1-2.8) will then reduce to

S′f = Λf − βfSfIf − (µa + α0)Sf , (3.17)

I ′f = βfSfIf − (µa + µf ) If , (3.18)

S′m = α0Sf − µaSm, (3.19)

S′h = Λh − βhIfSh − µhSh, (3.20)

E′h = βhIf (Sh + ψRh)− (µh + αh)Eh, (3.21)

I ′h = αhEh − (r + µd + µh) Ih, (3.22)

R′h = rIh − ψβhIfRh − µhRh. (3.23)

We obtain from Eq.(3.18) and Eq.(3.17) that

S∗∗f =
(µa + µf )

βf
(3.24)

I∗∗f =
(α0 + µa)

βf

(
1− α0 + µa + µf

µa + µf
<01 − 1

)
. (3.25)

On solving Eq.(3.19) and substituting S∗∗f ,

S∗∗m =
α0 (µa + µf )

µa
. (3.26)

From Eq.(3.20 - 3.23), we have

S∗∗h =
Λh

βhI
∗∗
f + µh

, E∗∗h =
βhI

∗∗
f (S∗∗h + ψR∗∗h )

(αh + µh)
, I∗∗h =

αhE
∗∗
h

(r + µd + µh)
,

R∗∗h =
rI∗∗h

ψβhI
∗∗
f + µh

. (3.27)
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Therefore, the boundary equilibrium

U∗∗ =
(
S∗∗f , I

∗∗
f , S

∗∗
m , 0, S∗∗h , E

∗∗
h , I

∗∗
h , R

∗∗
h

)
is established whenever <01 > 1 and <02 < 1.

4 Stability of Equilibria

We have established the existence of disease-free and positive equilibria. We

further investigate the stability of these equilibria.

4.1 Stability of the disease-free equilibrium

Theorem 2. Let U0 =
(
S0
f , 0, S

0
m, 0, S

0
h, 0, 0, 0

)
be the disease-free equilibrium of

system (2.1-2.8). Then U0 is locally asymptotically stable if <0 < 1, but unstable

if <0 > 1.

Proof. The characteristics equation of the Jacobian matrix at the disease-free

equilibrium U0 is

(λ+ α0 + µa) (λ+ µa) (λ+ µh) (λ+ µh) (λ+ αh + µh) (λ+ r + µd + µh)(
λ+ 1− α0 + µa + µf − βfS0

f

) (
λ+ µa + µf − βmS0

m

)
= 0

and the eigenvalues are λ1 = − (α0 + µa) , λ2 = −µa, λ3 = λ4 = −µh, λ5 =

− (αh + µh) , λ6 = − (r + µd + µh) , λ7 = (1− α0 + µa + µf ) (<01 − 1) , λ8 =

(µa + µf ) (<02 − 1) . Clearly, all eigenvalues have negative real parts if <01 < 1

and <02 < 1 and consequently, <0 = max{<01,<02} < 1. Thus, the disease-free

equilibrium U0 is locally asymptotically stable if <0 < 1 but unstable if <0 >

1.

Theorem 3. For system (2.1 - 2.8), if <01 < 1, the disease-free equilibrium U0

is globally asymptotically stable.

Proof. We shall construct this proof by taking the three subsystems one after the

other

Earthline J. Math. Sci. Vol. 5 No. 1 (2021), 43-73
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Poultry subsystem in farms: Define a Lyapunov function for the poultry

subsystem in farms

L11 = Sf − S0
f − S0

f ln

(
Sf
S0
f

)
+ If . (4.1)

It follows that the derivative of L11 is

L′11 = −(µa + α0)

Sf

(
Sf − S0

f

)2
+(1−α0+µa+µf ) (<0 − 1) If ≤ 0 if <01 < 1.

Thus,

Ψ1 =
{

(Sf , If ) ∈ R2
+ : L′11 = 0

}
=
{

(Sf , If ) ∈ R2
+ : Sf = S0

f , If = 0
}

=
{
U0
f

}
,

which according to Lassale’s invariace principle, U0
f is globally

asymptotically stable [18, 19].

Poultry subsystem of markets: The poultry subsystem of markets with the

avian components of farms already at the disease-free steady state is

S′m = α0S
0
f − βmSmIm − µaSm, (4.2)

I ′m = βmSmIm − (µa + µf )Im, (4.3)

we define a Lyapunov function as

L12 = Sm − S0
m − S0

m ln

(
Sm
S0
m

)
+ Im. (4.4)

It follows that

L′12 = − µa
Sm

(
Sm − S0

m

)2
+ (µa + µf ) (<02 − 1) Im ≤ 0 if <02 < 1.

