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Complementary Kumaraswamy Weibull Power Series Distribution: 

Some Properties and Application 

Innocent Boyle Eraikhuemen, Julian Ibezimako Mbegbu and Friday Ewere   

Abstract 

In this paper, we propose Complementary Kumaraswamy Weibull Power Series 

(CKWPS) Distributions. The method is obtained by compounding the Kumaraswamy-G 

distribution and Power Series distribution on a latent complementary distance problem 

base. The mathematical properties of the proposed class of distribution are studied. The 

method of Maximum Likelihood Estimation is used for obtaining the estimates of the 

model parameters. A member of the family is investigated in detail. Finally an application 

of the proposed class is illustrated using a real data set. 

1. Introduction 

In recent times, several compound models have been developed by complementary 

risk motivation and applied in several areas. Complementary risk problems arise in 

several areas, such as engineering, public health, economics actuarial science, 

biomedical studies, demography and industrial reliability.  

The event of interest in latent complementary risk scenarios is related to causes 

which are not completely observable; rather we observe only the maximum lifetime 

value among all risks. Since it is not possible to observe the lifetime of the event of 

interest, the event of interest is modeled as a function of the available information, which 

is taken as the maximum ordered lifetime value among all causes. Example of industrial 

applications shows that, the failure of a system can be due to several competing causes 

such as error in design, contamination from dirt and failure of a component, an assembly 
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error and harsh working environments. Furthermore, in medical applications, the death of 

a patient can be due to several competing causes such as heart failure, malaria, cancer, 

diabetes, dementias, tuberculosis and stroke, among others. 

In probability modeling, several researchers proposed different approaches of mixing 

distributions in order to establish more flexible distributions. Some of these distributions 

were generated by mixing two or more continuous distributions [1], while others by 

mixing continuous and discrete probability distributions ([2], [3], [4]). Furthermore, 

other authors derived new compounding distributions by mixing continuous distributions 

with power series distributions. [5] proposed the compounding of Weibull and power 

series distributions, [6] generalized exponential Power series distributions, [7] proposed 

the compound class of extended Weibull power series distributions. [8] introduced the 

Burr XII power series distributions, [9] introduced the Lindley power series class of 

distributions. 

In this paper, we consider the mixing of continuous and discrete probability 

distributions. These families of distributions provide some flexibility in modeling data in 

practical applications; most of the distributions generated by this procedure are obtained 

by either compounding the minimum or maximum failure rate of the random variable 

distributed according to the continuous distribution under consideration. 

Specifically, a new lifetime family of distributions is proposed by compounding the 

Kumaraswamy-G family and power series family of distributions. The resulting 

distribution is called the Complementary Kumaraswamy-G Power Series (CK-GPS) 

distribution. 

Various statistical properties of the proposed distribution along with its reliability 

features are explored and characterizations are given. 

2. The Complementary Kumaraswamy Weibull Power Series (CKWPS) 

Distribution 

In the classical complementary risk scenarios, it is impossible to observe the lifetime 

associated with a particular risk, rather we observe only the maximum lifetime value 

among all risk. This implies that only component lifetime of a parallel system is 

observed. The basic idea of introducing the CKWPS is that a lifetime of a system with N 

(discrete random variable) components and the positive continuous random variable, say 
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iX  (the lifetime of th
i  component), can be denoted by the non-negative random variable 

( )1 2min NY X X X= + + +⋯  or ( )1 2max ,NY X X X= + + +⋯  based on whether the 

components are series or parallel. 

Here, a new lifetime family of distributions is proposed by compounding the 

Kumaraswamy Weibull family and power series family of distributions. The resulting 

distribution is called the Complementary Kumaraswamy Weibull Power Series 

(CKWPS) distribution as a complementary to the Kumaraswamy Weibull Power Series 

(KWPS) distribution by considering the maximum failure rate of independent and 

identically random variables. The time to the last failure can be appropriately modeled 

by the Complementary Kumaraswamy Weibull Power Series (CKWPS) class of 

distribution. 

One of the most important distributions used in modeling lifetime data is the Weibull 

distribution, whose cumulative distribution function (cdf) and probability density 

function (pdf) are respectively given by  

 ( ) ( )1 exp , , , 0G x x x
β= − −α α β >  

 (2.1) 

and 

 ( ) ( )1 exp , , , 0g x x x x
ββ−= αβ −α α β >   (2.2) 

where α  is a scale parameter and β  is a shape parameter. 

[10] proposed a generalized class of distribution called the Kumaraswamy Generated 

(K-G) distribution which has a cdf given by 

 
( ) ( ), 1 1 , , , 0

ba
a bQ x G x x a b = − − >

 
 (2.3) 

and the corresponding (pdf) given by 

 
( ) ( ) ( ) ( )

11
, 1 , , , 0

ba a
a bq x abg x G x G x x a b

−−  = − >
    

(2.4) 

where a and b are additional shape parameters. 

 The cdf of the Kumaraswamy Weibull distribution is given as: 

 

( ) ( ){ }1 1 1 exp , , , , , 0
ba

F x x x a b
β  = − − − − α α β >     

(2.5)                                                                  
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and the corresponding pdf of Kumaraswamy Weibull distribution is given as: 

 

( ) ( ) ( ) ( ){ }
111 exp 1 exp 1 1 exp .

ba a
f x ab x x x x

−−β β ββ β−     = αβα − α − − α − − − α     
  (2.6) 

The Kumaraswamy Weibull Power Series (KWPS) models are obtained by compounding 

the Kumaraswamy Weibull and Power Series distributions. The compounding procedure 

follows the same set-up pioneered by [11].  

The power series family of discrete univariate distributions is credited to [12] even 

though the earliest work on this family of distributions is due to [13]. Let N be a discrete 

random variable having a power series distribution with probability mass function (pmf) 

given by 

 

( )
( )

, 1, 2, ...
m

mc
P M m m

D

θ= = =
θ

  (2.7) 

where 0mC ≥  depends only on m, ( )
1

m
m

m

D C
∞

=
θ = θ  and 0θ >  is such that ( )D θ  is 

finite and its first, second and third derivatives exist and are defined by ( ) ,D′ θ ( )D′′ θ  

and ( )D′′′ θ  respectively. [14], [15] have explored the various properties of the power 

series family of distributions. 

Some members of the Power Series family of distributions alongside their respective   

,mc  ( ) ,D θ  ( ) ,D′ θ  ( )D′′ θ  and ( )D′′′ θ  are shown in Table 1 ([12] and [13]), where m is 

the number of trials that resulted in n success. 

Table 1. Useful quantities for some power series distributions. 

Distribution nc  ( )θD  ( )θ′D  ( )θ′′D  ( )θ′′′D  ( ) 1−θD  
Parameter 

space 

Possion ( ) 1
!

−
n  1−θ

e  θ
e  θ

e  θ
e  ( )1log +θ  ( )∞∈θ ,0  

Geometric 1 ( ) 1
1

−θ−θ  ( ) 2
1

−θ−  ( ) 3
12

−θ−  ( ) 4
16

−θ−  ( ) 1
1

−+θθ  ( )1,0∈θ  

Logarithmic ( ) 1−
n  ( )θ−− 1log  ( ) 1

1
−θ−  ( ) 2

1
−θ−  ( ) 3

12
−θ−  θ−− e1  ( )1,0∈θ  

Binomial ( )m
n  ( ) 11 −+θ m

 ( ) 1
1

−θ+ m
m  

( )
( ) m

mm
−+θ

−
2

1

1
 

( ) ( )
( ) m

mmm
−+θ

−−
2

1

21
 ( ) 11

1 −−θ m  ( )∞∈θ ,0  
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Now, let 1 2, , ..., MX X X
 
be independent and identically distributed (iid) random 

variable of size m from the Kumaraswamy-G family of distributions as defined in (2.3) 

and (2.4). Suppose N is discrete and follows the power series distribution in (2.7), then 

the cdf and pdf of the Complementary Kumaraswamy-G Power Series (CK-GPS) class of 

distribution are given by 

( )
( )

( )( ){ }1
1 1

mba
CKGPS m

m i

F x c G x
D

∞

=

 = θ − − θ  
 

( )
( ){ }

( )

1 1
ba

CKGPS

D G x

F x
D

  θ − −    =
θ

  

 (2.8) 

and 

( ) ( ) ( ) ( )[ ]
( ) ( ){ }

( )
11

1 1 1

1

ba

ba
CKGPS

G x G x

f x ab g x G x G x
D

−−
  − θ − −    = θ −

θ
     (2.9) 

with ( )G x  as Weibull distribution in (2.9), the cdf and pdf of the proposed CKWPS 

family of distributions are given by 

( )
( ){ }

( )

1 1 1 exp

, , , , , 0

ba

CKWPS

D x

F x x a b
D

β     θ − − − − α         = α θ >
θ

      (2.10) 

and 

( ) ( ){ } ( ){ }( ) 11 exp 1 exp
a

CKWPSf x ab x x x
−β ββ−= αβθ − α − − α

 

( ){ }
( ){ }1

1 1 1 exp

1 1 exp
( )

ba

ba
D x

x
D

β
−

β

     ′ θ − − − − α            × − − − α   θ 
  (2.11) 

respectively. 
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3.  Some Properties of the CKWPS Distribution 

3.1. The survival and hazard rate functions 

For a continuous distribution function with pdf (2.10) and cdf (2.11), the survival 

function of the CKWPS is given by 

( )
( ){ }

( )

( ) 1 1 1 exp

, , , , , , 0

ba

CKWPS

D D x

S x x a b
D

β     θ − θ − − − − α         = α θ β >
θ

  

(3.1) 

and the hazard rate function of the CKWPS is given by 

( )

( ){ } ( ){ }( ) ( ){ }
( ){ }

( ) ( ){ }

111 exp 1 exp 1 1 exp

1 1 1 exp

.

