

Topological Properties for Harmonic -Uniformly Convex Functions of Order ρ Associated with Wanas Differential Operator

Abbas Kareem Wanas

Abstract

The purpose of the present paper is to establish some topological properties for a certain family of harmonic τ -uniformly convex functions of order ρ associated with Wanas differential operator defined in the open unit disk U .

1. Introduction

A continuous function $f = u + iv$ is a complex valued harmonic function in a complex domain $\mathbb C$, if both u and v are real harmonic in $\mathbb C$. In any simply connected domain $D \subset \mathbb{C}$, we can write $f = h + \overline{g}$, where h and g are analytic in D. We call h the analytic part and g the co-analytic part of f . A necessary and sufficient condition for f to be locally univalent and sense-preserving in D is that $|h'(z)| > |g'(z)|$ in D (see Clunie and Sheil-Small [6]).

Denote by *H* the family of harmonic functions in the open unit disk $U = \{z \in \mathbb{C} :$ $|z| < 1$. Let S_H indicate the family of functions $f = h + \overline{g} \in \mathcal{H}$ which are univalent and sense-preserving in the open unit disk U and normalized by $f(0) = f_z(0) - 1 = 0$. Each $f \in S_{\mathcal{H}}$ can be expressed as

$$
f(z) = h(z) + \overline{g(z)},
$$
\n(1.1)

where

$$
h(z) = z + \sum_{n=2}^{\infty} a_n z^n, \qquad g(z) = \sum_{n=2}^{\infty} b_n z^n.
$$

Received: May 19, 2020; Accepted: June 17, 2020

2010 Mathematics Subject Classification: 30C55, 30C45.

Keywords and phrases: harmonic function, uniformly convex function, extreme points, closed convex hull, compact set.

Also note that *K* reduces to the family $\mathcal A$ of analytic functions in U if co-analytic part of f is identically zero.

A function $f \in S_H$ is said to be *harmonic starlike* in $U(r) = \{z \in \mathbb{C} : |z| < r\}$, if (see $[11]$

$$
\frac{\partial}{\partial t}\Big(\arg\Big(f\big(re^{it}\big)\Big)\Big)=Re\left\{\frac{zh'(z)-\overline{z}g'(z)}{h(z)+\overline{g(z)}}\right\}>0,\ \ (0\leq t\leq 2\pi)
$$

i.e., f maps the circle $\partial U(r)$ onto a closed curve that is starlike with respect to the origin.

We consider the usual topology on H defined by a metric in which a sequence $\{f_n\}$ in H converges to f if and only if it converges to funiformly on each compact subset of . It follows from the theorems of Weierstrass and Montel that this topological space is complete.

Let M be a sub-family of the set H. A function $f \in \mathcal{M}$ is called an *extreme point* of M if the condition $f = \lambda f_1 + (1 - \lambda)f_2$ $(f_1, f_2 \in \mathcal{M}; 0 < \lambda < 1)$ implies $f_1 = f_2 = f$.

We denote by EM the set of all extreme points of M. It is clear that $EM \subset M$.

A family M is *locally uniformly bounded* if for each $r (0 < r < 1)$, there is a real constant $V = V(r)$ so that $|f(z)| \leq V$ $(f \in \mathcal{M}; |z| \leq r)$.

A family M is *convex* if $\gamma f_1 + (1 - \gamma)f_2 \in \mathcal{M}$ $(f_1, f_2 \in \mathcal{M}; 0 \le \gamma \le 1)$.

Moreover, we define the closed convex hull of $\mathcal M$ as the intersection of all closed convex subsets of H (with respect to the topology of locally uniform convergence) that contain M. We denote the closed convex hull of M by $\overline{co} \mathcal{M}$.

A real-valued functional $F : \mathcal{H} \to \mathbb{R}$ is called *convex* on a convex family $\mathcal{M} \subset \mathcal{H}$ if

$$
F(\gamma f_1 + (1 - \gamma)f_2) \le \gamma F(f_1) + (1 - \gamma)F(f_2) \quad (f_1, f_2 \in \mathcal{M}; \ 0 \le \gamma \le 1).
$$

For $\alpha \in \mathbb{R}$, $\beta \ge 0$ with $\alpha + \beta > 0$, $m, q \in \mathbb{N}_0 = \mathbb{N} \cup \{0\}$ and for analytic part $h \in$ A, Wanas [15] introduced an operator (so-called Wanas operator) $W_{\alpha,\beta}^{k,q}$: $A \to A$, defined by

$$
W_{\alpha,\beta}^{k,q} h(z) = z + \sum_{n=2}^{\infty} [\Phi_n(k,\alpha,\beta)]^q a_n z^n , \qquad (1.2)
$$

where

$$
\Phi_n(k, \alpha, \beta) = \sum_{m=1}^k {k \choose m} (-1)^{m+1} \left(\frac{\alpha^m + n\beta^m}{\alpha^m + \beta^m} \right).
$$

Special cases of this operator can be found in [1, 2, 3, 4, 5, 8, 10, 12, 13, 14]. For more details see [16].