Thus,

Ψ2 =
{

(Sm, Im) ∈ R2
+ : L′12 = 0

}
=
{

(Sm, Im) ∈ R2
+ : Sm = S0

m, Im = 0
}

=
{
U0
m

}
,

which according to Lassale’s invariace principle, U0
m is globally

asymptotically stable [18, 19].
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Human subsystem: Finally, we consider the human subsystem with the avian

components already at the disease-free steady states.

S′h = Λh − µhSh,

E′h = −(αh + µh)Eh, (4.5)

I ′h = αhEh − (r + µd + µh)Ih,

R′h = rIh − µhRh,

we define a Lyapunov function

L13 = Sh − S0
h − S0

h ln

(
Sh
S0
h

)
+ Eh + Ih +Rh, (4.6)

then, it follows that the derivative of L13 along the solution of Eq.(4.6) is

L′13 = −µh
Sh

(
Sh − S0

h

)2 − µhEh − (µd + µh) Ih − µhRh.

Thus,

Ψ3 =
{

(Sh, Eh, Ih, Rh) ∈ R4
+ : L′13 = 0

}
=
{

(Sh, Eh, Ih, Rh) ∈ R4
+ : Sh = S0

h, Eh = 0, Ih = 0, Rh = 0
}

=
{
U0
h

}
,

which according to Lassale’s invariace principle, U0
h is globally

asymptotically stable [18, 19].

4.2 Stability of the boundary equilibrium and the endemic

equilibrium

The characteristics equation of the Jacobian matrix of 2.1 is obtained as

[
β2
fSfIf + (λ+ α0 + µa + βfIf ) (λ+ 1− α0 + µf + µa − βfSf )

]
× [βmIm (λ+ µa + µf ) + (λ+ µa) (λ− βmSm + µa + µf )] (−λ− βh(If + Im)− µh)

× [(rψαhβh (If + Im)− (λ+ αh + µh) (λ+ ψβh (If + Im) + µh) (λ+ r + µd + µh))] = 0.

Earthline J. Math. Sci. Vol. 5 No. 1 (2021), 43-73
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Theorem 4. For system (2.1 - 2.8), the boundary equilibrium U∗ is locally

asymptotically stable whenever <01 < 1 and <02 > 1, the boundary equilibrium U∗∗

is locally asymptotically stable whenever <01 > 1 and <02 < 1 and the endemic

equilibrium U∗∗∗ is locally asymptotically stable whenever <01 > 1 and <02 > 1.

Proof. We have the proof as follows:

1. For the boundary equilibrium U∗ =
(
S∗f , 0, S

∗
m, I

∗
m, S

∗
h, E

∗
h, I
∗
h, R

∗
h

)
, one of

the eigenvalues is

λ1 = −µa
βh
βm

(<01 − 1)− µh (4.7)

four of the eigenvalues are obtained from the two quadratic equations,

λ2 + (1− α0 + µa + µf )

(
(α0 + µa)

(1− α0 + µa + µf )
+ 1−<01

)
λ

+ (α0 + µa) (1− α0 + µa + µf ) (1−<01) = 0 (4.8)

λ2 + µa<02λ+ µa (µa + µf ) (<02 − 1) = 0 (4.9)

and the other three eigenvalues are obtained from the cubic equation

λ3 + (αh + r + µd + 3µh + ψβhI
∗
m)λ2

+ ((ψβhI
∗
m + µh)(αh + 2µh + r + µd))λ

+ (ψβhI
∗
m + µh)(αh + µh)(r + µd + µh)− αhrψβhI

∗
m = 0,

from which, if <01 < 1, <02 > 1, all the eigenvalues have negative real parts.