1 1 1 exp

ba a

ba

CKWPS ba

ab x x x x

D x

h x

D D x

−−β β ββ−

β

β

  αβθ − α − − α − − − α   

     ′× θ − − − − α         =
     θ − θ − − − − α         

 

(3.2) 

Proposition 3.1. The Kumaraswamy-Weibull class of distribution is a special case of 

the Complementary Kumaraswamy-Weibull Power Series (CKWPS) class of 

distributions when θ  approaches 0 .+  

Proof. By the argument of [5] and applying the definition ( )
1

,m
m

m

D a
∞

=
θ = θ  we 

obtain 

 

( )
( ){ }

1

1

1 1 exp

1 .

m
ba

m

m
CKW PS

n
m

m

a x

F x

a

∞
β

=
− ∞

=

     θ − − − α         = −

θ




 

(3.3) 

As 0 ,+θ →  we write 
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( )
( ){ }

1

0 0

1

1 1 exp

lim 1 lim .

m
ba

m

m
CKW PS

m
m

m

a x

F x

c
+ +

∞
β

=
− ∞θ→ θ→

=

     θ − − − α         = −

θ




 

Evaluating this limit gives 

( ){ }

( ){ }

1

1

2

0 0 1
1

2

1 1 exp

1 1 exp

lim ( ) 1 lim

ba

mbam
m

m
CKW PS

m
m

m

a x

ma x

F x

a mc
+ +

β

∞
β−

=
− ∞θ→ θ→ −

=

    − − − α      

    + θ − − − α      = −

+ θ




 

( ){ }1 1 1 exp .
ba

x
β    = − − − − α        

(3.4) 

This is the cdf of the Kumaraswamy-Weibull distribution. 

Proposition 3.2. The pdf of the Complementary Kumaraswamy-G Power Series 

family of distributions can be expressed as an infinite linear combination of density of 

the first order statistics of the Kumaraswamy-G distribution as 

 

( ) ( )
( )

( )
1

; ,
x m

CKWPS m X

n

f x P M m f x m

∞

=
= =

 

 (3.5) 

where 
( )

( );
x m

Xf x m  is the pdf of ( ) { } 1
max

m
im i

X X ==  and ( )mP M m=  is as in (2.7). 

Proof. Given that ( ) 1

2

m
m

m

D ma
∞

−

=
′ θ = θ  and from equation (2.11), we have 

( ) ( ){ } ( ){ } ( ){ }
111 exp 1 exp 1 1 exp

ba a

CKWPSf x ab x x x x
−−β β ββ−     = αβθ − α − − α − − − − α     

 
( ){ }

( )

1

1

1 1 1 exp

mbam
m

m

ma x

D

−∞
β

=

    θ − − − − α      ×
θ
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( )
( )

( ){ } ( ){ } 11

1

exp 1 exp
m a

m
CKWPS

m

a
f x ab x x x

D

∞ −β ββ−

=

θ  = αβθ − α − − α
 θ

 ( ){ } ( ){ }
11

1 1 exp 1 1 1 exp

mb ba a
x x

−−
β β        × − − − α − − − − α            

 ( )
( ) ( ){ } ( ){ } 11; exp 1 exp

x m

a

Xf x m mab x x x
−β ββ−  = αβθ − α − − α

 

 ( ){ } ( ){ }
11

1 1 exp 1 1 1 exp .

mb ba a
x x

−−
β β        × − − − α − − − − α            

 

(3.6) 

Hence, this completes the proof 

3.2. Expansion of the CKWPS density function 

Using Proposition 3.2, 

( )
( )

( )
( )

1

; ,
x m

m
m

CKWPS X

m

c
f x f x m

D

∞

=

θ=
θ  

where  

( )
( ) ( ){ } ( ){ } ( ){ }( )

111; exp 1 exp 1 1 exp .
x m

ba a

Xf x m mab x x x x
−−β β ββ−   = αβ − α − − α − − − α    

 

By the series representation 

( ) ( )1

0

1
1 1 , 0, 1

a j j

p

a
z z a z

j

∞
−

=

− − = − > < 
 

  

( ) ( ) ( ) ( )( ) 1

0

1
aj aj

wp wp

p

b k
f x abg x G x

j

∞
+ −

=

− = −  
 

  

( ) ( )
1

1

0

exp( ) 1 exp( )1
1 exp( )

exp( ) 1 exp( ) 1

aj a

j

j

x xb
f x ab x x

j

+ −β β∞
β− β

=

     −α − −α−      = − αβθ −α   θ − θ − 
 


 

(3.7) 
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( )
[ ]

( )
1

1 1

0

exp( )1
1 exp( ) 1 exp( )

exp( ) 1

aj a
aj a j

aj a
j

xb
abx x x

j

+ −β∞
+ + − β− β β

+
=

 −α−     = − αβθ −α − −α     θ −
 

( )
[ ]

( )11

0 0

1 1 exp( )
1 ( 1)exp( ) .

exp( ) 1

aj a j

aj a
j k

b aj a x
abx k x

j k

∞ β
β− β+ + −

+
= =

− + − −α    = − αβθ + −α       θ −
 

 

(3.8) 

Given that 

0
!

m
t

m

t
e

m

∞

=
=     applying this to (3.8) gives 

( )
[ ]

1 1
1

0 0 0

1 1 1 ( 1)
exp ( 1)

!exp( ) 1

aj a j k m m

aj a
j k m

b aj a ab k
x m x

j k m

∞ ∞ ∞ + + + − +
β− β

+
= = =

− + − − θ +  = αβ − + α  
   θ −    

( )
[ ]

( )
1 1

1 1

0 0 0

1 1 1 ( 1)
( 1) exp ( 1)

( 1)!exp( ) 1

aj a j k m m

aj a
j k m

b aj a ab k
x m x m x

j k m

∞ ∞ ∞ + + + − +
β− β− β

+
= = =

− + − − θ +  = αβ + −α +   +   θ −
  

( ), ,

, , 0

( , , ) ; [ 1], ,j k m

j k m

w a b g x m

∞

=
= θ α + β  (3.9) 

where 

 
( )

[ ]

1 1

, ,

1 1 1 ( 1)
( , , )

( 1)!exp( ) 1

aj a j m m

j k m aj a

b aj a ab k
w a b

j k m

+ + − +

+
− + − − θ +  θ =    +   θ −

  (3.10) 

are the weights and ( ); [ 1],g x mα + β  is the Weibull pdf with scale parameter ( 1)mα +  

and shape parameter .β  

3.3. Quantile function, moments and order statistics of the CKWPS distribution 

Proposition 3.3. The quantile function of the CKWPS distribution is obtained by 

solving the equation ( ) ,F x U=  where ( )F x  is the cdf of the CKWPS distribution. Then  

 

1
1

1
11 ( )

log 1 1 1

a

bD UD
x

β

−

  
   

  θ  = − − − −     α θ       
  

 (3.11) 

and ( )1
D

− ⋅  is the inverse of ( ).D ⋅  
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Proof.  

( ){ }1 1 1 exp

( )

ba
D x

U
D

β     θ − − − − α         =
θ

 

( ){ }1 ( ) 1 1 1 exp
ba

D UD x
β−      θ = θ − − − − α         

 

( ){ }

1

1
1 ( )

1 exp 1 1

a

bD UD
x

−
β

 
 θ − − α = − −   θ   

 

1
1

1
11 ( )

log 1 1 1

a

bD UD
x

β

−

  
   

  θ  = − − − −     α θ       
  

 

where U is a uniform random variable on unit interval (0, 1). 

The median of the CKWPS distribution is obtained by setting 0.5U =  in (3.11) and 

obtain 

 

1
1

1
11 ( )

log 1 1 1 .
2

a

bD D
x

β

−

  
   

  θ  = − − − −     α θ       
  

  (3.12) 

Proposition 3.4. The th
r  moment of a CKWPS distributed random variable X is 

given by 

 

( ) ( )
( )

( )
( )

1

1
1 0

11 1
1 .

1

m
jr m

mr r
m j

mr
E X a m

jD j

∞ −

+
= =

−Γ +  = θ − 
 α θ +   (3.13) 

Proof. Since D′  is a non-decreasing function, [ ]( ){ }1 1 1 exp( )
ba

D x
 ′ θ − − − −α 
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( ).D′≤ θ  Hence by (2.11)
( )
( )

( ) ,xD
f x e

D

−α′ θ≤ θα
θ

 which implies that ( )r
E X  exists. 

