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Abstract

In this paper, we propose Complementary Kumaraswamy Weibull Power Series
(CKWPS) Distributions. The method is obtained by compounding the Kumaraswamy-G
distribution and Power Series distribution on a latent complementary distance problem
base. The mathematical properties of the proposed class of distribution are studied. The
method of Maximum Likelihood Estimation is used for obtaining the estimates of the
model parameters. A member of the family is investigated in detail. Finally an application

of the proposed class is illustrated using a real data set.
1. Introduction

In recent times, several compound models have been developed by complementary
risk motivation and applied in several areas. Complementary risk problems arise in
several areas, such as engineering, public health, economics actuarial science,

biomedical studies, demography and industrial reliability.

The event of interest in latent complementary risk scenarios is related to causes
which are not completely observable; rather we observe only the maximum lifetime
value among all risks. Since it is not possible to observe the lifetime of the event of
interest, the event of interest is modeled as a function of the available information, which
is taken as the maximum ordered lifetime value among all causes. Example of industrial
applications shows that, the failure of a system can be due to several competing causes
such as error in design, contamination from dirt and failure of a component, an assembly
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error and harsh working environments. Furthermore, in medical applications, the death of
a patient can be due to several competing causes such as heart failure, malaria, cancer,

diabetes, dementias, tuberculosis and stroke, among others.

In probability modeling, several researchers proposed different approaches of mixing
distributions in order to establish more flexible distributions. Some of these distributions
were generated by mixing two or more continuous distributions [1], while others by
mixing continuous and discrete probability distributions ([2], [3], [4]). Furthermore,
other authors derived new compounding distributions by mixing continuous distributions
with power series distributions. [5] proposed the compounding of Weibull and power
series distributions, [6] generalized exponential Power series distributions, [7] proposed
the compound class of extended Weibull power series distributions. [8] introduced the
Burr XII power series distributions, [9] introduced the Lindley power series class of
distributions.

In this paper, we consider the mixing of continuous and discrete probability
distributions. These families of distributions provide some flexibility in modeling data in
practical applications; most of the distributions generated by this procedure are obtained
by either compounding the minimum or maximum failure rate of the random variable

distributed according to the continuous distribution under consideration.

Specifically, a new lifetime family of distributions is proposed by compounding the
Kumaraswamy-G family and power series family of distributions. The resulting
distribution is called the Complementary Kumaraswamy-G Power Series (CK-GPS)
distribution.

Various statistical properties of the proposed distribution along with its reliability

features are explored and characterizations are given.

2. The Complementary Kumaraswamy Weibull Power Series (CKWPS)
Distribution

In the classical complementary risk scenarios, it is impossible to observe the lifetime
associated with a particular risk, rather we observe only the maximum lifetime value
among all risk. This implies that only component lifetime of a parallel system is
observed. The basic idea of introducing the CKWPS is that a lifetime of a system with N
(discrete random variable) components and the positive continuous random variable, say
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X; (the lifetime of i™ component), can be denoted by the non-negative random variable
Y =min(X;+ X, +--+Xpy) or ¥ =max(X;+X, +---+ Xy ), based on whether the

components are series or parallel.

Here, a new lifetime family of distributions is proposed by compounding the
Kumaraswamy Weibull family and power series family of distributions. The resulting
distribution is called the Complementary Kumaraswamy Weibull Power Series
(CKWPS) distribution as a complementary to the Kumaraswamy Weibull Power Series
(KWPS) distribution by considering the maximum failure rate of independent and
identically random variables. The time to the last failure can be appropriately modeled
by the Complementary Kumaraswamy Weibull Power Series (CKWPS) class of

distribution.

One of the most important distributions used in modeling lifetime data is the Weibull
distribution, whose cumulative distribution function (cdf) and probability density

function (pdf) are respectively given by
G(x) =1 - exp(-ox)P, X0,B>0 (2.1)
and
g (x) = apxP! exp(—C(x)B, x,0o,p>0 (2.2)
where O is a scale parameter and 3 is a shape parameter.

[10] proposed a generalized class of distribution called the Kumaraswamy Generated
(K-G) distribution which has a cdf given by

b
Qup () =1- [1 - G(x)“] , x,a,b>0 (2.3)
and the corresponding (pdf) given by
b-1

da.p (x) = abg ()G (x)*! [1 - G(x)a] , x,a,b >0 (2.4)

where a and b are additional shape parameters.

The cdf of the Kumaraswamy Weibull distribution is given as:

F(x)=1- (1 -[1- exp{—(O(x)B}]ajb, X, a,b,0,B >0 2.5)
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and the corresponding pdf of Kumaraswamy Weibull distribution is given as:

a—1

7 (x) = aba BGBXB_I exp— ((Jx)B [1 - exp— (Gx)B} [1 - [1 - exp{—(O(x)B}]a)b_l. (2.6)

The Kumaraswamy Weibull Power Series (KWPS) models are obtained by compounding
the Kumaraswamy Weibull and Power Series distributions. The compounding procedure
follows the same set-up pioneered by [11].

The power series family of discrete univariate distributions is credited to [12] even
though the earliest work on this family of distributions is due to [13]. Let N be a discrete

random variable having a power series distribution with probability mass function (pmf)

given by
n
P o=my=m =1 @2.7)
D(6)
where C,, 20 depends only on m, D(6) = ) C,6™ and 8 >0 is such that D(6) is
m=1

finite and its first, second and third derivatives exist and are defined by D'(6), D" (6)
and D"'(6) respectively. [14], [15] have explored the various properties of the power

series family of distributions.

Some members of the Power Series family of distributions alongside their respective
¢us D(B), D'(8), D"(6) and D"'(6) are shown in Table 1 ([12] and [13]), where m is

the number of trials that resulted in n success.

Table 1. Useful quantities for some power series distributions.

Distribution| ¢, D(6) D'(8) D"(6) D"(8) NOR Pasrgiz‘“
Possion | (n!)”! P -1 e® e e log(®@+1) |60(0, »)
Geometric | 1 | 8(1-0)" | (1-6)2 | 20-0)" | 6(1-0)" e@+1)" | 60(0.1)
Logarithmic| (n)™' | —log(1-6) | (1-0)" (1-0)7 2(1-9)7 1= 0o, 1)
Binomial (?) (@+1)" 1| m(1 +0)"" (Z(ﬁ)_z‘l')" m(Te_Jrli)(zﬂ‘l’"_ 2) (0-1)V" -1|60(0, )
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Now, let X;, X,,..., X, be independent and identically distributed (iid) random
variable of size m from the Kumaraswamy-G family of distributions as defined in (2.3)

and (2.4). Suppose N is discrete and follows the power series distribution in (2.7), then
the cdf and pdf of the Complementary Kumaraswamy-G Power Series (CK-GPS) class of
distribution are given by

Fekers (1) = icm( {1 - (1 ~ 6l )a)me

m:

Fekeps (%) = D(®) (2.8)
and

- G(x)[e[ ~fi- G(x)“}bﬂ

Fexaps (x) = abBg ()G (x)* ™ [1 - G ()" D(6)

2.9)

with G(x) as Weibull distribution in (2.9), the cdf and pdf of the proposed CKWPS

family of distributions are given by

0[9{1 - (1 -[1- exp{—(ax)ﬁ}}a)b}]

Fegwes () = p@) ., xa,baB8>0 (210

and

Ffexwes (%) = abO(BBxB_1 exp{—(cxx)B} (1 - exp{—(O()c)B})a_1

D (e{ - (1 -[1- exp{—(O(x)B}]ajb}j

x (1 - [1 - exp{—(ax)BHa) o0 2.11)

respectively.
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3. Some Properties of the CKWPS Distribution