2. For the boundary equilibrium U∗∗ =
(
S∗∗f , I

∗∗
f , S

∗∗
m , I

∗∗
m , S

∗∗
h , E

∗∗
h , I

∗∗
h , R

∗∗
h

)
,

one of the eigenvalues is

λ1 = −βh
βf

(α0 + µa)

(
1− α0 + µa + µf

µa + µf
<01 − 1

)
− µh (4.10)

four of the eigenvalues can be obtained from the following two quadratic
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equations

λ2 +

(
(α0 + µa) (1− α0 + µa + µf )

µa + µf
<01 + (1− α0)

)
λ

+ (α0 + µa)

(
1− α0 + µa + µf

µa + µf
<01 − 1

)
= 0, (4.11)

λ2 +
(
µ2a + (µa + µf ) (µa − α0βm)

)
λ+ (µa + µf ) (µa − α0βm) = 0. (4.12)

The remaining three eigenvalues are obtained from the cubic equations

(αh + µh) (r + µd + µh)ψβhI
∗∗
f + µh (αh + µh) (r + µd + µh) + αhrψβhI

∗∗
f

+
(
ψβhI

∗∗
f (αh + 2µh + r + µd) + µh (αh + 2µh + r + µd) + (αh + µh) (r + µd + µh)

)
λ

+
(
ψβhI

∗∗
f + µh + (αh + 2µh + r + µd)

)
λ2 + λ3 = 0

from which, if <01 > 1, <02 < 1, all the eigenvalues have negative real

parts.

3. For the boundary equilibrium

U∗∗∗ =
(
S∗∗∗f , I∗∗∗f S∗∗∗m , I∗∗∗m , S∗∗∗h , E∗∗∗h , I∗∗∗h , R∗∗∗h

)
,

one of the eigenvalues is

λ1 = −βhI∗∗∗f − βhI∗∗∗m − µh (4.13)

four of the eigenvalues can be obtained from the two quadratic equations

λ2 +
(
βfI

∗∗∗
f − βfS∗∗∗f + (1− α0 + µa + µf ) + (α0 + µa)

)
λ

+ (α0 + µa) (1− α0 + µa + µf )− (α0 + µa)βfS
∗∗∗
f

+ βfI
∗∗∗
f (1− α0 + µa + µf ) = 0,

λ2 + (βmI
∗∗∗
m − βmS∗∗∗m + µa + (µa + µf ))λ

+ (µa + µf )βmI
∗∗∗
m − µaβmS∗∗∗m + µa (µa + µf ) = 0. (4.14)

The remaining three eigenvalues are obtained from the cubic equations

λ3 +
(
αh + µd + r + 3µh + ψβhI

∗∗∗
f + ψβhI

∗∗∗
m

)
λ2

+
(
(αh + 2µh + r + µd)

(
ψβhI

∗∗∗
f + ψβhI

∗∗∗
m + µh

)
+ (αh + µh) (r + µd + µh)

)
λ

+
(
ψβhI

∗∗∗
f + ψβhI

∗∗∗
m + µh

)
(αh + µh) (r + µd + µh)− αhr

(
ψβhI

∗∗∗
f + ψβhI

∗∗∗
m

)
= 0 (4.15)
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from which, if <01 > 1, <02 > 1, all the eigenvalues have negative real parts.

Theorem 5. For system (2.1 - 2.8),

1. the boundary equilibrium U∗ =
(
S∗f , 0, S∗m, I

∗
m, S

∗
h, E

∗
h, I

∗
h, R

∗
h

)
is globally

asymptotically stable whenever <01 < 1, <02 > 1.

2. the boundary equilibrium U∗∗ =
(
S∗∗f , I

∗∗
f , S

∗∗
m , 0, S∗∗h , E

∗∗
h , I

∗∗
h , R

∗∗
h

)
is

globally asymptotically stable whenever <01 > 1, <02 < 1.

3. the endemic equilibrium U∗∗∗ =
(
S∗∗∗f , I∗∗∗f , S∗∗∗m , I∗∗∗f , S∗∗∗h , E∗∗∗h , I∗∗∗h , R∗∗∗h

)
is globally asymptotically stable whenever <01 > 1, <02 > 1.

Proof. We consider the global stability of the boundary equilibrium and the

endemic equilibrium.

1. The boundary equilibrium U∗.

(a) Consider the poultry subsystem in farms and define a Lyapunov

function

L21 = Sf − S∗f − S∗f ln

(
Sf
S∗f

)
+ If (4.16)

then the derivative of L21 along the solution of Eq.(2.1) and Eq.(2.2)

is

L′21 = −(µa + α0)

Sf

(
Sf − S∗f

)2
+ (1− α0 + µa + µf ) (<0 − 1) If

Ψ4 =
{

(Sf , If ) ∈ R2
+ : L′21 = 0

}
=
{

(Sf , If ) ∈ R2
+ : Sf = S∗f , If = 0

}
=
{
U∗f
}
,

which according to Lassale’s invariace principle, U∗f is globally

asymptotically stable [18, 19].
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(b) Next, we consider the poultry subsystem of markets with the avian

components of farms already at the disease-free steady state

S′m = α0S
∗
f − βmSmIm − µaSm (4.17)

I ′m = βmSmIm − (µa + µf ) Im (4.18)

we define a Lyapunov function

L22 = Sm − S∗m − S∗m ln

(
Sm
S∗m

)
+ Im − I∗m − I∗m ln

(
Im
I∗m

)
(4.19)

and then the derivative of L22 along the soluion of Eq.(4.17) and Eq.(4.18)

is

L′22 = µa<02S
∗
m

(
2− Sm

S∗m
− S∗m
Sm

)
.