Also ( )
( )

( )
1

m
m

m
i

a
f x f x

D

∞

=

θ=
θ  describes the density of CKWPS as a mixture, then 

 

( )
( )

( )
1

,
m

r rm
m

m

a
E X E Y

D

∞

=

θ=
θ

 

(3.14) 

where mY  has mf as its density function, and 

 

( ) ( ) ( )
( )

1

1
0

11 1
1 .

1

m
jr

m r r
j

mr
E Y m

j j

−

+
=

−Γ +  = − 
 α +  (3.15) 

Substituting (3.15) into (3.14) gives equation (3.13). 

The first moments about the origin of the CKWPS distribution (the mean) is 

obtained by setting 1r =  in (3.13), we have 

 

( ) ( ) ( )
( )

1

2
1 0

12 1
1 .

( ) 1

m
jr m

r m

m j

m
E x a m

jD j

∞ −

= =

−Γ  ′= µ = θ − α θ   +   (3.16) 

The variance of the CKWPS distribution is given by 

( ) ( )22
2 1Var X ′ ′= σ = µ − µ  

( ) ( )
( )3

1
1

2 1
1 0

13
1

( )

m
jm

m
j

m j

m
a m

jD

∞ −

+
= =

 −Γ   = θ − 
  α θ 

  

( ) ( )
( )2

2
1

1

1
1 0

12
1 .

( )

m
jm

m
j

m j

m
a m

jD

∞ −

+
= =

 −Γ   − θ − α θ   
   (3.17) 

The coefficient of skewness of the CKWPS distribution is given by  

 

( )

( ) ( )

3 3
3 2

3 2 3 222
2

3 2
.

E X
Sk

E X

 − µ ′ ′µ − µµ + µ = =
′µ − µ − µ

 

  (3.18) 
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The coefficient of kurtosis of the CKWPS distribution is given by 

 

( )

( ) ( )

4 2 4
4 3 2

2 222
2

4 6 3E X
Ku

E X

 − µ ′ ′ ′µ − µµ + µ µ − µ = =
′µ − µ − µ

 

 (3.19) 

and the moment generating function of the CKWPS distribution is given as  

 

( ) ( ) ( )
( )

( )
1

2
0 1 0

12 1
1 .

! ( 1)

m r
jtX m

x m

r m j

mt
E e M t a m

jD r j

∞ ∞ −

= = =

−Γ  = = θ − α θ   +   (3.20) 

Order Statistics 

Let the set of observations be ordered as 1 2 3, , , ..., nX X X X  whereby 1X  denote the 

minimum time to failure and nX  denote the maximum time to failure. The trials are 

independent and identically distributed. The pdf of the th
k  order statistics from the 

CKWPS distribution is given as 

 

( ) ( )
( ) ( )

( )[ ] ( )[ ]1 1
:

!
1 .

1 ! !

k n
k n

n f x
g x F x F x

k n k

− −= −
− −

  (3.21) 

Using the identity 1

0

1
(1 ) ( 1)n p p

p

n
z z

p

∞
−

=

− − = −  
 

  in (3.21) gives 

 

( ) ( )
( ) ( )

( )[ ] 1
;

0

!
( 1) .

1 ! !

p kp
i n

p

n kn f x
g x F x

pk n k

∞
+ −

=

− = −  − −  
   (3.22) 

Using (2.8) and (2.9) in (3.22), we have 

 

( ) ( ) ( )( ){ }[ ]
( )[ ]

( ) ( )( ){ }[ ]{ }
1

1
;

0

11 1
; 1 1 1 ,

, 1 ( )

n
i jj

i n i j
j

nq x D G x
g x p D G x

jB i n i D

−
+ −

+
=

−′ θ − −  = − θ − − 
 − + θ

  (3.23) 

where ( ) ( ) ( ) ( )[ ] 11
1 ,

ba
q x abg x G x G x

−−= −
 ( ).,.B  

denotes the beta function, and 

( )( ){ }[ ]{ } 1
1 1

i j
D G x

+ −θ − −  

( )( ){ }
1

1

1 1

i j

nn
n

n

a G x

+ −∞

=

  = θ − − 
  
  



Complementary Kumaraswamy Weibull Power Series Distribution: … 

Earthline J. Math. Sci. Vol. 4 No. 2 (2020), 361-398 

373 

 

( )( ){ } ( )( ){ }

1

11 1
1

0

1 1 1 1 ,

i j

i j si j i j s
s

s

a G x k G x

+ −
∞

+ −+ − + −

+

 
 = θ − − θ − −
 
 
   (3.24) 

where 1

1

, 1, 2, 3, ....s
s

a
k s

a

+= =  

Using the identity :
0

j

s s
s j s

s

k z d z
∞

=

 
=  

 
   for positive integer j, we have  

 

( )( ){ }[ ] ( )( ){ }1 11 1
1;

0

1 1 1 1 .
i j l j si j i j s

i j s

s

D G x d a G x

∞
+ − + + −+ − + + −

+ −
=

θ − − = θ − −   (3.25)  

By the expansion 

1( ) , 0,n
nD na

−′ θ = θ θ >  

 

( )( ){ }[ ] ( ) ( )( ){ }1

0

1 1 1 1 1 .
kk

k

k

D G x a k b G x

∞

=

′ θ − − = + θ − −  (3.26)  

Substituting (3.25) and (3.26) into (3.23), we have 

( )
( ) ( )( ){ }

( ) ( )[ ]

11

1
;

1 1

;
, 1

kk
k

k
i n i j

q x ka G x

g x p
B i n i D

∞
−−

=
+

θ − −

=
− + θ



 

( ) ( )( ){ }
1

11 1
1;

0 0

1
1 1 1

n
l j sj i j i j s

i j s

j s

n
d a G x

j

− ∞
+ + −+ − + + −

+ −
= =

− ⋅ − θ − − 
 

   

( ) ( )
( ) ( )

( ) ( )
1

;

0 0 0

1
; 1 1

, 1

n
j

i n kt j
j s k

nq x
g x p b k

jB i n i D

− ∞ ∞

+
= = =

− = ⋅ − + 
 − + θ 

 
( )( ){ }( )

1; 1 1
l j s ki j i j s k

i j sd a G x
+ + ++ + + +

+ −× θ − −        

( ) ( )( ){ }
1

( )
; , , ,

0 0 0

; 1 1 ,

n
l j s k

i n i j s k

j s k

g x p w G x

− ∞ ∞
+ + +

= = =
= − −   (3.27) 
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where 

( ) ( )

( ) ( )

1; 1

, , ,

1
( ) 1 1

.
, 1

j i j i j s k
k i j s

i j s k t j

n
q x b k d a

j
w

B i n i D

+ + + +
+ −

+

−  − + θ 
 =

− + θ
 

(3.27) is the order statistics. 

To obtain the pdf of smallest order statistics, substituting 1=i  into (3.27) we get 

 

( )( ){ }( )
1

11
1; 1, , ,

0 0 0

( ; ) 1 1 , 0

n
j s k

n j s k

j s k

g x p w x G x x

− ∞ ∞
+ + +β−

= = =
= − − < < ∞   (3.28) 

where 

( ) ( ) ( )

( )

1 1
; 1

1, , , 1

1
1 1

.

j j j s k
k j s

j s k j

n
nq x b k d a

j
w

D

+ + + +

+

−  − + θ 
 =

θ
 

The pdf of largest order statistics is obtained by substituting ni =  into (3.27) to get 

 

( ) ( )( ){ }( )1
1; , , ,

0 0

; 1 1 , 0
j s k n

n n i s k

s k

g x p w x G x x

∞ ∞
+ + +β−

+ +
= − − < < ∞  (3.29) 

where 

( )( ) ( )
( )

1; 1
, , ,

1 1
.

j j n j s k n
k n j m

n j s k j n

nq x b k d a
w

D

+ + + +
+ −

+

− + θ
=

θ  

4. Sub-models of the CKWPS Family of Distribution 

In this section, some sub-models of the CKWPS family of distributions are studied. 

In particular, the Complementary Kumaraswamy Weibull Poisson (CKWP) distribution 

is discussed in details. 

The sub-models considered are as follows: 

1. For ( ) 1,D e
θθ = −  the CKWPS family of distribution reduces to the CKWP 

distribution with cdf  
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( ) ( )

( )

; , , ,

1 1 1 exp 1

, , , , , 0.
1

ba

x a b

e x

F x x a b
e

βθ

α θ θ

    − − − −α −         = θ β >
−

  (4.1) 

2. For ( ) ( ) 1
1 ,D

−θ = θ − θ  the CKWPS family of distribution reduces to the 

Complementary Kumaraswamy Weibull Geometric (CKWG) distribution with cdf  

 

( ) ( )
( )

[ ]

1

; , , , 1

1 1 1 1 exp

, , , , 0.
1

ba

x a b

x

F x x a b

−
β

α θ −

    θ − θ − − − −α         = θ >
θ − θ

 

(4.2) 

3. For ( ) ( )1 1,
m

D θ = θ + −  the CKWPS family of distribution reduces to the 

Complementary Kumaraswamy Weibull Binomial (CKWB) distribution with cdf  

 
( ) ( )

( )

( )
; , , ,

1 1 1 1 exp 1

, , , , 0.
1 1

mba

x a b m

x

F x x a b

β

α θ

    + θ − − − −α −         = θ >
+ θ −  

(4.3) 

4. For ( ) ( )1 ,D Inθ = − − θ  the CKWPS family of distribution reduces to the 

Complementary Kumaraswamy Weibull Logarithmic (CKWL) distribution with cdf  

( ) ( )
( )

( ); , , ,

1 1 1 1 exp

, , , 0, 0 1.
1

ba

x a b

In x

F x x a b
In

β

α θ

     − − θ − − − −α         = > < θ <
− − θ

 

(4.4) 

5. For 1a b= =  and ( ) 1,D e
θθ = −  

the CKWPS family of distribution reduces to 

the Complementary Weibull Poisson (CWP) distribution with cdf  

 
( ) ( )

( )( )
; ,

1 1 1 exp( ) 1
, , , , 0.