3.1. The survival and hazard rate functions

For a continuous distribution function with pdf (2.10) and cdf (2.11), the survival
function of the CKWPS is given by

D(®) - D{B{l - (1 - [1 - exp{—(O(x)B}]a)bB

Sckwes (x) = D@ , x,a,b,0,6,p>0 (3.1)

and the hazard rate function of the CKWPS is given by

v eof-{oof} -eof-{oof]) (1 -[1-ewf-af]]" |
o0 oo eT ]
D(6) - D(G{l - (1 -[1- exp{—(ax)B}T) B
(3.2)

Proposition 3.1. The Kumaraswamy-Weibull class of distribution is a special case of
the Complementary Kumaraswamy-Weibull Power Series (CKWPS) class of

distributions when 0 approaches 0",
Proof. By the argument of [5] and applying the definition D(8) = )  a,6", we
m=1
obtain

i a, H@ -[1- exp{—(O(x)B}T)me

Fegw-ps (x) =1 - 251 ” : (3.3)

Z a,,o"

m=1

As B - 0%, we write

http://www.earthlinepublishers.com
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i a, H(l -[1- exp{—(ax)ﬁ}}a)me |

hm FCKW -PS (X) =1- hm m=1 .
60" 80"
ZCmBm
m=1

Evaluating this limit gives

N
Sy

m=2

m

lim FCKW -PS (X) =1- hm p”
80" 0-0" -
ap + Z me,, 8"

:{ _(1-[1—exp{—(ax)ﬁ}}“)b} (3.4)

This is the cdf of the Kumaraswamy-Weibull distribution.

Proposition 3.2. The pdf of the Complementary Kumaraswamy-G Power Series
family of distributions can be expressed as an infinite linear combination of density of

the first order statistics of the Kumaraswamy-G distribution as

[e)

Jexwes (1) = ZPm (M = m)fx ) (o m). (3.5)

n=1

where fX (x m) is the pdf of X(m) = = max{X;}'L, and P, (M = m) is as in (2.7).

Proof. Given that D'(6) = Z ma,, 0" ! and from equation (2.11), we have

m=2

Fexwps (¥) = abapexP™! exp{—(O(x)B} [1 - exp{—(orx)B}]a_1 (1 - [1 - —exp{—(orx)B}]a)

S -{--eofh]

x =1
D(®)

b-1

m—1
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[e)

Sfexwps (x) = Z Im (ee) abO(BexB 1exp{ (ax) }[1 - exp{—(O()c)B}]a_1

m—1

x (l -[1- GXP{—(GX)B}T]b_l{ - (1 -[1- exp{—(ax)ﬁ}}a]b}
fxx(m) (o; m) = maba pexP! exp{—(O(x)B} [1 - exp{—(O(x)B}]a_1
- m-1
x(1 -[1- exp{—(O(x)B}T)b 1{ - (1 -[1- exp{—(O(x)B}T)b} . (36
Hence, this completes the proof

3.2. Expansion of the CKWPS density function

Using Proposition 3.2,

Jexwes ( (x; m),

x(m)
m_

where
f X (x; m) = mabaBxP™! eXP{_ (ax)B} [1 - eXp{— (@ x)B}T—I {1 ~ (1 —exp {_(GX)B})a:r)_l |
By the series representation

o0

(-2 = (-1 (a_j i, a>0,|z<1

p=0

=3 [b . "] b ()(Gp ()

p=0
aj+a-1
© b1 . _ [exp(—axs)] 1—[exp(—0(xB)]
= =1\’ B-1 —q+ P
f(x) ;( j j( 1)/ abaBex”"" exp(-ax") p— { p—r—" 3.7)
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aj+a-1

[ﬁ:xp(—axB )}

W(l ~[exp-aP)])

Z( j I AR o BBabxP™ Lexp(- axP)

N B
=2 Z[ j[aﬁa lj( DYt apeabaP™ 1—[ e"(Pe() “1)]‘&]1 —([k+nep-aib)]). 3:8)
i=0 k=0 eXp

00 m
Given that ¢’ = Z t—’ applying this to (3.8) gives
m=0"":

© 00 _\@tatj+k-1 m+l m
= Z Z Z [ ][a] +ka 1] (=) , ab8 (]'C D 0([3xB_1 exp—(m+ 1)0()6B
y m:

[exp(8) =11

00 00 00 aj+a+ j+k-1 m+l m
=3y Z[b J[“J’L“ lj( ) ab® KD 3B (1) oP (exp—d(m+1)x[3)

120 k=0m=0 k) [exp®)-9%  (m+D)!

Z W k.m(a.0,0)g (x;alm +11,B), (3.9)
J.k,m=0
where

woonab® =[P T@ T abe ey
Plom 5 J k [exp(®) - ]¥*¢  (m+D! '

are the weights and g (x; a[m + 1], ) is the Weibull pdf with scale parameter a(m + 1)

and shape parameter [3.

3.3. Quantile function, moments and order statistics of the CKWPS distribution

Proposition 3.3. The quantile function of the CKWPS distribution is obtained by
solving the equation F (x) = U, where F (x) is the cdf of the CKWPS distribution. Then

(3.11)

X =

D_IUD(B)J”

—log<1—-|1—-|1-
e fi-(1- 2

Q|

and D™Y(1) is the inverse of D(I).

Earthline J. Math. Sci. Vol. 4 No. 2 (2020), 361-398
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D{G{l - (1 -[1- exp{—(ax)ﬁ}}a)b}}

D(©)

D™'UD®) = {e{ - (1 -[1- eXp{-(ax)B}mb}

1
a

Proof.

U =

S =

-enftf] -1 22

Q =
=

1
_1 E
x:l —log4l - 1—[1——D UD(G)J
a 0

where U is a uniform random variable on unit interval (0, 1).

The median of the CKWPS distribution is obtained by setting U = 0.5 in (3.11) and

obtain
1
RY:
1 ’ ’
- b
v=L cloghi-|1-[1-22® (3.12)
o 26

th

Proposition 3.4. The r" moment of a CKWPS distributed random variable X is

given by
r _r(r+1)°°m—l m (m_lj j 1
E(X")=—— a8 " m (—1)]—+. (3.13)
a’D(e)mZ:l;) J G+

b
Proof. Since D' is a non-decreasing function, D'[G{l - (1 -1 —exp(—O(x)]a) }j
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< D'(8). Hence by (2.11) f(x) < D—(e)eor e~ %, which implies that E(X") exists.

D(®)
a,,8" . . .
Also f(x) = Z p@E)" (x) describes the density of CKWPS as a mixture, then
i=1
N N 4,0
= 3.14
)= 200 (3.14)
m=1
where Y, has f,, asits density function, and
F(r+1)% - ;
ey ="t )Zm(m . ](—1)1 ;ﬂ (3.15)
a” 5 J (j+1)"

Substituting (3.15) into (3.14) gives equation (3.13).