Since 2− Sm
S∗
m
− S∗

m
Sm
≤ 0 if <02 > 1, then L′22 ≤ 0, and thus

Ψ5 =
{

(Sm, Im) ∈ R2
+ : L′22 = 0

}
=
{

(Sm, Im) ∈ R2
+ : Sm = S∗m, Im = I∗m

}
= {U∗m} ,

which according to Lassale’s invariace principle, U∗m is globally

asymptotically stable [18, 19].

(c) Finally, we are considering the human subsystem with the avian

components of markets already at the endemic steady state.

S′h = Λh − βhShI∗m − µhSh
E′h = βhShI

∗
m + ψβhRhI

∗
m − (αh + µh)Eh

I ′h = αhEh − (r + µh + µd) Ih (4.20)

R′h = rIh − ψβhRhI
∗
m − µhRh

we define the Lyapunov function as

L23 =Sh − S∗h − S∗h ln

(
Sh
S∗h

)
+ Eh − E∗h − E∗h ln

(
Eh

E∗h

)
+ Ih − I∗h − I∗h ln

(
Ih
I∗h

)
+Rh −R∗h −R∗h ln

(
Rh

R∗h

)
(4.21)
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and then the derivative of L23 along the solutions of (4.20) is

L′23 =µa (<02 − 1)

(
3−

S∗h
Sh
− Eh

Eh
− Sh
S∗h

E∗h
Eh

)
+ µaψR

∗
h (<02 − 1)

(
2− Eh

E∗h
+
Ih
I∗h
−
E∗h
Eh

Rh

R∗h
− Ih
I∗h

R∗h
Rh

)
+ µhS

∗
h

(
2−

S∗h
Sh
− Sh
S∗h

)
+ αhE

∗
h

(
1 +

Eh

E∗h
− Ih
I∗h
−
I∗h
Ih

)
+ µhR

∗
h

(
1 +

Ih
I∗h
− Rh

R∗h
− Ih
I∗h

R∗h
Rh

)
. (4.22)

Since 3− S∗
h

Sh
−Eh

Eh
− Sh

S∗
h

E∗
h

Eh
≤ 0, 2−Eh

E∗
h

+ Ih
I∗h
−E∗

h
Eh

Rh
R∗

h
− Ih

I∗h

R∗
h

Rh
≤ 0, 2− S∗

h
Sh
− Sh

S∗
h
≤ 0,

1 + Eh
E∗

h
− Ih

I∗h
− I∗h

Ih
≤ 0, 1 + Ih

I∗h
− Rh

R∗
h
− Ih

I∗h

R∗
h

Rh
≤ 0, if <02 > 1, then L′23 ≤ 0,

and thus,

Ψ6 =
{

(Sh, Eh, Ih, Rh) ∈ R4
+ : L′23 = 0

}
=
{

(Sh, Eh, Ih, Rh) ∈ R4
+ : Sh = S∗h, Eh = E∗h, Ih = I∗h, Rh = R∗h

}
= {U∗h} ,

which according to Lassale’s invariace principle, U∗h is globally

asymptotically stable [18, 19]. In conclusion, if <01 < 1, <02 > 1, the

boundary equilibrium U∗is globally asymptotically stable.

2. The boundary equilibrium U∗∗

(a) We firstly consider the poultry subsystem in farm and define a

Lyapunov function

L31 = Sf − S∗∗f − S∗∗f ln

(
Sf
S∗∗f

)
+ If − I∗∗f − I∗∗f ln

(
If
I∗∗f

)
, (4.23)

then the derivative of L31 along solutions of system (3.17) is obtain as

L′31 = −(α0 + µa)

Sf

(
Sf − S∗∗f

)2
+ βfS

∗∗
f I
∗∗
f

(
2−

S∗∗f
Sf
−
Sf
S∗∗f

)
, (4.24)
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since 2− S∗∗
f

Sf
− Sf

S∗∗
f
≤ 0, L′31 ≤ 0. Thus,

Ψ7 =
{

(Sf , If ) ∈ R2
+ : L′31 = 0

}
=
{

(Sf , If ) ∈ R2
+ : Sf = S∗∗f , If = I∗∗f

}
=
{
U∗∗f

}
,

which according to Lassale’s invariace principle, U∗∗f is globally

asymptotically stable [18, 19].