1
x

e x
F x x a b

e

θ β

α θ θ

  − − − −α −  = θ >
−  

(4.5) 

6. For 1a b= =  and ( ) ( ) 1
1 ,D

−θ = θ − θ  
the CKWPS family of distribution reduces 

to the Complementary Weibull Geometric (CWG) distribution with cdf  

 

( ) ( )
( )( )( )

[ ]

1

; , 1

1 1 1 1 exp
, , , , 0.

1
x

x
F x x a b

−β

α θ −

   θ − θ − − − −α
   = θ >

θ − θ
 

(4.6) 
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7. For 1a b= =  and ( ) ( )1 1,
m

D θ = θ + −  the CKWPS family of distribution reduces 

to the Complementary Weibull Binomial (CWB) distribution with cdf  

 
( ) ( )

( )( )( )
( )

; ,

1 1 1 1 exp 1
, , , , 0.

1 1

m

x m

x
F x x a b

β

α θ

   + θ − − − −α −
   = θ >

+ θ −  

(4.7) 

8. For 1a b= =  and ( ) ( )1 ,D Inθ = − − θ  the CKWPS family of distribution reduces 

to the Complementary Weibull Logarithmic (CWL) distribution with cdf  

( ) ( )
( )( ){ }

( ); ,

1 1 1 1 exp
, , , 0, 0 1.

1
x

In x
F x x a b

In

β

α θ

   − − θ − − − −α
   = > < θ <

− − θ
   

(4.8) 

9. For 1α =  and ( ) 1,D e
θθ = −  the CKWPS family of distribution reduces to the 

Complementary Kumaraswamy Standard Weibull Poisson (CKSWP) distribution with 

cdf  

( ) ( )
( )

; , ,

1 1 1 exp 1

, , , , 0.
1

ba

x a b

e x

F x x a b
e

βθ

θ θ

    − − − − −         = θ >
−        

(4.9) 

10. For 1α =  and ( ) ( ) 1
1 ,D

−θ = θ − θ  the CKWPS family of distribution reduces to 

the Complementary Kumaraswamy Standard Weibull Geometric (CKSWG) distribution 

with cdf  

( ) ( )
( )

[ ]

1

; , , 1

1 1 1 1 exp

, , , , 0.
1

ba

x a b

x

F x x a b

−
β

θ −

    θ − θ − − − −         = θ >
θ − θ

      

(4.10) 

11. For 1α =  and ( ) ( )1 1,
m

D θ = θ + −  the CKWPS family of distribution reduces 

to the Complementary Kumaraswamy Standard Weibull Binomial (CKSWB) distribution 

with cdf  

( ) ( )
( )

( )
; , ,

1 1 1 1 exp 1

, , , , 0.
1 1

mba

x a b m

x

F x x a b

β

θ

    + θ − − − − −         = θ >
+ θ −     

(4.11) 
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12. For 1α = and ( ) ( )1 ,D Inθ = − − θ  the CKWPS family of distribution reduces to 

the Complementary Kumaraswamy Standard Weibull Logarithmic (CKSWL) 

distribution with cdf  

( ) ( )
( )

( ); , ,

1 1 1 1 exp

, , , 0, 0 1.
1

ba

x a b

In x

F x x a b
In

β

θ

     − − θ − − − −         = > < θ <
− − θ

  

(4.12) 

13. For 1,α =  1a b= =  and ( ) 1,D e
θθ = −  the CKWPS family of distribution 

reduces to the Complementary Standard Weibull Poisson (CSWP) distribution with cdf  

( ) ( )
( )( )( )

;

1 1 1 exp 1
, , , , 0.

1
x

e x
F x x a b

e

βθ

θ θ

   − − − − −
   = θ >

−           
(4.13) 

14. For 1,α =  1a b= =  and ( ) ( ) 1
1 ,D

−θ = θ − θ  the CKWPS family of distribution 

reduces to the Complementary Standard Weibull Geometric (CSWG) distribution with 

cdf 

( ) ( )
( )( )( )

[ ]

1

; 1

1 1 1 1 exp
, , , , 0.

1
x

x
F x x a b

−β

θ −

   θ − θ − − − −
   = θ >

θ − θ
         

(4.14) 

15. For 1,α =  1a b= =  and ( ) ( )1 1,
m

D θ = θ + −  the CKWPS family of 

distribution reduces to the Complementary Standard Weibull Binomial (CSWB) 

distribution with cdf  

( ) ( )
( )( )( )

( )
;

1 1 1 1 exp 1
, , , , 0.

1 1

m

x m

x
F x x a b

β

θ

   + θ − − − − −
   = θ >

+ θ −             

(4.15) 

16. For 1,α =  1a b= =  and ( ) ( )1 ,D Inθ = − − θ  the CKWPS family of distribution 

reduces to the Complementary Standard Weibull Logarithmic (CSWL) distribution with 

cdf  

( ) ( )
( )( ){ }

( );

1 1 1 1 exp
, , , 0, 0 1.

1
x

In x
F x x a b

In

β

θ

   − − θ − − − −   = > < θ <
− − θ

     

(4.16) 
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4.1. The complementary Kumaraswamy Weibull Poisson (CKWP) distribution 

Here, the pdf, reliability, hazard function, quantile and moments for the CKWP 

distribution are studied. The pdf of the CKWP distribution corresponding to (33) is given 

as 

( ) ( ) ( )( ) ( )
11 1

exp 1 exp 1 1 exp
e 1

ba a

CKWP
ab x

f x x x x
−β− −β β β

θ
αβθ   = −α − −α − − −α   −

 
( )exp 1 1 1 exp 1 , , , , , , 0

ba
x x a b

β       × θ − − − −α − α β θ >             

  

 (4.17) 

where a, b, β  are shape parameters and α  is a scale parameter. 

The plots of the pdf and cdf for the CKWP distribution for some selected parameter 

values are presented in Figures 1 and 2 respectively. 

  

Figure 1. The cdf plot of the CKWP 

distribution density function for some 

parameter values. 

Figure 2. The cdf plot of the CKWP 

distribution function for some parameter 

values. 

The survival function of the CKWP distribution is given by 

( )
( ) ( )

( )
1 exp 1 1 1 exp exp 1

,
1

ba

CKEP

e x

S x
e

θ β

θ

      − − θ − − − θ −α −          =
−

 

 

, , , , , 0.x a bα θ β >         (4.18)
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The plot of the survival function for the CKWP distribution for some selected parameter 

values is presented in Figures 3. 

 

Figure 3. Plot of the CKWP distribution survival function for some parameter values. 

The hazard rate function of the CKWP distribution is given by 

( )

( ) ( )( ) ( )

( )

( )

111 exp 1 exp 1 1 exp

exp 1 1 1 exp 1

( 1) exp 1 1 1 exp 1

ba a

ba

CKWP ba

ab x x x x

x

h x

e x

−−β β ββ−

β

βθ

  αβθ −α − −α − − −α   

    × θ − − − −α −         =
     − − θ − − − −α −         

 

, , , , 0.x a bα θ >

 

    (4.19) 

The plot of the hazard rate function for the CKWP distribution for some selected 

parameter values is given in Figures 4. 

 

Figure 4. Plot of the CKWP distribution hazard rate functions for some parameter 

values. 
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Figure 4 clearly shows that the hazard rate function exhibits different shapes relative 

to different values of the parameters.  

The quantile function of the CKWP distribution is obtained by substituting 

( ) 1D e
θθ = −  and ( )1

D e
− θθ =  into (14) is given by 

( ) ( )

1
1

1

11
log 1 1 1 ,

a

be u e
Q u

β

θ θ

  
   

  −  = − − − −     α θ       
                           

 (4.20) 

where u is a uniform random variable on unit interval (0, 1). The median ( )2Q  of the 

CKWP distribution is obtained by setting 5.0=u  in (4.20) to get 

( ) ( )

1
1

1

11
log 1 1 1 .

2

a

be e
Q u

β

θ θ

  
   

  −  = − − − −     α θ       
  

                       (4.21) 

The first moments about the origin (the mean) of the CKWP distribution is obtained by 

setting 1=r  in (3.13), to obtain 

( ) ( )
( )

( )
( )

1

2
1 0

12 1
1 .