The first moments about the origin of the CKWPS distribution (the mean) is
obtained by setting » =1 in (3.13), we have

oo m-1
E6) = ”"aD(e)ZZ“ §m ( 'IJHV . (3.16)

m=1j=0

The variance of the CKWPS distribution is given by

Var(X) = 0 = 1ty = ()’

2
0 m-1
r@ < m, (M~ '
-|—= a,,0™m -/ L. 3.17
[“D(@ 2, 2 on i SV Gy e
The coefficient of skewness of the CKWPS distribution is given by

E|(x -] _ M5 - 3ups + 20
[E (x - u)2}3/2 —

Sk = (3.18)

1

(15

Earthline J. Math. Sci. Vol. 4 No. 2 (2020), 361-398
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The coefficient of kurtosis of the CKWPS distribution is given by

-_— 4 I I I
E|(x -] _ My~ 4+ 6pPp -3t (3.19)

Ku = |:E(X ~ u)2:|2 (ll'z _ l'l2)2

and the moment generating function of the CKWPS distribution is given as

o o m-l_ p m— ]
E(X)=M,() = e ZZ t—ame’"m( , j(—1)f ! = (3.20)

Order Statistics

Let the set of observations be ordered as Xy, X5, X3, ..., X,, whereby X; denote the

minimum time to failure and X, denote the maximum time to failure. The trials are

independent and identically distributed. The pdf of the k™ order statistics from the
CKWPS distribution is given as

1 0) = O P - F EEN

Using the identity (1 - z)""! = > =D? (n - ljzp in (3.21) gives
p
_ n'f(x) > p[l’l _kj ptk-1
8in (x) =——> (-] F(x) . (3.22)
(k—l)!(n—k)!pZ:O p, JFE)
Using (2.8) and (2.9) in (3.22), we have

x)D'[6{1 - (1 -
B( n—i+l [D(e)]’”

gisn (1 p) = & Z( j ) {DB{1 - (1= GNP, 323)

where ¢(x) = abg (x)G(x)* [l -G (x)]”™", B(...) denotes the beta function, and

{D[6{1 - (1 - G}

o i+j-1
= {Zanen{l -(- G(X))}"}

n=1
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— ali+j—lei+j—1{1 _ (1 _ G(x))}i+j—1 {ikseg{l _ (1 _ G(x))}SJ , (3.24)

s+0

a
where k; = sto6=1,2,3,....
a

o J
Using the identity (z kszsj =>d j:sZ for positive integer j, we have
s=0

DIO(t = (1= G = Y iy jog, @O (1= G 3.29)

s=0
By the expansion
D'®) = na,0"", 6> 0,
DB -1 -G} =a Y (k+1)b8 {1~ (1 -G} (3.26)

Substituting (3.25) and (3.26) into (3.23), we have

x)ikakek_l{l (i)

gin (i p) = = —
o B(i.n—i+1)[DO)*
S (n-1 N i+ j=lpi+ j+s—1 I+j+s-1
+j-lpi+j+ts— 5=
[ .j(—l)fzd,-+,-_1;sa’f 011 - (1 - GOy T
j=0 J s=0
gin (6 p) = o ( j 1)/ by (ke +1)
B@”‘l+1 / =05=0k=0
x di+j—1-sai+j9i+j+“+k {1-( =GR
n—1 oo oo , .
+ s+
2in () = DD > wi i {l = (= GBI, (3.27)
=05=0£k=0

Earthline J. Math. Sci. Vol. 4 No. 2 (2020), 361-398
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where

CI(X)[” _ j(—l)jbk (k +1)dps joy.s ali+jei+j+s+k
J 5

B(i,n—-i+1)D®O)/

Wi jsk =

(3.27) is the order statistics.
To obtain the pdf of smallest order statistics, substituting i =1 into (3.27) we get

n—1 oo oo

Gun (5 p) = 2w P = (= GEPUTTE) 0<x < (328)

j=05=0k=0

where

-1 ) . .
”‘I(x)(nj j(—l)’ by (k +1)d j. 1@+ sk

Wi, jsk = .
J>S D(e)]+l

The pdf of largest order statistics is obtained by substituting i = n into (3.27) to get

G (@)= DD w P = (=GP g <x <o (329)
s+0k+0

where

nq(x) (_l)j br (k + l)dn+j—1;malj+nej+s+k+”
D(g)*"

Wn,j,s,k =

4. Sub-models of the CKWPS Family of Distribution

In this section, some sub-models of the CKWPS family of distributions are studied.
In particular, the Complementary Kumaraswamy Weibull Poisson (CKWP) distribution

is discussed in details.

The sub-models considered are as follows:

1. For D(6) = ¢® —1, the CKWPS family of distribution reduces to the CKWP
distribution with cdf

http://www.earthlinepublishers.com
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a\P
{ee (1 - (1 - [1 - exp (—O(x)B} ) ﬂ -1
Flxab,a,6) () = 5, , %a,b,8,>0. (4.1)
s

2. For D(6) =6(1-6)"!, the CKWPS family of distribution reduces to the
Complementary Kumaraswamy Weibull Geometric (CKWG) distribution with cdf

9{1 - 9{1 - (1 ~[1-exp (—ax)ﬂa)bﬂ

o[t -6

-1

, x,a,b,0>0. (4.2)

F(x;a,b,ot,e) (x)

3. For D(®)=(0+1)" -1, the CKWPS family of distribution reduces to the
Complementary Kumaraswamy Weibull Binomial (CKWB) distribution with cdf

{1 + 9(1 - (1 ~[1-exp (—ax)ﬂa)bﬂm -1

Fleap,a,0)(*) = (v o1 , x,a,b,8>0. (43)

4. For D(0) = -In(1 - 6), the CKWPS family of distribution reduces to the
Complementary Kumaraswamy Weibull Logarithmic (CKWL) distribution with cdf

~In {1 - 6{1 - (1 ~[1-exp (—ax)Bij}}

—In(1 - 6)

Fle;a,b,0.0) (x) = , x,a,b>0 0<08<1. 44

5.For a=b=1and D(6) = ¢® — 1, the CKWPS family of distribution reduces to
the Complementary Weibull Poisson (CWP) distribution with cdf

i} [ee (1 - (1 - [1 —e exp(—GX)B]))} B 1, x.a.b.0>0. (4.5)
e -1

F(x; a,6) (x)

6.For a=b=1and D(6) =0(1 - 6)_1, the CKWPS family of distribution reduces
to the Complementary Weibull Geometric (CWG) distribution with cdf

_ o1 - 9(1 —(1 -1 —exp(—orx)ﬂ))]_1 A b 850 @.6)
of - o |

F(x;(x,e) ()

Earthline J. Math. Sci. Vol. 4 No. 2 (2020), 361-398
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7.Fora =b =1 and D(8) = (6 +1)" -1, the CKWPS family of distribution reduces
to the Complementary Weibull Binomial (CWB) distribution with cdf

—f1=-[1= —a BT =
F(x;ot,e)(x):|:1+e(1 (1-[1 - exp(-ax)f )] L ese .

1+6)" -1

8.For a =b =1 and D(B) = —In(1 — 6), the CKWPS family of distribution reduces
to the Complementary Weibull Logarithmic (CWL) distribution with cdf

_=inft-6[1- (1= 1 - exp(-af ] rab>0, 0<0<1. (4.8)
=In(1-6) S ’ o

F(x;O(,O) ()

9.For a =1 and D(6) = ¢® —1, the CKWPS family of distribution reduces to the
Complementary Kumaraswamy Standard Weibull Poisson (CKSWP) distribution with

{ee [1 - (1 ~[1-exp (—x)ﬂ“)bﬂ -1

ee—l

Flea,p,6) (¥) = , xa,b,06>0. (4.9)
10. For a =1 and D(6) = 6(1 - G)_l, the CKWPS family of distribution reduces to

the Complementary Kumaraswamy Standard Weibull Geometric (CKSWG) distribution
with cdf

_1 - e{ - (1 ~[1-exp (—x)BT)b]:

o[t -6

D

Flea,p,6) (¥) = , xa,b,06>0. (4.10)
11. For o =1 and D(6) = (6 + 1) —1, the CKWPS family of distribution reduces

to the Complementary Kumaraswamy Standard Weibull Binomial (CKSWB) distribution
with cdf

m

{1 ¥ 9{1 - (1 -[1- exp(—x)ﬂ“)bﬂ -1

Fli;a,b,0) (x) = (+0" -1 , x,a,b,06>0. (4.11)
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12. For a =1and D(B) = —In(l - 6), the CKWPS family of distribution reduces to

the Complementary Kumaraswamy Standard Weibull Logarithmic (CKSWL)
distribution with cdf