(b) Next, we consider the poultry subsystem of markets with avian

components of farm at the disease-free steady state

S′m = α0S
∗∗
f − βmSmIm − µaSm, (4.25)

I ′m = βmSmIm − (µa + µf ) Im. (4.26)

We define a Lyapunov function

L32 = Sm − S∗∗m − S∗∗m ln
Sm
S∗∗m

+ Im, (4.27)

then the derivative of L32 along the solution of system (4.25) and (4.26)

is

L′32 = µaS
∗∗
m

(
2− S∗∗m

Sm
− Sm
S∗∗m

)
, (4.28)

since 2− S∗∗
m

Sm
− Sm

S∗∗
m
≤ 0, L′32 ≤ 0, thus,

Ψ8 =
{

(Sm, Im) ∈ R2
+ : L′32 = 0

}
=
{

(Sm, Im) ∈ R2
+ : Sm = S∗∗m , Im = I∗∗m

}
= {U∗∗m } ,

which according to Lassale’s invariace principle, U∗∗m is globally

asymptotically stable [18, 19].

(c) Lastly, considering the human subsystem with the avian components

already at the endemic steady state

S′h = Λh − βhShI∗∗f − µhSh,

E′h = βhI
∗∗
f (Sh + ψRh)− (αh + µh)Eh,

I ′h = αhEh − (r + µd + µh) Ih, (4.29)

R′h = rIh − ψβhI∗∗f Rh − µhRh.
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We define a Lyapunov function

L33 = Sh − S∗∗h − S∗∗h ln

(
Sh
S∗∗h

)
+ Eh − E∗∗h − E∗∗h ln

(
Eh

E∗∗h

)
+ Ih − I∗∗h − I∗∗h ln

(
Ih
I∗∗h

)
+Rh −R∗∗h −R∗∗h ln

(
Rh

R∗∗h

)
(4.30)

and then, the derivative of L33 along the solutions of system (4.30) is

L′33 =βhI
∗∗
f S

∗∗
h

(
3−

S∗∗h
Sh
− Eh

E∗∗h
− Sh
S∗∗h

E∗∗h
Eh

)
+ µhRh

(
1 +

Ih
I∗∗h
− Rh

R∗∗h
− Ih
I∗∗h

R∗∗h
Rh

)
+ ψβhI

∗∗
f R

∗∗
h

(
2− Eh

E∗∗h
−
E∗∗h
Eh

Rh

R∗∗h
+

Ih
I∗∗h
− Ih
I∗∗h

R∗∗h
Rh

)
+ µhS

∗∗
h

(
2− Sh

S∗∗h
−
S∗∗h
Sh

)
+ αhE

∗∗
h

(
1 +

Eh

E∗∗h
− Ih
I∗∗h
− Eh

E∗∗h

I∗∗h
Ih

)
. (4.31)

Since 3− S∗∗
h
Sh
− Eh

E∗∗
h
− Sh

S∗∗
h

E∗∗
h

Eh
≤ 0, 2− Eh

E∗∗
h
− E∗∗

h
Eh

Rh
R∗∗

h
+ Ih

I∗∗h
− Ih

I∗∗h

R∗∗
h

Rh
≤ 0,

2− Sh
S∗∗
h
− S∗∗

h
Sh
≤ 0, 1+ Eh

E∗∗
h
− Ih

I∗∗h
− Eh

E∗∗
h

I∗∗h
Ih
≤ 0, 1+ Ih

I∗∗h
− Rh

R∗∗
h
− Ih

I∗∗h

R∗∗
h

Rh
≤ 0,

L′33 ≤ 0, and thus,

Ψ9 =
{

(Sh, Eh, Ih, Rh) ∈ R4
+ : L′33 = 0

}
=
{

(Sh, Eh, Ih, Rh) ∈ R4
+ : Sh = S∗∗h , Eh = E∗∗h , Ih = I∗∗h , Rh = R∗∗h

}
= {U∗∗h } ,

which according to Lassale’s invariace principle, U∗∗h is globally

asymptotically stable [18, 19]. In conclusion, if <01 < 1, <02 > 1,

the boundary equilibrium U∗∗ is globally asymptotically stable.