1 1

m
jm

r m

m j

m
E x a m

je j

∞ −

θ
= =

−Γ  ′= µ = θ − 
 α − +   (4.22) 

The variance of the CKWP distribution is given by 

( ) ( )22
2 1Var X ′ ′= σ = µ − µ

 

( )
( )

( )
( )

1

3
1 0

13 1
1

1 1

m
jm

m

m j

m
a m

je j

∞ −

θ
= =

 −Γ   = θ − 
  α − + 

  

( )
( )

( )
( )

2
1

2
1 0

12 1
1 .

1 1

m
jm

m

m j

m
a m

je j

∞ −

θ
= =

 −Γ   − θ − 
  α − + 

          (4.23) 
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The moment generating function of the CKWPS distribution is given by 

( ) ( ) ( )
( )

( )
( )

1

2
0 1 0

12 1
1 .

!1 1

m r
jtX m

x m

r m j

mt
E e M t a m

jre j

∞ ∞ −

θ
= = =

−Γ  = = θ − 
 α − +      (4.24) 

5. Inferences    

5.1 Maximum likelihood estimation 

Let 1 2 3, , , ..., nx x x x  denote a random sample drawn from the CKWP distribution 

with parameters a,,, βαθ  and b. 

The pdf of the CKWP distribution in (4.19) can be rewritten as 

( )
( )

( ) ( ) ( )
11 1

2
exp 1

1

bax x a a

ab

ab
f x x e e u x e u x

e

β β −β− −α −α − θ
θ

 αβθ    = θ − −      −  
 

                      ( ) ( ){ }1 1 ,
ba a

t e u x
θ × − − − 

 (5.1) 

where ( ) exp 1.x
u x e

β−α = θ − 
 

 

The likelihood function 1 2 3( , , , ..., ; , , , , )nf x x x x a bθ α β
 

defined to be the joint 

density of the random variables 1 2 3, , , ..., nx x x x  is given as 

1

( ; , , , , ) ( ; , , , , )

n

i

i

L x a b f x a b

=

α β θ = α β θ∏ .                          (5.2)           

The likelihood of the CKWP distribution function is given by 

( )
( )

( )1 1

2
1

; , , , , exp
1

n
x x a

ab
i

ab
L x a b x e e u x

e

β ββ− −α −α −
θ

=

 αβθ  α β θ = θ   
 −  

∏  

( ) ( ) ( ) ( ){ }1
1 1 1

b ba aa a
e u x t e u x

−θ θ   × − − − − −          (5.3) 

and 

( ) ( ) ( ) ( ) ( ) ( ) ( )log log log log log 2 log 1L n a n b n n n n ab e
θ= + + α + β + θ − −
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( ) ( ) ( ) ( )[ ]
1 1 1 1

1 log 1 logi

n n n n
x

i ii

i i i i

x x e a u x
β−αβ

= = = =
+ β + − α + θ + −   

 ( ) ([ ) ( )] ([ ) ( )]
1 1

1 log 1 log 1 .

n n
a aa a

i i

i i

b e u x tb e u x
θ θ

= =
+ − − − + − −   (5.4) 

Let ( , , , , )
T

a bΘ = α β θ  be the unknown parameter vector. The score vector which is the 

gradient of the log-likelihood function with respect to the parameters being estimated is 

given by 

 

( ) , , , , .

T
L L L L L

U
a b

∂ ∂ ∂ ∂ ∂ Θ =  ∂ ∂ ∂α ∂β ∂θ 
 (5.5) 

The maximum likelihood estimate of Θ  can be obtained by solving the non-linear 

system of equation ( ) 0.nU Θ =   Thus 

( ) [ ( ) ]
1

2 log 1 log

n

i

i

L n
nb e u x

a a

θ

=

∂ = − − +
∂ 

 
( ) ( ) ( ) ] ( ) [ ( )]

( ) [ ( )]1

1 log[ 1 log
1

1

n a a a
i i

aa
ii

e e u x u x
b

e u x

θ θ

θ
=

 − − −+ −  
− −  



 ( ) ( ) ] ( ) [ ( )]
( ) [ ( )]1

1 log[ 1 log

1

n a a a
i i

aa
ii

e e u x u x
tb

e u x

θ θ

θ
=

 − − −+  
− −  

   (5.6) 

1 1

2 log( 1) log[ ( )] ( 1) ( )

n n
a a

i i

i i

L n
na e u x e u x

b b

θ θ

= =

∂  = − − + + − − ∂     

1

( 1) ( )

n
a a

i

i

t e u x
θ

=

 + − −   (5.7) 

( ) ( )1

1 1 1 1

[ ( )]
( 1) ( 1)

( ) ( 1) [ ( )]

i i

i

u x u xn n n n
ix x x

i i a a
i ii i i i

a u xL n
x x e a b

u x e u x

β
∂ ∂α−

−αβ β ∂ ∂
θ

= = = =

∂ = − − θ + − − −
∂α α − −   

 

( )1

1

[ ( )]

( 1) [ ( )]

iu xn
i x

a a
ii

a u x
tb

e u x

∂α−
∂

θ
=

+
− −   (5.8) 
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( )

1 1 1 1

log( ) log( ) log( ) ( 1)
( )

i

i

u xn n n n
x x

i i i i i
ii i i i

L n
x x x x x e a

u x

β
∂

−αβ β ∂

= = = =

∂ = − − α − αθ + −
∂β β    

 ( ) ( )1 1

1 1

[ ( )] [ ( )]
( 1)

( 1) [ ( )] ( 1) [ ( )]

i iu x u xn n
i ix x

a a a a
i ii i

a u x a u x
b tb

e u x e u x

∂ ∂α− α−
∂ ∂

θ θ
= =

− − +
− − − −    (5.9) 

( )
( )

( )
1 1

2
1

1

i

i

u xn n
x

ii i

L n nabe
e a

u xe

β
∂θ

−α ∂θ
θ

= =

∂ = − + + −
∂θ θ −  

 

( )
( )1 1

1

( 1) [ ( )]
1

( 1) [ ( )]

iu xan
i

a a
ii

e e u x
a b

e u x

∂θ θ − α−
∂θ

θ
=

− −
+ −

− −

 ( )1 1

1

( 1) [ ( )]
.

( 1) [ ( )]

iu xan
i

a a
ii

e e u x
tba

e u x

∂θ θ − α−
∂θ

θ
=

− −
+

− −

 

 (5.10) 

Setting (5.6), (5.7), (5.8), (5.9) and (5.10) to zero and solving for the solution of the 

non-linear system of equations produce the maximum likelihood estimates of parameters 

ˆ ˆˆˆ, , ,a b α β  and θ̂ . However these solutions can only be obtained numerically with the aid 

of suitable statistical software like R, SAS etc. Hence, some datasets are considered in 

the next section to fit the proposed distribution with other related distributions using 

“maxLik” package in R software.   

6. Applications 

This section presents a real life datasets, the descriptive statistics, graphical summary 

and application. Four models (Kumaraswamy-Weibull Distribution (KWD), 

Kumaraswamy-Modified Weibull Distribution (KMWD), Kumaraswamy Exponential 

Weibull Distribution (KEWD) and Kumaraswamy-Weibull Poisson Distribution 

(KWPD)) are applied to a real life dataset alongside the proposed (Complementary 

Kumaraswamy-Weibull-Poisson Distribution (CKWPD)). The performance of these 

distributions are evaluated and compared using some Model Selection Information 

Criteria (MSIC) which include AIC (Akaike Information Criterion), CAIC (Consistent 

Akaike Information Criterion), BIC (Bayesian Information Criterion) and HQIC (Hannan 

Quin Information Criterion). The MSIC are given as follows:  
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2 2 ,AIC ll k= − +  ( )2 log ,BIC ll k n= − +  ( )
2

2
1

kn
CAIC ll

n k
= − +

− −
 and 

( )[ ]2 2 log log ,HQIC ll k n= − +

 
where ƖƖ denotes the log-likelihood value evaluated with the maximum likelihood 

estimates, k is the number of model parameters and n is the sample size. The model with 

the lowest values of these statistics would be chosen as the best model to fit the dataset.  

Data:  The data set consists of 63 observations of the strengths of 1.5 cm glass fibers, 

originally obtained by workers at the UK National Physical Laboratory. Unfortunately, 

the units of measurement are not given in the paper. It has been used by [16], [17], [18], 

[19], [20], [21], [22], [23]. It is given as 

0.55, 1.28, 1.51, 1.61, 1.70, 2.00, 0.74, 1.29, 1.52, 1.62, 1.7, 2.01, 0.77, 1.3, 1.53, 1.62, 

1.73, 2.24, 0.81, 1.36, 1.54, 1.63, 1.76, 0.84, 1.39, 1.55, 1.64, 1.76, 0.93, 1.42, 1.55, 1.66, 

1.77, 1.04, 1.48, 1.58, 1.66, 1.78, 1.11, 1.48, 1.59, 1.66, 1.81, 1.13, 1.49, 1.6, 1.67, 1.82, 

1.24, 1.49, 1.61, 1.68, 1.84, 1.25, 1.5, 1.61, 1.68, 1.84, 1.27, 1.50, 1.61, 1.69, 1.89.  

Source: Smith and Naylor (1987). 

Table 2. Descriptive Statistics for the dataset. 