~In {1 - 9{1 - (1 ~[1-exp (—x)ﬂ“)b}

Freanpg () = T , 5a,b>0,0<0<1. (412

13. For a =1, a=b=1 and D(B) = ¢® =1, the CKWPS family of distribution
reduces to the Complementary Standard Weibull Poisson (CSWP) distribution with cdf

01 =(1=11=exo(-nB |-
F(x;e)(x):[e (1 (1 [169 e_le( ) ]))] 1, x,a,b,0>0. (4.13)

14.Fora =1, a=b =1 and D(6) = 6(1 - 6)"!, the CKWPS family of distribution
reduces to the Complementary Standard Weibull Geometric (CSWG) distribution with
cdf

I Ul e | I
Fle) () = ofi - 9]_1 , x,a,b,0>0. (4.14)

15. For a=1, a=b=1 and D) =®+1)" -1, the CKWPS family of
distribution reduces to the Complementary Standard Weibull Binomial (CSWB)
distribution with cdf

+0(1-(1-1-exp(=xP]" -
F(x;e)(x)=[1 9(1 (1 [1 P )}))} 1, x,a,b,0>0. (4.15)

1+6)" -1

16.For a =1, a =b =1 and D(B) = —In(l - 6), the CKWPS family of distribution

reduces to the Complementary Standard Weibull Logarithmic (CSWL) distribution with
cdf

a1 - 01 = (1 =[1 - exp(=)®
Flog (9 = e —E;(Ee)exp( : M »ab>0, 0<8<1. (416
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4.1. The complementary Kumaraswamy Weibull Poisson (CKWP) distribution

Here, the pdf, reliability, hazard function, quantile and moments for the CKWP
distribution are studied. The pdf of the CKWP distribution corresponding to (33) is given

as

Jerwe ()= %ﬁxfﬂem (axf (i -exp ("GX)B)Q_I( -[1-exp (—ouc)ﬂa)b_1

x {exp(@{ - [1 - [1 - exp(—O(x)BT)bD - 1}, X, 0,a,p.b6,0>0 (4.17)

where a, b, 3 are shape parameters and a is a scale parameter.

The plots of the pdf and cdf for the CKWP distribution for some selected parameter

values are presented in Figures 1 and 2 respectively.

Figure 1. The cdf plot of the CKWP Figure 2. The cdf plot of the CKWP
distribution density function for some distribution function for some parameter

parameter values. values.

The survival function of the CKWP distribution is given by

(1) - exp Hl (11 exo[acxo (-axs)}]“j"}} -

Sckep (¥) = (ee - 1) ,

x,0,a,b,0,>0. (4.18)
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The plot of the survival function for the CKWP distribution for some selected parameter
values is presented in Figures 3.

Figure 3. Plot of the CKWP distribution survival function for some parameter values.

The hazard rate function of the CKWP distribution is given by

abaBexPexp (—O()c)B (1 - exp (—O(x)B)a (l - [1 - exp(- jb 1

Xexp(@{l —(1 - [1 — exp(- D
® 1) - exp{e{l - (1 ~[1-exp (—le)B]aj }} -1

x,0,a,b,06>0. (4.19)

hegxwe (¥) =

The plot of the hazard rate function for the CKWP distribution for some selected
parameter values is given in Figures 4.

0

\
s

0 1 2 3 4 5

10

05

X

Figure 4. Plot of the CKWP distribution hazard rate functions for some parameter

values.
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Figure 4 clearly shows that the hazard rate function exhibits different shapes relative
to different values of the parameters.

The quantile function of the CKWP distribution is obtained by substituting

D(6) = ¢® -1 and D! ) = % into (14) is given by

1\a

B

1
8./ 0 _\\b
0 (u) :é —logil — 1—[1——6 u(e I)Jb ,

4.20
5 (4.20)

where u is a uniform random variable on unit interval (0, 1). The median (Q,) of the
CKWP distribution is obtained by setting « = 0.5 in (4.20) to get

9,6 _\\»
0 (u) =é ~log{l - 1—(1—MJ 4.21)

The first moments about the origin (the mean) of the CKWP distribution is obtained by
setting r =1 in (3.13), to obtain

E(x):p',_ 2 ZZa 6" m ( lj( [ (4.22)

. 2
ml]O (]+1)

The variance of the CKWP distribution is given by

Var(X) = 0% = 1 - ()?

(j+1)°
o m-1 1 2
a,8"m|" " |(-1) . (4.23)
mzljz;) [ j( ) (+1)?
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The moment generating function of the CKWPS distribution is given by

o o m-—1 r _ '
E(™) =M. () =%222%amemm(mj 1](—1)1 L)

5. Inferences

5.1 Maximum likelihood estimation

Let x,xy,X3,..., X, denote a random sample drawn from the CKWP distribution

with parameters 6, a, B, a and b.

The pdf of the CKWP distribution in (4.19) can be rewritten as

abo 30

f(x)= {m}xﬁ_leﬂxﬁg exp(ee_axﬁjua_l ()c)[(ee -1)* -u ()c)]b_1
x t{l =[(e® =1y ~uf (x)}b}, (5.1)

where u(x) = exp(ee_uxﬁj -1.

The likelihood function f(xy, Xy, x3,...,X,,;6,0,B,a,b) defined to be the joint

density of the random variables xj, x5, x3,..., X

n 1S given as

L(x;0,B,a,b,0) = |‘| f(x;;0,B,a,b,0). (5.2)

The likelihood of the CKWP distribution function is given by

L(x;0,B,a,b,6) = ﬁ{ abO(Bgab} B- 1e_omB eXp(@e_axB)ua_l (x)
=1
x[(2 - 1) —u (x)}b‘lt[1 ~[(® -1y - u (x)}”] (5.3)
and

L = nlog(a) + nlog (b) + nlog(a) + nlog (B) + nlog (6) — n(2ab)log(e® - 1)
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c @)Y log(r) -0 P 403 (0= 1)Sloglu(w)]
i=1 i=1 =1 i=1

+(- l)ilog[(ee 1) =u(x)] + tbzn:log[(ee -0 -u(x)]. (54
i=1 i=1

Let © = (a,B, a,b, G)T be the unknown parameter vector. The score vector which is the

gradient of the log-likelihood function with respect to the parameters being estimated is
given by

T
0L 0L 0L dL aLj ‘ 55)

v =(9. 2 2 % %
Oa 0b da 0p 00
The maximum likelihood estimate of © can be obtained by solving the non-linear

system of equation U, (©) = 0. Thus

oL _n
Pl 2nblog(e Zlog[ (x)]

Ho - )i{(ee 1) loal(e” - 1)'] —u“(z,-)log[u(x,-)]}

i=1 (e” =1)" =[u(x)]
N tbz{(e log[( ] -ut (j)log[u(xi)]} 5.6)
(% =1)" = [u(x)]

aL _n 0 L L 0 a a
o =~ 2naloge® — 1+ ;bg[u(xi)] + ;[(e =D —u ()]

+1y [ €® =D ~u ()] (5.7)

i=1
n au(xz o- 16u(xl
oL _ B _ g% B alu(x )]
6 T +(a- -

aa Z Z Z ;( [u(x )

n o—1 0u(x;)
alu(x)]” ~ =3+ 5.8)
(% -1 = [u(x)1”
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n au(xl)
g_g :% Zlog(x ) - GZ)C log(x;) — GGZ)C log(x; )e - +(a- Dz u(x;)

i=1 i=1 i=1

o- 16u(x,) o- 16u(x,

alu(x; )] alu(x;)]
-b-1 (5.9)
,21:< [u(x )° ;( ® _ 1 u(x e
oL 2nab n n Oulxi)
oL _ n _ 2nabe® _ ae
08 L8 + 2 1e a 1 Z
n 6,6 _ a-1 1au(xl)
2 (® - 1) = [u(x)®
af —1)2 5
p @ - 1) = [u(x)1"
n 06,06 -1 a-1 _ . a-1 au(xi)
+tbaze =D L) % (5.10)

p € -1 = [u(x)1

Setting (5.6), (5.7), (5.8), (5.9) and (5.10) to zero and solving for the solution of the
non-linear system of equations produce the maximum likelihood estimates of parameters

a, l; a, B and 8. However these solutions can only be obtained numerically with the aid

of suitable statistical software like R, SAS etc. Hence, some datasets are considered in
the next section to fit the proposed distribution with other related distributions using