3. The endemic equilibrium U∗∗∗

(a) We first consider the poultry subsystem in farms and define a Lyapunov

function

L41 = Sf −S∗∗∗f −S∗∗∗f ln

(
Sf
S∗∗∗f

)
+ If − I∗∗∗f − I∗∗∗f ln

(
If
I∗∗∗f

)
(4.32)
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and then the derivative of L31 is

L′41 = − (µa + α0)

Sf

(
Sf − S∗∗∗f

)2
+(µa + α0) (<01 − 1)S∗∗∗f

(
2−

S∗∗f
Sf
− Sf

S∗∗f

)
.

(4.33)

If <01 > 1, then 2− S∗∗∗
f

Sf
− Sf

S∗∗∗
f
≤ 0 and L′41 ≤ 0 and thus,

Ψ10 =
{

(Sf , If ) ∈ R2
+ : L′41 = 0

}
=
{

(Sf , If ) ∈ R2
+ : Sf = S∗∗∗f , If = I∗∗∗f

}
=
{
U∗∗∗f

}
.

According to Lassalle’s invariance principle, U∗∗∗f is globally

asymptotically stable.

(b) Consider the poultry subsystem in market

S′m = α0S
∗∗∗
f − βmSmIm − µaSm (4.34)

I ′m = βmSmIm + (1− α0) I
∗∗∗
f − (µa + µf ) Im (4.35)

and define a Lyapunov function

L42 = Sm−S∗∗∗m −S∗∗∗m ln

(
Sm
S∗∗∗m

)
+Im−I∗∗∗m −I∗∗∗m ln

(
Im
I∗∗∗m

)
(4.36)

then take the derivative of L42

L′42 =
−µa
Sm

(Sm − S∗∗∗m )2 + βmS
∗∗∗
m I∗∗∗m

(
2− S∗∗∗m

Sm
− Sm
S∗∗∗m

)
+

(1− α0) (µa + α0)

βf
(<01 − 1)

(
2− Im

I∗∗∗m

− I∗∗∗m

Im

)
.

If <01 > 1, <02 > 1, then 2− S∗∗∗
m
Sm
− Sm

S∗∗∗
m
≤ 0, 2− Im

I∗∗∗m
− I∗∗∗m

Im
≤ 0 and

L′42 ≤ 0 and thus

Ψ11 =
{

(Sm, Im) ∈ R2
+ : L′42 = 0

}
=
{

(Sm, Im) ∈ R2
+ : Sm = S∗∗∗m , Im = I∗∗∗m

}
= {U∗∗∗m } .

According to Lassalle’s invariance principle, U∗∗∗m is globally

asymptotically stable.
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(c) Finally, consider the human subsystem

S′h = Λh − βhShI∗∗∗f − βhShI∗∗∗m − µhSh (4.37)

E′h = βh(I∗∗∗f + I∗∗∗m )(Sh + ψRh)− (αh + µh)Eh (4.38)

I ′h = αhEh − (r + µd + µh)Ih (4.39)

R′h = rIh − βh(I∗∗∗f + I∗∗∗m )ψRh − µhRh (4.40)

and define a Lyapunov function

L43 = Sh − S∗∗∗h − S∗∗∗h ln

(
Sh
S∗∗∗h

)
+ Eh − E∗∗∗h − E∗∗∗h ln

(
Eh

E∗∗∗h

)
+ Ih − I∗∗∗h − I∗∗∗h ln

(
Ih
I∗∗∗h

)
+Rh −R∗∗∗h −R∗∗∗h ln

(
Rh

R∗∗∗h

)
(4.41)

then take the derivative of L33 along the solution of the system (4.37 -

4.40)

L′43 =− µh

Sh
(Sh − S∗∗∗h )

2
+ βhS

∗∗∗
h

(
I∗∗∗f + I∗∗∗m

)
×
(

3− S∗∗∗h

Sh
− Eh

E∗∗∗h

− Sh

S∗∗∗h

E∗∗∗h

Eh

)
+ ψβhR

∗∗∗
h

(
I∗∗∗f + I∗∗∗m

)(
2− Eh

E∗∗∗h

+
Ih
I∗∗∗h

− E∗∗∗h

Eh

Rh

R∗∗∗h

− Ih
I∗∗∗h

R∗∗∗h

Rh

)
+ µhR

∗∗∗
h

(
1− Ih

I∗∗∗h

− Rh

R∗∗∗h

+
Ih
I∗∗∗h

R∗∗∗h

Rh

)
+ αhE

∗∗∗
h

(
1 +

Eh

E∗∗∗h

− Ih
I∗∗∗h

− Eh

E∗∗∗h

I∗∗∗h

Ih

)
.