No Minimum 1Q  Median 3Q  Mean Maximum Variance Skewness Kurtosis 

63 0.550 1.375 1.590 1.685 1.507 2.240 0.105 -0.8786 3.9238 

 

Figure 5. A graphical summary for the real life data. 
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The result in Table 2 and the graphical display in Figure 5 reveal that the dataset is 

negatively skewed, and therefore would be flexible for skewed distributions. 

Table 3. Performance evaluation of the distributions based on the dataset. 

Distributions Parameter 

estimates  

-ƖƖ = (-log-

likelihood 

value) 

AIC CAIC BIC HQIC Ranks 

CKWPD α̂ = 0.30530595 

β̂ = 0.32521237  

θ̂ = 0.63305191  

â = 0.14508335  

b̂ = 0.05181175  

5.393076 20.78615 21.27796  35.0463  26.58012  1st 

KWPD  α̂ = 0.06819696  

β̂ = 0.03372159  

θ̂ = 0.05090372  

â = 0.01741473  

b̂ = 0.05126014  

5.581409  21.16282  21.65462  35.4230 26.95679  2nd 

KMWD  α̂ = 0.07465782 

β̂ = 2.42877590 

θ̂ = 0.001600541 

â = 4.80395492 

b̂ = 5.95925826 

7.123126 24.24625  24.73806  38.5064  30.04022  3rd 

KWD  α̂ = 1.34165211 

β̂ = 0.00722436 

â = 1.63128742  

b̂ = 0.01331726 

8.545615  25.09123  25.41643  36.4994  29.72641  4th 

KEWD  α̂ = 0.3083907  

β̂ = 0.5765746  

θ̂ = 0.1949686  

â = 0.2592218  

b̂ = 0.4121287  

16.92949  43.85899  44.35079  58.1191 49.65296  5th 
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Figure 6 displayed the histogram and estimated densities and cdfs of the fitted 

models for dataset. 

     

Figure 6. Histogram and plots of the estimated densities (pdfs) and cdfs of the 

distribution. 
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Figure 7. Probability plots for the fit of the distributions based on the dataset. 

Table 3 clearly shows that the CKWPD has smallest values of -ƖƖ, AIC, BIC, CAIC 

and HQIC compared to the other four distributions using the real life dataset. This 

provides evidence to show that the CKWPD fits the real life data better than the other 

four models. The plot in Figure 6 also reveals that the CKWPD performs better than the 

KWPD, KMWD, KWD and KEWD in fitting the dataset. Similarly, the probability plots 

displayed in Figure 7 further provide evidence that the proposed distribution (CKWPD) 

is more flexible for the dataset than the other four distributions (KWPD, KMWD, KWD 

and KEWD).  

7. Conclusion 

In this paper we have proposed a new member of the Complementary Kumaraswamy 

– G Power Series family of distributions obtained by the method of compounding. The 

properties of the proposed distribution have been studied. In particular a member of this 

family of distribution called the Complementary Kumaraswamy Weibull Poisson 

Distribution (CKWPD) or simply CKWP has been extensively discussed. The usefulness 

of the CKWPD has been investigated by application to a real life dataset. Results from 

the application show that the CKWPD performs better than the KWD, KMWD, KEWD 

and KWPD in fitting the dataset. 
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Appendix A 

The R functions for cdf, pdf, survival and hazard functions diagrams. 

a=3 

b=3 

c=3 

d=3 

t=2  

u=runif(25,0,1) 

x=(-(1/c)*log(1-(1-(1-(1/t)*log((1+u*(exp(t)-1))))^(1/b))^(1/a)))^(1/d) 

pdfckwpd=function(x,a,b,c,d,t)(a*b*c*d*t*x^(d-1)*exp(-c*x^d)*(1-exp(-c*x^d))^(a-1)*(1-(1-exp(-

c*x^d)))^(b-1)*exp(t*(1-(1-(1-exp(-c*x^d)^a)^b)))/ (exp(t)-1)) 

cdfckwpd=function(x,a,b,c,d,t)((exp(t*(1-(1-(1-exp(-c*x^d)^a)^b)))-1) /(exp(t)-1))  

sfckwpd=function(x,a,b,c,d,t)(1-((exp(t*(1-(1-(1-exp(-c*x^d)^a)^b)))-1) /(exp(t)-1))) 

hfckwpd=function(x,a,b,c,d,t)(a*b*c*d*t*x^(d-1)*exp(-c*x^d)*(1-exp(-c*x^d))^(a-1)*(1-(1-exp(-

c*x^d)))^(b-1)*exp(t*(1-(1-(1-exp(-c*x^d)^a)^b)))/(exp(t)-1)/(1-((exp(t*(1-(1-(1-exp(-c*x^d)^a)^b)))-1) 

/(exp(t)-1))))  

curve(pdfckwpd(x,1,1,1,1,1),type="n", xlim=c(0,5),ylim=c(0,1.5),ylab="f(x)", main=" ") 

curve(pdfckwpd(x,1,1,1,1,1),from=0,to=10,add=T,lwd=2,col="black",lty=1) 

curve(pdfckwpd(x,1,3,1,1,1),from=0,to=10,add=T,lwd=2,col="red",lty=1) 

curve(pdfckwpd(x,1,1,1,3,1),from=0,to=10,add=T,lwd=2,col="blue",lty=1) 

curve(pdfckwpd(x,1,1,1,1,4),from=0,to=10,add=T,lwd=2,col="green",lty=1) 

curve(pdfckwpd(x,2,1,1,1,3),from=0,to=10,add=T,lwd=2,col="purple",lty=1) 

curve(pdfckwpd(x,4,1,1,1,1),from=0,to=10,add=T,lwd=2,col="cyan",lty=1) 

curve(pdfckwpd(x,4,1,2,1,1),from=0,to=10,add=T,lwd=2,col="orange",lty=1) 

curve(pdfckwpd(x,1,1,1,2,1),from=0,to=10,add=T,lwd=2,col="gold",lty=1) 

legend(locator(1) ,cex=0.8,title="key",c(expression(paste(a,"=1,",b,"=1,", alpha,"=1,",  

beta,"=1,", theta,"=1")), expression(paste(a,"=1,",b,"=3,", alpha,"=1,", beta,"=1,", theta,"=1")), 

expression(paste(a,"=1,",b,"=1,", alpha,"=1,", beta,"=3,", theta,"=1")),  

expression(paste(a,"=1,",b,"=1,", alpha,"=1,", beta,"=1,", theta,"=4")),  

expression(paste(a,"=2,",b,"=1,", alpha,"=1,", beta,"=1,", theta,"=3")),  

expression(paste(a,"=4,",b,"=1,", alpha,"=1,", beta,"=1,", theta,"=1")),  

expression(paste(a,"=4,",b,"=1,", alpha,"=2,", beta,"=1,", theta,"=1")),  
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expression(paste(a,"=1,",b,"=1,", alpha,"=1,", beta,"=2,", 

theta,"=1"))),horiz=FALSE,lty=c(1,1,1,1,1,1,1,1),lwd=c(2,2,2,2,2,2,2,2), 

bty="n",col=c("black","red","blue","green","purple","cyan","orange","gold"))  

curve(cdfckwpd(x,1,1,1,1,1),type="n", xlim=c(0,5),ylim=c(0,1),ylab="F(x)", main=" ") 

curve(cdfckwpd(x,1,1,1,1,1),from=0,to=10,add=T,lwd=2,col="black",lty=1) 

curve(cdfckwpd(x,1,3,1,1,1),from=0,to=10,add=T,lwd=2,col="red",lty=1) 

curve(cdfckwpd(x,1,1,1,3,1),from=0,to=10,add=T,lwd=2,col="blue",lty=1) 

curve(cdfckwpd(x,1,1,1,1,4),from=0,to=10,add=T,lwd=2,col="green",lty=1) 

curve(cdfckwpd(x,2,1,1,1,3),from=0,to=10,add=T,lwd=2,col="purple",lty=1) 

curve(cdfckwpd(x,4,1,1,1,1),from=0,to=10,add=T,lwd=2,col="cyan",lty=1) 

curve(cdfckwpd(x,4,1,2,1,1),from=0,to=10,add=T,lwd=2,col="orange",lty=1) 

curve(cdfckwpd(x,1,1,1,2,1),from=0,to=10,add=T,lwd=2,col="gold",lty=1) 

legend(locator(1) ,cex=0.8,title="key",c(expression(paste(a,"=1,",b,"=1,", alpha,"=1,",  

beta,"=1,", theta,"=1")), expression(paste(a,"=1,",b,"=3,", alpha,"=1,", beta,"=1,", theta,"=1")), 

expression(paste(a,"=1,",b,"=1,", alpha,"=1,", beta,"=3,", theta,"=1")),  

expression(paste(a,"=1,",b,"=1,", alpha,"=1,", beta,"=1,", theta,"=4")),  

expression(paste(a,"=2,",b,"=1,", alpha,"=1,", beta,"=1,", theta,"=3")),  

expression(paste(a,"=4,",b,"=1,", alpha,"=1,", beta,"=1,", theta,"=1")),  

expression(paste(a,"=4,",b,"=1,", alpha,"=2,", beta,"=1,", theta,"=1")),  

expression(paste(a,"=1,",b,"=1,", alpha,"=1,", beta,"=2,", 

theta,"=1"))),horiz=FALSE,lty=c(1,1,1,1,1,1,1,1),lwd=c(2,2,2,2,2,2,2,2), 

bty="n",col=c("black","red","blue","green","purple","cyan","orange","gold"))  