“maxLik” package in R software.
6. Applications

This section presents a real life datasets, the descriptive statistics, graphical summary
and application. Four models (Kumaraswamy-Weibull Distribution (KWD),
Kumaraswamy-Modified Weibull Distribution (KMWD), Kumaraswamy Exponential
Weibull Distribution (KEWD) and Kumaraswamy-Weibull Poisson Distribution
(KWPD)) are applied to a real life dataset alongside the proposed (Complementary
Kumaraswamy-Weibull-Poisson Distribution (CKWPD)). The performance of these
distributions are evaluated and compared using some Model Selection Information
Criteria (MSIC) which include AIC (Akaike Information Criterion), CAIC (Consistent
Akaike Information Criterion), BIC (Bayesian Information Criterion) and HQIC (Hannan

Quin Information Criterion). The MSIC are given as follows:
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AIC = =2Il + 2k, BIC = =2l + klog(n), CAIC = -2l + _ and

(n—k-1)

HQIC = =2II + 2klog[log(n)],

where [/ denotes the log-likelihood value evaluated with the maximum likelihood
estimates, k is the number of model parameters and » is the sample size. The model with

the lowest values of these statistics would be chosen as the best model to fit the dataset.

Data: The data set consists of 63 observations of the strengths of 1.5 cm glass fibers,
originally obtained by workers at the UK National Physical Laboratory. Unfortunately,
the units of measurement are not given in the paper. It has been used by [16], [17], [18],
[19], [20], [21], [22], [23]. It is given as

0.55, 1.28, 1.51, 1.61, 1.70, 2.00, 0.74, 1.29, 1.52, 1.62, 1.7, 2.01, 0.77, 1.3, 1.53, 1.62,
1.73,2.24, 0.81, 1.36, 1.54, 1.63, 1.76, 0.84, 1.39, 1.55, 1.64, 1.76, 0.93, 1.42, 1.55, 1.66,
1.77, 1.04, 1.48, 1.58, 1.66, 1.78, 1.11, 1.48, 1.59, 1.66, 1.81, 1.13, 1.49, 1.6, 1.67, 1.82,
1.24,1.49, 1.61, 1.68, 1.84, 1.25, 1.5, 1.61, 1.68, 1.84, 1.27, 1.50, 1.61, 1.69, 1.89.

Source: Smith and Naylor (1987).

Table 2. Descriptive Statistics for the dataset.

No Minimum (0] Median [0} Mean Maximum Variance Skewness Kurtosis
63 0.550 1.375 1.590 1.685 1.507 2.240 0.105 -0.8786 3.9238
Histogram Boxplot
= - ﬂ . o

I T T 1
0.5 1.0 1.5 2.0

Real life dataset (Nn=63)

Density Mormal Q-Qplot

Density
1
Sample Quantiles

05 10 15 20

00

T T T T T
0.5 1.0 1.5 2.0 2.5

Real life dataset (n=63) Theoretical Quantiles

Figure 5. A graphical summary for the real life data.
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The result in Table 2 and the graphical display in Figure 5 reveal that the dataset is
negatively skewed, and therefore would be flexible for skewed distributions.

Table 3. Performance evaluation of the distributions based on the dataset.

Distributions | Parameter -ll=(-log- | AIC CAIC BIC HQIC Ranks
estimates likelihood

value)

CKWPD =0.30530595 | 5.393076 | 20.78615 | 21.27796 | 35.0463 | 26.58012 1%

(o}

=0.32521237

>

=0.63305191
=0.14508335

IS]Y

S

=0.05181175

KWPD =0.06819696 | 5.581409 | 21.16282 | 21.65462 | 35.4230 | 26.95679 2md

(o}

=0.03372159

>

=0.05090372
=0.01741473

IS]Y

S

=0.05126014

KMWD =0.07465782 | 7.123126 | 24.24625 | 24.73806 | 38.5064 | 30.04022 3

(o}

=2.42877590

>

=0.001600541
=4.80395492

ISHY

S

=5.95925826

KWD =1.34165211 8.545615 | 25.09123 | 25.41643 | 36.4994 | 29.72641 4t

(o}

=0.00722436

=

=1.63128742

IS

S

=0.01331726

KEWD =0.3083907 16.92949 | 43.85899 | 44.35079 | 58.1191 | 49.65296 5t

QD

=0.5765746

>

=0.1949686
=0.2592218

ISH

b =0.4121287
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Figure 6 displayed the histogram and estimated densities and cdfs of the fitted
models for dataset.

Estimated Pdfs for Strength of 1.5cm glass fibers

Estimated Cdfs for Strength of 1.5cm glass fibers

— key

— ckweo o
© — o
KwD.
— — Kkewo
KWPD 3
= A L °
= \ =
L1 frig
74 \
<
s- e
T T T 1 T T T T
05 10 15 20 05 10 15 20
xevalue xvalve

Figure 6. Histogram and plots of the estimated densities (pdfs) and cdfs of the
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QQ-Plot for KEWD QQ-Plot for KWPD
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Figure 7. Probability plots for the fit of the distributions based on the dataset.

Table 3 clearly shows that the CKWPD has smallest values of -//, AIC, BIC, CAIC
and HQIC compared to the other four distributions using the real life dataset. This
provides evidence to show that the CKWPD fits the real life data better than the other
four models. The plot in Figure 6 also reveals that the CKWPD performs better than the
KWPD, KMWD, KWD and KEWD in fitting the dataset. Similarly, the probability plots
displayed in Figure 7 further provide evidence that the proposed distribution (CKWPD)
is more flexible for the dataset than the other four distributions (KWPD, KMWD, KWD
and KEWD).

7. Conclusion

In this paper we have proposed a new member of the Complementary Kumaraswamy
— G Power Series family of distributions obtained by the method of compounding. The
properties of the proposed distribution have been studied. In particular a member of this
family of distribution called the Complementary Kumaraswamy Weibull Poisson
Distribution (CKWPD) or simply CKWP has been extensively discussed. The usefulness
of the CKWPD has been investigated by application to a real life dataset. Results from
the application show that the CKWPD performs better than the KWD, KMWD, KEWD
and KWPD in fitting the dataset.
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Appendix A

The R functions for cdf, pdf, survival and hazard functions diagrams.
a=3

b=3

c=3

d=3

t=2

u=runif(25,0,1)

x=(-(1/c)*log(1-(1-(1-(1/t)*log((1+u*(exp(t)-1))))"(1/b))N(1/a)))(1/d)

pdfckwpd=function(x,a,b,c,d,t)(a*b*c*d*t*x(d-1)*exp(-c*x d)*(1-exp(-c*x"d)) (a-1)*(1-(1-exp(-

c*xA)))Nb-1)*exp(t*(1-(1-(1-exp(-c*x d)*a)"b)))/ (exp(V)-1))
cdfckwpd=function(x,a,b,c,d,t)((exp(t*(1-(1-(1-exp(-c*x"d)*a)"b)))-1) /(exp(t)-1))

stckwpd=function(x,a,b,c,d,t)(1-((exp(t*(1-(1-(1-exp(-c*x"d)*a)"b)))-1) /(exp(t)-1)))

hfckwpd=function(x,a,b,c,d,t)(a*b*c*d*t*x (d-1)*exp(-c*x d)*(1-exp(-c*x"d))(a-1)*(1-(1-exp(-
c*x/d)))N(b-1)*exp(t*(1-(1-(1-exp(-c*x~d) a)"b)))/(exp(t)-1)/(1-((exp(t*(1-(1-(1-exp(-c*x"d) a)"b)))-1)