Since (
3−

S∗∗∗h

Sh
− Eh

E∗∗∗h

− Sh
S∗∗∗h

E∗∗∗h

Eh

)
≤ 0,(

2− Eh

E∗∗∗h

+
Ih
I∗∗∗h

−
E∗∗∗h

Eh

Rh

R∗∗∗h

− Ih
I∗∗∗h

R∗∗∗h

Rh

)
≤ 0,(

1− Ih
I∗∗∗h

− Rh

R∗∗∗h

+
Ih
I∗∗∗h

R∗∗∗h

Rh

)
≤ 0,(

1 +
Eh

E∗∗∗h

− Ih
I∗∗∗h

− Eh

E∗∗∗h

I∗∗∗h

Ih

)
≤ 0,
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if <02 > 1, then L′43 ≤ 0 and thus,

Ψ12 =
{

(Sh, Eh, Ih, Rh) ∈ R4
+ : L′43 = 0

}
=
{

(Sh, Eh, Ih, Rh)) ∈ R4
+ : Sh = S∗∗∗h , Eh = E∗∗∗h , Ih = I∗∗∗h , Rh = R∗∗∗h

}
= {U∗∗∗h } .

According to Lassalle’s invariance principle, U∗∗∗h is globally

asymptotically stable.

5 Numerical Simulations

In this section, we present numerical simulations of model (2.1 - 2.8) by considering

the parameters in the following examples to obtain the stability of the disease

free-equilibrium, the boundary equilibria and the endemic equilibrium represented

as a time-series diagram.

Example 1. Consider the parameters Λf = 80, βf = 0.0027, µa = 0.17, µf =

0.75, α0 = 0.86, βm = 0.0018, Λh = 280, βh = 0.0018, µh = 0.69, µd = 0.83,

r = 0.61, ψ = 0.01, αh = 0.5. Figure (5.1 - 5.2) gives the time-variation diagram

of system (2.1 - 2.8). It is discovered that the disease-free equilibrium U0 is

globally asymptotically stable whenever <0 < 1.

Figure 5.1: Time variation diagram of system (2.1) when <01 < 1 and <02 < 1.
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Figure 5.2: Time variation diagram of system (2.1) when <01 < 1 and <02 < 1.

Example 2. Consider the parameters Λf = 80, βf = 0.0027, µa = 0.17, µf =

0.75, α0 = 0.86, βm = 0.0045, Λh = 280, βh = 0.0018, µh = 0.69, µd =

0.83, r = 0.61, ψ = 0.01, αh = 0.5. Figure (5.3 - 5.4) gives the time-variation

diagram of system (2.1 - 2.8). It is discovered that the boundary equilibrium U∗

is globally asymptotically stable whenever <01 < 1 and <02 > 1.
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Figure 5.3: Time variation diagram of system (2.1) when <01 < 1 and <02 > 1.
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Figure 5.4: Time variation diagram of system (2.1) when <01 < 1 and <02 > 1.

Example 3. Consider the parameters Λf = 80, βf = 0.015, µa = 0.17, µf =

0.75, α0 = 0.86, βm = 0.0018, Λh = 280, βh = 0.0018, µh = 0.69, µd =

0.83, r = 0.61, ψ = 0.01, αh = 0.5. Figure (5.5 - 5.6) gives the time-variation

diagram of system (2.1 - 2.8). It is discovered that the boundary equilibrium U∗∗

is globally asymptotically stable whenever <01 > 1 and <02 < 1.
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Figure 5.5: Time variation diagram of system (2.1) when <01 > 1 and <02 < 1.
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Figure 5.6: Time variation diagram of system (2.1) when <01 > 1 and <02 < 1.

Example 4. Consider the parameters Λf = 80, βf = 0.015, µa = 0.17, µf =

0.75, α0 = 0.86, βm = 0.0045, Λh = 280, βh = 0.0018, µh = 0.69, µd =

0.83, r = 0.61, ψ = 0.01, αh = 0.5. Figure (5.7 - 5.8) gives the time-variation

diagram of system (2.1 - 2.8). It is discovered that the endemic equilibrium U∗∗∗

is globally asymptotically stable whenever <01 > 1 and <02 > 1.
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Figure 5.7: Time variation diagram of system (2.1) when <01 > 1 and <02 > 1.
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Figure 5.8: Time variation diagram of system (2.1) when <01 > 1 and <02 > 1.