curve(sfckwpd(x,1,1,1,1,1),type="n", xlim=c(0,5),ylim=c(0,1),ylab="S(x)",main=" ") 

curve(sfckwpd(x,1,1,1,1,1),from=0,to=10,add=T,lwd=2,col="black",lty=1) 

curve(sfckwpd(x,1,3,1,1,1),from=0,to=10,add=T,lwd=2,col="red",lty=1) 

curve(sfckwpd(x,1,1,1,3,1),from=0,to=10,add=T,lwd=2,col="blue",lty=1) 

curve(sfckwpd(x,1,1,1,1,4),from=0,to=10,add=T,lwd=2,col="green",lty=1) 

curve(sfckwpd(x,2,1,1,1,3),from=0,to=10,add=T,lwd=2,col="purple",lty=1) 

curve(sfckwpd(x,4,1,1,1,1),from=0,to=10,add=T,lwd=2,col="cyan",lty=1) 

curve(sfckwpd(x,4,1,2,1,1),from=0,to=10,add=T,lwd=2,col="orange",lty=1) 

curve(sfckwpd(x,1,1,1,2,1),from=0,to=10,add=T,lwd=2,col="gold",lty=1) 

legend(locator(1) ,cex=0.8,title="key",c(expression(paste(a,"=1,",b,"=1,", alpha,"=1,",  

beta,"=1,", theta,"=1,")), expression(paste(a,"=1,",b,"=3,", alpha,"=1,", beta,"=1,", theta,"=1,")), 
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expression(paste(a,"=1,",b,"=1,", alpha,"=1,", beta,"=3,", theta,"=1,")),  

expression(paste(a,"=1,",b,"=1,", alpha,"=1,", beta,"=1,", theta,"=4,")),  

expression(paste(a,"=2,",b,"=1,", alpha,"=1,", beta,"=1,", theta,"=3,")),  

expression(paste(a,"=4,",b,"=1,", alpha,"=1,", beta,"=1,", theta,"=1,")),  

expression(paste(a,"=4,",b,"=1,", alpha,"=2,", beta,"=1,", theta,"=1,")),  

expression(paste(a,"=1,",b,"=1,", alpha,"=1,", beta,"=2,", 

theta,"=1,"))),horiz=FALSE,lty=c(1,1,1,1,1,1,1,1),lwd=c(2,2,2,2,2,2,2,2), 

bty="n",col=c("black","red","blue","green","purple","cyan","orange","gold"))  

curve(hfckwpd(x,1,1,1,1,1),type="n", xlim=c(0,5),ylim=c(0,1.5),ylab="h(x)", main=" ") 

curve(hfckwpd(x,1,1,1,1,1),from=0,to=10,add=T,lwd=2,col="black",lty=1) 

curve(hfckwpd(x,1,3,1,1,1),from=0,to=10,add=T,lwd=2,col="red",lty=1) 

curve(hfckwpd(x,1,1,1,3,1),from=0,to=10,add=T,lwd=2,col="blue",lty=1) 

curve(hfckwpd(x,1,1,1,1,4),from=0,to=10,add=T,lwd=2,col="green",lty=1) 

curve(hfckwpd(x,2,1,1,1,3),from=0,to=10,add=T,lwd=2,col="purple",lty=1) 

curve(hfckwpd(x,4,1,1,1,1),from=0,to=10,add=T,lwd=2,col="cyan",lty=1) 

curve(hfckwpd(x,4,1,2,1,1),from=0,to=10,add=T,lwd=2,col="orange",lty=1) 

curve(hfckwpd(x,1,1,1,2,1),from=0,to=10,add=T,lwd=2,col="gold",lty=1) 

legend(locator(1) ,cex=0.8,title="key",c(expression(paste(a,"=1,",b,"=1,", alpha,"=1,",  

beta,"=1,", theta,"=1,")), expression(paste(a,"=1,",b,"=3,", alpha,"=1,", beta,"=1,", theta,"=1,")), 

expression(paste(a,"=1,",b,"=1,", alpha,"=1,", beta,"=3,", theta,"=1,")),  

expression(paste(a,"=1,",b,"=1,", alpha,"=1,", beta,"=1,", theta,"=4,")),  

expression(paste(a,"=2,",b,"=1,", alpha,"=1,", beta,"=1,", theta,"=3,")),  

expression(paste(a,"=4,",b,"=1,", alpha,"=1,", beta,"=1,", theta,"=1,")),  

expression(paste(a,"=4,",b,"=1,", alpha,"=2,", beta,"=1,", theta,"=1,")),  

expression(paste(a,"=1,",b,"=1,", alpha,"=1,", beta,"=2,", 

theta,"=1,"))),horiz=FALSE,lty=c(1,1,1,1,1,1,1,1),lwd=c(2,2,2,2,2,2,2,2), 

bty="n",col=c("black","red","blue","green","purple","cyan","orange","gold")) 

Appendix B 

The R function estimates the model parameters. 

library(AdequacyModel) 

x=c(0.55,1.28,1.51,1.61,1.70,2.00,0.74,1.29,1.52,1.62,1.7,2.01,0.77,1.3,1.53,1.62,1.73,2.24,0.81,1.36,1.54,1

.63,1.76,0.84,1.39,1.55,1.55,1.64,1.76,0.93,1.42,1.55,1.66,1.77,1.04,1.48,1.58,1.66,1.78,1.11,1.48,1.59,1.66

,1.81,1.13,1.49,1.6,1.67,1.82,1.24,1.49,1.61,1.68,1.84,1.25,1.5,1.61,1.68,1.84,1.27,1.50,1.61,1.69,1.89)  

pdfckwpd=function(x,par){ 
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alpha=par[1] 

beta=par[2] 

theta=par[3] 

a=par[4] 

b=par[5] 

a*b*alpha*beta*theta*x^(beta-1)*exp(-alpha*x^beta)*(1-exp(-alpha*x^beta))^(a-1)*(1-(1-exp(-

alpha*x^beta)))^(b-1)*exp(theta*(1-(1-(1-exp(-alpha*x^beta)^a)^b)))/ (exp(theta)-1)  

} 

cdfckwpd=function(x,par){ 

alpha=par[1] 

beta=par[2] 

theta=par[3] 

a=par[4] 

b=par[5] 

(exp(theta*(1-(1-(1-exp(-alpha*x^beta)^a)^b)))-1) /(exp(theta)-1)  

} 

resultckwpd=goodness.fit(pdf=pdfckwpd,cdf=cdfckwpd,starts=c(1,1,1,1,1),data=x,method="PSO",domain=c

(0,Inf),mle=NULL,lim_inf=c(0,0,0.1,0,0),lim_sup=c(10,10,0.9,10,10)) 

resultckwpd 

pdfkwd=function(x,par){ 

alpha=par[1] 

beta=par[2] 

a=par[3] 

b=par[4] 

a*b*alpha*beta*x^(beta-1)*exp(-alpha*x^beta)*(1-exp(-alpha*x^beta))^(a-1)*(1-(1-exp(-

alpha*x^beta))^a)^(b-1) 

} 

cdfkwd=function(x,par){ 

alpha=par[1] 

beta=par[2] 
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a=par[3] 

b=par[4] 

1-(1-(1-exp(-alpha*x^beta))^a)^b 

} 

resultkwd=goodness.fit(pdf=pdfkwd,cdf=cdfkwd,starts=c(1,1,1,1),data=x,method="PSO",domain=c(0,Inf),m

le=NULL,lim_inf=c(0,0,0,0),lim_sup=c(10,10,10,10)) 

resultkwd 

 

pdfkmwd=function(x,par){ 

alpha=par[1] 

beta=par[2] 

theta=par[3] 

a=par[4] 

b=par[5] 

a*b*alpha*x^(beta-1)*(beta+theta*x)*exp(theta*x-alpha*x^beta*exp(theta*x))*(1-exp(-

alpha*x^beta*exp(theta*x)))^(a-1)*(1-(1-exp(-alpha*x^beta*exp(theta*x)))^a)^(b-1) 

} 

cdfkmwd=function(x,par){ 

alpha=par[1]  

+ beta=par[2] 

+ theta=par[3] 

+ a=par[4] 

+ b=par[5] 

+ 1-(1-(1-exp(-alpha*x^beta*exp(theta*x)))^a)^b 

+ } 

> 

resultkmwd=goodness.fit(pdf=pdfkmwd,cdf=cdfkmwd,starts=c(1,1,1,1,1),data=x,method="PSO",domain=c(

0,Inf),mle=NULL,lim_inf=c(0,0,0,0,0),lim_sup=c(10,10,10,10,10)) 

> resultkmwd 

 

> pdfkewd=function(x,par){ 
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+ alpha=par[1] 

+ beta=par[2] 

+ theta=par[3] 

+ a=par[4] 

+ b=par[5] 

+ a*b*(theta+beta*alpha*x^(beta-1))*exp(-(theta*x+alpha*x^beta))*(1-exp(-(theta*x+alpha*x^beta)))^(a-