H(exp(t)-1))))

curve(pdfckwpd(x,1,1,1,1,1),type="n", xlim=c(0,5),ylim=c(0,1.5),ylab="f(x)", main="")
curve(pdfckwpd(x,1,1,1,1,1),from=0,to=10,add=T,lwd=2,col="black",Ity=1)
curve(pdfckwpd(x,1,3,1,1,1),from=0,to=10,add=T,lwd=2,col="red" Ity=1)
curve(pdfckwpd(x,1,1,1,3,1),from=0,to=10,add=T,lwd=2,col="blue",Ity=1)
curve(pdfckwpd(x,1,1,1,1,4),from=0,to=10,add=T,lwd=2,col="green",Ity=1)
curve(pdfckwpd(x,2,1,1,1,3),from=0,to=10,add=T,lwd=2,col="purple",lty=1)
curve(pdfckwpd(x,4,1,1,1,1),from=0,to=10,add=T,lwd=2,col="cyan",Ity=1)
curve(pdfckwpd(x,4,1,2,1,1),from=0,to=10,add=T,lwd=2,col="orange",Ity=1)
curve(pdfckwpd(x,1,1,1,2,1),from=0,to=10,add=T,lwd=2,col="gold"Ity=1)

legend(locator(1) ,cex=0.8,title="key",c(expression(paste(a,"=1,",b,"=1,", alpha,"=1,",
beta,"=1,",  theta,"=1")), expression(paste(a,"=1,",b,"=3,", alpha,"=1,", beta,"=1,",
expression(paste(a,"=1,",b,"=1,", alpha,"=1,", beta,"=3,", theta,"=1")),
expression(paste(a,"=1,",b,"=1,", alpha,"=1,", beta,"=1,", theta,"=4")),
expression(paste(a,"=2,",b,"=1,", alpha,"=1,", beta,"=1,", theta,"=3")),
expression(paste(a,"=4,",b,"=1,", alpha,"=1,", beta,"=1,", theta,"=1")),
expression(paste(a,"=4,",b,"=1,", alpha,"=2,", beta,"=1,", theta,"=1")),

theta,"=1")),
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expression(paste(a,"=1,",b,"=1,", alpha,"=1,", beta,"=2,",
theta,"=1"))),horiz=FALSE,Ity=c(1,1,1,1,1,1,1,1),lwd=c(2,2,2,2,2,2,2,2),

"o non non nn

bty="n",col=c("black","red","blue","green", "purple","cyan","orange","gold"))
curve(cdfckwpd(x,1,1,1,1,1),type="n", xlim=c(0,5),ylim=c(0,1),ylab="F(x)", main="")
curve(cdfckwpd(x,1,1,1,1,1),from=0,to=10,add=T,lwd=2,col="black",Ity=1)
curve(cdfckwpd(x,1,3,1,1,1),from=0,to=10,add=T,lwd=2,col="red" Ity=1)
curve(cdfckwpd(x,1,1,1,3,1),from=0,to=10,add=T,lwd=2,col="blue",Ity=1)
curve(cdfckwpd(x,1,1,1,1,4),from=0,to=10,add=T,lwd=2,col="green",Ity=1)
curve(cdfckwpd(x,2,1,1,1,3),from=0,to=10,add=T,lwd=2,col="purple",Ity=1)
curve(cdfckwpd(x,4,1,1,1,1),from=0,to=10,add=T,lwd=2,col="cyan",Ity=1)
curve(cdfckwpd(x,4,1,2,1,1),from=0,to=10,add=T,lwd=2,col="orange",Ity=1)
curve(cdfckwpd(x,1,1,1,2,1),from=0,to=10,add=T,lwd=2,col="gold",Ity=1)

legend(locator(1) ,cex=0.8,title="key",c(expression(paste(a,"=1,",b,"=1,", alpha,"=1,",

beta,"=1,",  theta,"=1")), expression(paste(a,'=1,",b,"=3,", alpha,"=1,", beta,"=1,", theta,"=1")),
expression(paste(a,"=1,",b,"=1,", alpha,"=1,", beta,"=3,", theta,"=1")),

expression(paste(a,"=1,",b,"=1,", alpha,"=1,", beta,"=1,", theta,"=4")),

expression(paste(a,"=2,",b,"=1,", alpha,"=1,", beta,"=1,", theta,"=3")),

expression(paste(a,"=4,",b,"=1,", alpha,"=1,", beta,"=1,", theta,"=1")),

expression(paste(a,"=4,",b,"=1,", alpha,"=2,", beta,"=1,", theta,"=1")),

expression(paste(a,"=1,",b,"=1,", alpha,"=1,", beta,"=2,",
theta,"=1"))),horiz=FALSE,Ity=c(1,1,1,1,1,1,1,1),lwd=c(2,2,2,2,2,2,2,2),

"o

bty="n",col=c("black","red","blue","green","purple","cyan","orange","gold"))
curve(sfckwpd(x,1,1,1,1,1),type="n", xlim=c(0,5),ylim=c(0,1),ylab="S(x)",main="")
curve(sfckwpd(x,1,1,1,1,1),from=0,to=10,add=T,lwd=2,col="black",Ity=1)
curve(sfckwpd(x,1,3,1,1,1),from=0,to=10,add=T,lwd=2,col="red",Ity=1)
curve(sfckwpd(x,1,1,1,3,1),from=0,to=10,add=T,lwd=2,col="blue",Ity=1)
curve(sfckwpd(x,1,1,1,1,4),from=0,to=10,add=T,lwd=2,col="green",Ity=1)
curve(sfckwpd(x,2,1,1,1,3),from=0,to=10,add=T,lwd=2,col="purple",lty=1)
curve(sfckwpd(x,4,1,1,1,1),from=0,to=10,add=T,Ilwd=2,col="cyan",Ity=1)
curve(sfckwpd(x,4,1,2,1,1),from=0,to=10,add=T,Ilwd=2,col="orange",Ity=1)
curve(sfckwpd(x,1,1,1,2,1),from=0,to=10,add=T,lwd=2,col="gold",Ity=1)

legend(locator(1) ,cex=0.8,title="key",c(expression(paste(a,"=1,",b,"=1,", alpha,"=1,",

beta,"=1,", theta,"=1,")), expression(paste(a,"=1,",b,"=3,", alpha,"=1,", beta,"=1,", theta,"=1,")),
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expression(paste(a,"=1,",b,"=1,", alpha,"=1,", beta,"=3,", theta,"=1,")),
expression(paste(a,"=1,",b,"=1,", alpha,"=1,", beta,"=1,", theta,"=4,")),
expression(paste(a,"=2,",b,"=1,", alpha,"=1,", beta,"=1,", theta,"=3,")),
expression(paste(a,"=4,",b,"=1,", alpha,"=1,", beta,"=1,", theta,"=1,")),
expression(paste(a,"=4,",b,"=1,", alpha,"=2,", beta,"=1,", theta,"=1,")),
expression(paste(a,"=1,",b,"=1,", alpha,"=1,", beta,"=2,",
theta,"=1,"))),horiz=FALSE,Ity=c(1,1,1,1,1,1,1,1),lwd=c(2,2,2,2,2,2,2,2),