Example 5. Consider the parameters Λf = 80, βf = 0.015, µa = 0.17, µf =

0.75, α0 = 0.86, βm = 0.0045, Λh = 280, µh = 0.69, µd = 0.83, r = 0.61, ψ =

0.01, αh = 0.5. Figure 5.9 shows the time-variation diagram of system Eh with

time, with Eh increasing as βh is increasing.
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Figure 5.9: Time variation of Eh at various values of βh.
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Example 6. Consider the parameters Λf = 80, βf = 0.015, µa = 0.17, µf =

0.75, α0 = 0.86, βm = 0.0045, Λh = 280, βh = 0.0018, µh = 0.69, µd =

0.83, r = 0.61, ψ = 0.01, αh = 0.5. Figure 5.10 gives the time-variation diagram

of system Im. It is observe that Im decreases as α0 increases.
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Figure 5.10: Time variation of Im at various values of α0.

However, in order to reduce the spread of avian influenza, the following

measures as indicated in Table 1, Table 2 and Table 3 can be taken;

1. increasing µf by killing infected poultry,

2. reduce βf , βm and βh by closing down farms and markets where there is

infected poultry to avoid continuous contact or transmission to human,

3. increase α0, this is achieved by increased number of susceptible poultry that

move to market. If the susceptible poultry are higher than the infected

poultry in the market, the chances of human having contact with infected

infected poultry will reduce.
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Table 1: Table showing the impact of µf on the reproduction number.

µf 0.4500 0.600 0.7500 0.900 1.050 1.200 1.3500 1.500 1.650 1.800

<01 1.8396 1.5363 1.3189 1.1554 1.0280 0.9259 0.8422 0.7724 0.7133 0.6626

<02 2.8518 2.2963 1.9219 1.6525 1.4493 1.2906 1.1632 1.0588 0.9715 0.8975

Table 2: Table showing the impact of βf on the reproduction number.

βf 0.0190 0.0170 0.0150 0.0130 0.0110 0.0090 0.0070 0.0050 0.0030 0.0010

<01 1.3922 1.2456 1.0991 0.9526 0.8060 0.6595 0.5129 0.3664 0.2198 0.0733

<02 0.7688 0.7688 0.7688 0.7688 0.7688 0.7688 0.7688 0.7688 0.7688 0.7688

Table 3: Table showing the impact of βm on the reproduction number.
βm 0.0090 0.0081 0.0072 0.0063 0.0054 0.0045 0.0036 0.0027 0.0018 0.0009

<01 0.4103 0.4103 0.4103 0.4103 0.4103 0.4103 0.4103 0.4103 0.4103 0.4103

<02 3.8438 3.4594 3.07550 2.6906 2.3063 1.9219 1.5375 1.1531 0.7688 0.3844

6 Conclusion

In this paper, we combined human and poultry to developed an SI-SI-SEIR

dynamic model of avian influenza A(H7N9) with the inclusion of re-infection and

transmission of the disease occurring both in farm and market. The reproduction

number we obtained is sufficient to establish the following;

1. there exist the disease-free equilibrium U0 which is globally asymptotically

stable whenever <01 < 1 and <02 < 1, hence, the disease dies out (see Figure

5.1).

2. there exist the boundary equilibrium U∗ which is globally asymptotically

stable whenever <01 < 1 and <02 > 1, hence, the disease will remain in the

population and finally lead to epidemic (see Figure 5.3).
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3. there exist another boundary equilibrium U∗∗, this boundary equilibrium

U∗∗ is globally asymptotically stable whenever <01 > 1 and <02 < 1, the

disease will be sustained in the population and may lead to epidemic (see

Figure 5.5).

4. If <01 > 1 and <02 > 1, there exist the endemic equilibrium U∗∗∗, we showed

that the endemic equilibrium U∗∗∗ is globally asymptotically stable and this

means that the disease will spread widely in the population (see Figure 5.7).

From the ongoing, it is deduced that the spread of avian influenza can be reduced

by taking the following measures;

1. by killing infected poultry,

2. by isolating the infected poultries in the farm from the healthy ones (i.e.

reducing βf ),

3. by killing the infected poultries in the market (i.e. reducing βm).
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