1)*(1-(1-exp(-(theta*x+alpha*x^beta)))^a)^(b-1) 

+ } 

> cdfkewd=function(x,par){ 

+ alpha=par[1] 

+ beta=par[2] 

+ theta=par[3] 

+ a=par[4] 

+ b=par[5] 

+ 1-(1-(1-exp(-(theta*x+alpha*x^beta)))^a)^b 

+ } 

> 

resultkewd=goodness.fit(pdf=pdfkewd,cdf=cdfkewd,starts=c(1,1,1,1,1),data=x,method="PSO",domain=c(0,I

nf),mle=NULL,lim_inf=c(0,0,0,0,0),lim_sup=c(10,10,10,10,10)) 

> resultkewd 

> pdfkwpd=function(x,par){ 

+ alpha=par[1] 

+ beta=par[2] 

+ theta=par[3] 

+ a=par[4] 

+ b=par[5] 

+ a*b*alpha*beta*theta*x^(beta-1)*exp(-alpha*x^beta)*(1-exp(-alpha*x^beta))^(a-1)*(1-(1-exp(-

alpha*x^beta))^a)^(b-1)*exp(-theta*(1-(1-(1-exp(-alpha*x^beta))^a)^b))*(1-exp(-theta))^(-1) 

+ } 

> cdfkwpd=function(x,par){ 

+ alpha=par[1] 
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+ beta=par[2] 

+ theta=par[3] 

+ a=par[4] 

+ b=par[5] 

+ (1-exp(-theta*(1-(1-(1-exp(-alpha*x^beta))^a)^b)))*(1-exp(-theta))^(-1) 

+ } 

> 

resultkwpd=goodness.fit(pdf=pdfkwpd,cdf=cdfkwpd,starts=c(1,1,1,1,1),data=x,method="PSO",domain=c(0,I

nf),mle=NULL,lim_inf=c(0,0,0,0,0),lim_sup=c(10,10,10,10,10)) 

> resultkwpd 

Appendix C 

The R function for estimated densities of the distribution and the probability plot. 

pdfckwpd=function(x,alpha,beta,theta,a,b)(a*b*alpha*beta*theta*x^(beta-1)*exp(-alpha*x^beta)*(1-exp(-

alpha*x^beta))^(a-1)*(1-(1-exp(-alpha*x^beta)))^(b-1)*exp(theta*(1-(1-(1-exp(-alpha*x^beta)^a)^b)))/ 

(exp(theta)-1)) 

cdfckwpd=function(x,alpha,beta,theta,a,b)((exp(theta*(1-(1-(1-exp(-alpha*x^beta)^a)^b)))-1) /(exp(theta)-1)) 

pdfkwd=function(x,alpha,beta,a,b)(a*b*alpha*beta*x^(beta-1)*exp(-alpha*x^beta)*(1-exp(-

alpha*x^beta))^(a-1)*(1-(1-exp(-alpha*x^beta))^a)^(b-1)) 

cdfkwd=function(x,alpha,beta,a,b)(1-(1-(1-exp(-alpha*x^beta))^a)^b) 

pdfkmwd=function(x,alpha,beta,theta,a,b)(a*b*alpha*x^(beta-1)*(beta+theta*x)*exp(theta*x-

alpha*x^beta*exp(theta*x))*(1-exp(-alpha*x^beta*exp(theta*x)))^(a-1)*(1-(1-exp(-

alpha*x^beta*exp(theta*x)))^a)^(b-1)) 

cdfkmwd=function(x,alpha,beta,theta,a,b)(1-(1-(1-exp(-alpha*x^beta*exp(theta*x)))^a)^b) 

pdfkewd=function(x,alpha,beta,theta,a,b)(a*b*(theta+beta*alpha*x^(beta-1))*exp(-

(theta*x+alpha*x^beta))*(1-exp(-(theta*x+alpha*x^beta)))^(a-1)*(1-(1-exp(-(theta*x+alpha*x^beta)))^a)^(b-

1)) 

cdfkewd=function(x,alpha,beta,theta,a,b)(1-(1-(1-exp(-(theta*x+alpha*x^beta)))^a)^b) 

pdfkwpd=function(x,alpha,beta,theta,a,b)(a*b*alpha*beta*theta*x^(beta-1)*exp(-alpha*x^beta)*(1-exp(-

alpha*x^beta))^(a-1)*(1-(1-exp(-alpha*x^beta))^a)^(b-1)*exp(-theta*(1-(1-(1-exp(-alpha*x^beta))^a)^b))*(1-

exp(-theta))^(-1)) 

cdfkwpd=function(x,alpha,beta,theta,a,b)((1-exp(-theta*(1-(1-(1-exp(-alpha*x^beta))^a)^b)))*(1-exp(-

theta))^(-1)) 
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x=c(0.55,1.28,1.51,1.61,1.70,2.00,0.74,1.29,1.52,1.62,1.7,2.01,0.77,1.3,1.53,1.62,1.73,2.24,0.81,1.36,1.54,1

.63,1.76,0.84,1.39,1.55,1.55,1.64,1.76,0.93,1.42,1.55,1.66,1.77,1.04,1.48,1.58,1.66,1.78,1.11,1.48,1.59,1.66

,1.81,1.13,1.49,1.6,1.67,1.82,1.24,1.49,1.61,1.68,1.84,1.25,1.5,1.61,1.68,1.84,1.27,1.50,1.61,1.69,1.89)  

hist(x,prob=T,xlab="x-value",ylab="f(x)",main="Estimated Pdfs for strengths of 1.5 cm glass fibers") 

curve(pdfckwpd(x,1.4883772,1.1298867,0.8288365,1.4584510,1.2212270),add=T,lty=1,lwd=2,col="red")  

curve(pdfkwd(x,0.8605495,0.9278466,0.8633339,0.9021568),add=T,lty=1,lwd=2,col="blue") 

curve(pdfkmwd(x,0.5971527,0.5931218,0.5825983,0.5773604,0.5723678),add=T,lty=1,lwd=2,col="orange")  

curve(pdfkewd(x,0.2639996,0.2515058,0.2226657,0.2535793,0.2308934),add=T,lty=1,lwd=2,col="green") 

curve(pdfkwpd(x,0.6006863,0.5996338,0.5994494,0.5987368,0.5989666),add=T,lty=1,lwd=2,col="cyan") 

legend(“topright”,cex=0.8,title="key",c("CKWPD","KWD","KMWD","KEWD","KWPD"),bty="n",horiz=F

ALSE,lty=c(1,1,1),lwd=c(2,2,2,2,2),col=c("red","blue","orange","green","cyan")) 

plot(ecdf(x),xlab="x-value",ylab="F(x)",main="Estimated Cdfs for strengths of 1.5 cm glass fibers") 

curve(cdfckwpd(x,1.4883772,1.1298867,0.8288365,1.4584510,1.2212270),add=T,lty=1,lwd=2,col="red")  

curve(cdfkwd(x,0.8605495,0.9278466,0.8633339,0.9021568),add=T,lty=1,lwd=2,col="blue") 

curve(cdfkmwd(x,0.5971527,0.5931218,0.5825983,0.5773604,0.5723678),add=T,lty=1,lwd=2,col="orange")  

curve(cdfkewd(x,0.2639996,0.2515058,0.2226657,0.2535793,0.2308934),add=T,lty=1,lwd=2,col="green") 

curve(cdfkwpd(x,0.6006863,0.5996338,0.5994494,0.5987368,0.5989666),add=T,lty=1,lwd=2,col="cyan")  

legend(“topright”,cex=0.8,title="key",c("ECDF","CKWPD","KWD","KMWD","KEWD","KWPD"),bty="n",

horiz=FALSE,lty=c(6,1,1,1,1,1),lwd=c(3,2,2,2,2,2),col=c("black","red","blue","orange","green","cyan")) 

n=length(x) 

y=sort(x) 

z=1:n 

a=z/n 

A=cdfckwpd(y,1.4883772,1.1298867,0.8288365,1.4584510,1.2212270)   

B=cdfkwd(y,0.8605495,0.9278466,0.8633339,0.9021568)     

C=cdfkmwd(y,0.5971527,0.5931218,0.5825983,0.5773604,0.5723678)   

D=cdfkmwd(y,0.5971527,0.5931218,0.5825983,0.5773604,0.5723678)   

E=cdfkwpd(y,0.6006863,0.5996338,0.5994494,0.5987368,0.5989666) 

qqplot(a,A,xlab="Observed Probability", ylab="Expected Probability", main="QQ-Plot for CKWPD") 

abline(0,1,col="red") 

qqplot(a,B,xlab="Observed Probability", ylab="Expected Probability", main="QQ-Plot for KWD") 
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abline(0,1,col="blue") 

qqplot(a,C,xlab="Observed Probability", ylab="Expected Probability", main="QQ-Plot for KMWD") 

abline(0,1,col="orange")  

qqplot(a,D,xlab="Observed Probability", ylab="Expected Probability", main="QQ-Plot for KEWD") 

abline(0,1,col="green") 

qqplot(a,E,xlab="Observed Probability", ylab="Expected Probability", main="QQ-Plot for KWPD") 

abline(0,1,col="cyan")  
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