bty="n",col=c("black","red","blue","green", "purple","cyan","orange","gold"))
curve(hfckwpd(x,1,1,1,1,1),type="n", xlim=c(0,5),ylim=c(0,1.5),ylab="h(x)", main="")
curve(hfckwpd(x,1,1,1,1,1),from=0,to=10,add=T,lwd=2,col="black",Ity=1)
curve(hfckwpd(x,1,3,1,1,1),from=0,to=10,add=T,lwd=2,col="red",1ty=1)
curve(hfckwpd(x,1,1,1,3,1),from=0,to=10,add=T,lwd=2,col="blue",Ity=1)
curve(hfckwpd(x,1,1,1,1,4),from=0,to=10,add=T,lwd=2,col="green",Ity=1)
curve(hfckwpd(x,2,1,1,1,3),from=0,to=10,add=T,lwd=2,col="purple",lty=1)
curve(hfckwpd(x,4,1,1,1,1),from=0,to=10,add=T,lwd=2,col="cyan",Ity=1)
curve(hfckwpd(x,4,1,2,1,1),from=0,to=10,add=T,Ilwd=2,col="orange",Ity=1)
curve(hfckwpd(x,1,1,1,2,1),from=0,to=10,add=T,lwd=2,col="gold",Ity=1)

legend(locator(1) ,cex=0.8,title="key" c(expression(paste(a,'=1,",b,"=1,", alpha,"=1,",
beta,"=1,", theta,"=1,")), expression(paste(a,"=1,",b,"=3,", alpha,"=1,", beta,"=1,", theta,"=1,")),
expression(paste(a,"=1,",b,"=1,", alpha,"=1,", beta,"=3,", theta,"=1,")),
expression(paste(a,"=1,",b,"=1,", alpha,"=1,", beta,"=1,", theta,"=4,")),
expression(paste(a,"=2,",b,"=1,", alpha,"=1,", beta,"=1,", theta,"=3.")),
expression(paste(a,"=4,",b,"=1,", alpha,"=1,", beta,"=1,", theta,"=1,")),
expression(paste(a,"=4,",b,"=1,", alpha,"=2,", beta,"=1,", theta,"=1,")),
expression(paste(a,"=1,",b,"=1,", alpha,"=1,", beta,"=2,",
theta,"=1,"))),horiz=FALSE,Ity=c(1,1,1,1,1,1,1,1),lwd=c(2,2,2,2,2,2,2,2),

bty="n",col=c("black","red","blue","green","purple","cyan","orange","gold"))
Appendix B

The R function estimates the model parameters.
library(AdequacyModel)

x=c(0.55,1.28,1.51,1.61,1.70,2.00,0.74,1.29,1.52,1.62,1.7,2.01,0.77,1.3,1.53,1.62,1.73,2.24,0.81,1.36,1.54,1
.63,1.76,0.84,1.39,1.55,1.55,1.64,1.76,0.93,1.42,1.55,1.66,1.77,1.04,1.48,1.58,1.66,1.78,1.11,1.48,1.59,1.66
,1.81,1.13,1.49,1.6,1.67,1.82,1.24,1.49,1.61,1.68,1.84,1.25,1.5,1.61,1.68,1.84,1.27,1.50,1.61,1.69,1.89)

pdfckwpd=function(x,par){
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alpha=par[1]
beta=par[2]
theta=par[3]
a=par[4]
b=par[5]

a*b*alpha*beta*theta*x”(beta-1)*exp(-alpha*x”beta)*(1-exp(-alpha*x"beta))"(a-1)*(1-(1-exp(-
alpha*x”beta)))"(b-1)*exp(theta*(1-(1-(1-exp(-alpha*x”~beta)*a)"b)))/ (exp(theta)-1)

}

cdfckwpd=function(x,par){

alpha=par[1]

beta=par[2]

theta=par[3]

a=par[4]

b=par[5]

(exp(theta*(1-(1-(1-exp(-alpha*x"beta)*a)"b)))-1) /(exp(theta)-1)
}

resultckwpd=goodness.fit(pdf=pdfckwpd,cdf=cdfckwpd,starts=c(1,1,1,1,1),data=x,method="PSO",domain=c
(0,Inf),mle=NULL,lim_inf=c(0,0,0.1,0,0),lim_sup=c(10,10,0.9,10,10))

resultckwpd
pdfkwd=function(x,par){
alpha=par[1]

beta=par[2]

a=par[3]

b=par[4]

a*b*alpha*beta*x”(beta-1)*exp(-alpha*x beta)*(1-exp(-alpha*x"beta))*(a-1)*(1-(1-exp(-
alpha*x/beta))*a)*(b-1)

}
cdfkwd=function(x,par){
alpha=par[1]

beta=par[2]
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a=par[3]

b=par[4]
1-(1-(1-exp(-alpha*x”beta))*a)"b
}

resultkwd=goodness.fit(pdf=pdfkwd,cdf=cdtkwd,starts=c(1,1,1,1),data=x,method="PSO",domain=c(0,Inf),m
le=NULL,lim_inf=c(0,0,0,0),lim_sup=c(10,10,10,10))

resultkwd

pdfkmwd=function(x,par){
alpha=par[1]

beta=par[2]

theta=par[3]

a=par[4]

b=par[5]

a*b*alpha*x”(beta-1)*(beta+theta*x)*exp(theta*x-alpha*x/beta*exp(theta*x))*(1-exp(-
alpha*x”beta*exp(theta*x)))"(a-1)*(1-(1-exp(-alpha*x” beta*exp(theta*x)))*a)(b-1)

}

cdfkmwd=function(x,par){

alpha=par[1]

+ beta=par|[2]

+ theta=par[3]

+ a=par[4]

+ b=par[5]

+ 1-(1-(1-exp(-alpha*x"beta*exp(theta*x)))"a) b
+}

>
resultkmwd=goodness.fit(pdf=pdfkmwd,cdf=cdfkmwd,starts=c(1,1,1,1,1),data=x,method="PSO",domain=c(
0,Inf),mle=NULL,lim_inf=c(0,0,0,0,0),lim_sup=c(10,10,10,10,10))

> resultkmwd

> pdfkewd=function(x,par){
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+ alpha=par[ 1]
+ beta=par[2]
+ theta=par[3]
+ a=par[4]

+ b=par[5]

+ a*b*(theta+beta*alpha*x”(beta-1))*exp(-(theta*x+alpha*x/beta))*(1-exp(-(theta*x+alpha*x~beta)))"(a-
1)*(1-(1-exp(-(theta*x+alpha*x"beta))) a)(b-1)

+}

> cdfkewd=function(x,par) {

+ alpha=par[1]

+ beta=par|[2]

+ theta=par[3]

+ a=par[4]

+ b=par[5]

+ 1-(1-(1-exp(-(theta*x+alpha*x”beta)))*a)"b
+}

>
resultkewd=goodness.fit(pdf=pdfkewd,cdf=cdfkewd,starts=c(1,1,1,1,1),data=x,method="PSO",domain=c(0,I
nf),mle=NULL,lim_inf=c(0,0,0,0,0),lim_sup=c(10,10,10,10,10))

> resultkewd

> pdfkwpd=function(x,par){
+ alpha=par[1]

+ beta=par[2]

+ theta=par[3]

+ a=par[4]

+ b=par[5]

+ a*b*alpha*beta*theta*x”(beta-1)*exp(-alpha*x"beta)*(1-exp(-alpha*x"beta))"(a-1)*(1-(1-exp(-
alpha*x”beta))*a)"(b-1)*exp(-theta*(1-(1-(1-exp(-alpha*x"beta))*a)"b))*(1-exp(-theta))*(-1)

+}
> cdtkwpd=function(x,par){

+ alpha=par[1]
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+ beta=par[2]
+ theta=par(3]

+ a=par[4]

+ b=par[5]

+ (1-exp(-theta*(1-(1-(1-exp(-alpha*xAbeta))*a) b)))*(1-exp(-theta))(-1)
+}

>
resultkwpd=goodness.fit(pdf=pdfkwpd,cdf=cdftkwpd,starts=c(1,1,1,1,1),data=x,method="PSO" ,domain=c(0,I
nf),mle=NULL,lim_inf=c(0,0,0,0,0),lim_sup=c(10,10,10,10,10))

> resultkwpd
Appendix C

The R function for estimated densities of the distribution and the probability plot.

pdfckwpd=function(x,alpha,beta,theta,a,b)(a*b*alpha*beta*theta*x”(beta-1)*exp(-alpha*x"beta)*(1-exp(-
alpha*x”beta))”(a-1)*(1-(1-exp(-alpha*x”beta)))(b-1)*exp(theta*(1-(1-(1-exp(-alpha*x"beta)*a)"b)))/
(exp(theta)-1))

cdfckwpd=function(x,alpha,beta,theta,a,b)((exp(theta*(1-(1-(1-exp(-alpha*x"beta)*a)"b)))-1) /(exp(theta)-1))

pdfkwd=function(x,alpha,beta,a,b)(a*b*alpha*beta*x(beta-1)*exp(-alpha*x beta)*(1-exp(-
alpha*x”beta))”(a-1)*(1-(1-exp(-alpha*x~beta))*a)(b-1))

cdfkwd=function(x,alpha,beta,a,b)(1-(1-(1-exp(-alpha*x” beta))*a)"b)

pdfkmwd=function(x,alpha,beta,theta,a,b)(a*b*alpha*x(beta-1)*(beta+theta*x)*exp(theta*x-
alpha*x”beta*exp(theta*x))*(1-exp(-alpha*x beta*exp(theta*x)))*(a-1)*(1-(1-exp(-
alpha*x”beta*exp(theta*x)))*a)*(b-1))

cdfkmwd=function(x,alpha,beta,theta,a,b)(1-(1-(1-exp(-alpha*x"beta*exp(theta*x)))*a)"b)

pdfkewd=function(x,alpha,beta,theta,a,b)(a*b*(theta+beta*alpha*x”(beta-1))*exp(-
(theta*x+alpha*x”beta))*(1-exp(-(theta*x+alpha*x/beta)))"(a-1)*(1-(1-exp(-(theta*x+alpha*x”beta))) a)"(b-
D)

cdfkewd=function(x,alpha,beta,theta,a,b)(1-(1-(1-exp(-(theta*x+alpha*x"beta)))*a)"b)

pdfkwpd=function(x,alpha,beta,theta,a,b)(a*b*alpha*beta*theta*x (beta-1)*exp(-alpha*x beta)*(1-exp(-
alpha*x”beta))”(a-1)*(1-(1-exp(-alpha*x”beta))*a)(b-1)*exp(-theta*(1-(1-(1-exp(-alpha*x” beta)) a)"b))*(1-
exp(-theta))*(-1))

cdfkwpd=function(x,alpha,beta,theta,a,b)((1-exp(-theta*(1-(1-(1-exp(-alpha*x"beta))"a)"b)))*(1-exp(-
theta))(-1))
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x=c(0.55,1.28,1.51,1.61,1.70,2.00,0.74,1.29,1.52,1.62,1.7,2.01,0.77,1.3,1.53,1.62,1.73,2.24,0.81,1.36,1.54,1
.63,1.76,0.84,1.39,1.55,1.55,1.64,1.76,0.93,1.42,1.55,1.66,1.77,1.04,1.48,1.58,1.66,1.78,1.11,1.48,1.59,1.66
,1.81,1.13,1.49,1.6,1.67,1.82,1.24,1.49,1.61,1.68,1.84,1.25,1.5,1.61,1.68,1.84,1.27,1.50,1.61,1.69,1.89)

hist(x,prob=T,xlab="x-value",ylab="f(x)",main="Estimated Pdfs for strengths of 1.5 cm glass fibers")
curve(pdfckwpd(x,1.4883772,1.1298867,0.8288365,1.4584510,1.2212270),add=T,lty=1,lwd=2,col="red")
curve(pdfkwd(x,0.8605495,0.9278466,0.8633339,0.9021568),add=T.Ity=1,lwd=2,col="blue")
curve(pdfkmwd(x,0.5971527,0.5931218,0.5825983,0.5773604,0.5723678),add=T.lty=1,lwd=2,col="orange")
curve(pdfkewd(x,0.2639996,0.2515058,0.2226657,0.2535793,0.2308934),add=T,1ty=1,lwd=2,col="green")
curve(pdfkwpd(x,0.6006863,0.5996338,0.5994494,0.5987368,0.5989666),add=T,Ity=1,lwd=2,col="cyan")

legend(“topright”,cex=0.8, title="key",c("CKWPD","KWD","KMWD","KEWD","KWPD"),bty="n",horiz=F
ALSE, Ity=c(1,1,1),lwd=c(2,2,2,2,2),col=c("red","blue","orange","green","cyan"))

plot(ecdf(x),xlab="x-value",ylab="F(x)",main="Estimated Cdfs for strengths of 1.5 cm glass fibers")
curve(cdfckwpd(x,1.4883772,1.1298867,0.8288365,1.4584510,1.2212270),add=T.lty=1,lwd=2,col="red")
curve(cdfkwd(x,0.8605495,0.9278466,0.8633339,0.9021568),add=T,1ty=1,lwd=2,col="blue")
curve(cdfkmwd(x,0.5971527,0.5931218,0.5825983,0.5773604,0.5723678),add=T 1ty=1,lwd=2,col="orange")
curve(cdfkewd(x,0.2639996,0.2515058,0.2226657,0.2535793,0.2308934),add=T,lty=1,lwd=2,col="green")
curve(cdfkwpd(x,0.6006863,0.5996338,0.5994494,0.5987368,0.5989666),add=T,Ity=1,lwd=2,col="cyan")

legend(“topright”,cex=0.8,title="key",c("ECDF","CKWPD","KWD","KMWD","KEWD","KWPD"),bty="n",
horiz=FALSE,Ity=c(6,1,1,1,1,1),Iwd=c(3,2,2,2,2,2),col=c("black","red","blue","orange","green","cyan"))

n=length(x)

y=sort(x)

z=1mn

a=z/n
A=cdfckwpd(y,1.4883772,1.1298867,0.8288365,1.4584510,1.2212270)
B=cdfkwd(y,0.8605495,0.9278466,0.8633339,0.9021568)
C=cdfkmwd(y,0.5971527,0.5931218,0.5825983,0.5773604,0.5723678)
D=cdfkmwd(y,0.5971527,0.5931218,0.5825983,0.5773604,0.5723678)
E=cdfkwpd(y,0.6006863,0.5996338,0.5994494,0.5987368,0.5989666)
qqplot(a,A,xlab="Observed Probability", ylab="Expected Probability", main="QQ-Plot for CKWPD")
abline(0,1,col="red")

qqplot(a,B,xlab="Observed Probability", ylab="Expected Probability", main="QQ-Plot for KWD")

Earthline J. Math. Sci. Vol. 4 No. 2 (2020), 361-398



398 Innocent Boyle Eraikhuemen, Julian Ibezimako Mbegbu and Friday Ewere

abline(0,1,col="blue")

qqplot(a,C,xlab="Observed Probability", ylab="Expected Probability", main="QQ-Plot for KMWD")
abline(0,1,col="orange")

qqplot(a,D,xlab="Observed Probability", ylab="Expected Probability", main="QQ-Plot for KEWD")
abline(0,1,col="green")

qqplot(a,E.xlab="Observed Probability", ylab="Expected Probability", main="QQ-Plot for KWPD")

abline(0,1,col="cyan")
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