Now, we extended this operator on the family of harmonic functions. For $f = h +$ $\overline{g} \in \mathcal{H}$, we define the Wanas differential operator $W_{\alpha,\beta}^{k,q}: \mathcal{H} \to \mathcal{H}$ as follows:

$$
W_{\alpha,\beta}^{k,q} f(z) = W_{\alpha,\beta}^{k,q} h(z) + (-1)^q \overline{W_{\alpha,\beta}^{k,q} g(z)},
$$

where $W_{\alpha,\beta}^{k,q} h(z)$ is defined by (1.2) and

$$
W_{\alpha,\beta}^{k,q} g(z) = \sum_{n=2}^{\infty} [\Phi_n(k,\alpha,\beta)]^q b_n z^n.
$$

We denote by $WS_{\mathcal{H}}(\rho, \tau, \alpha, \beta, k, q)$ the family of all functions of the form (1.1) that satisfy the condition:

$$
Re\left\{\frac{z\left(W_{\alpha,\beta}^{k,q}h(z)+(-1)^q\overline{W_{\alpha,\beta}^{k,q}g(z)}\right)^{''}}{\left(W_{\alpha,\beta}^{k,q}h(z)+(-1)^q\overline{W_{\alpha,\beta}^{k,q}g(z)}\right)^{'}}+1\right\} > t\left|\frac{z\left(W_{\alpha,\beta}^{k,q}h(z)+(-1)^q\overline{W_{\alpha,\beta}^{k,q}g(z)}\right)^{''}}{\left(W_{\alpha,\beta}^{k,q}h(z)+(-1)^q\overline{W_{\alpha,\beta}^{k,q}g(z)}\right)^{'}}\right|+\rho,\quad(1.3)
$$

where $0 \le \rho < 1$; $\tau \ge 0$ and $z \in U$.

Also denote by $T_{\mathcal{H}}$ the sub-family of $S_{\mathcal{H}}$ containing of all functions $f = h + \overline{g}$, where h and q are given by

$$
h(z) = z - \sum_{n=2}^{\infty} |a_n| z^n, \quad g(z) = (-1)^q \sum_{n=2}^{\infty} |b_n| z^n. \tag{1.4}
$$

It is easily verified that if $f \in T_{\mathcal{H}}$, we also have

$$
W_{\alpha,\beta}^{k,q} f(z) = z - \sum_{n=2}^{\infty} |\Phi_n(k,\alpha,\beta)|^q |a_n| z^n + (-1)^q \sum_{n=2}^{\infty} |\Phi_n(k,\alpha,\beta)|^q |b_n| (\overline{z})^n.
$$

Moreover, let $WT_{\mathcal{H}}(\rho, \tau, \alpha, \beta, k, q)$ be the sub-family of $WS_{\mathcal{H}}(\rho, \tau, \alpha, \beta, k, q)$, where

$$
WT_{\mathcal{H}}(\rho, \tau, \alpha, \beta, k, q) = T_{\mathcal{H}} \cap WS_{\mathcal{H}}(\rho, \tau, \alpha, \beta, k, q).
$$

We now recall the following lemmas that will be used to prove our main results.

Lemma 1.1 [7]. Let M be a nonempty compact convex subset of the family H and $F: H \rightarrow \mathbb{R}$ *be a real-valued, continuous and convex functional on* M. Then

$$
max{F(f): f \in \mathcal{M}} = max{F(f): f \in EM}.
$$

Lemma 1.2 [9]. A family $\mathcal{M} \subset \mathcal{H}$ is compact if and only if \mathcal{M} is closed and locally *uniformly bounded.*

2. A Set of Main Results

In the first theorem, we determine the sufficient condition for $f = h + \overline{g}$ to be in the family $WS_{\mathcal{H}}(\rho, \tau, \alpha, \beta, k, q)$.

Theorem 2.1. Let $f = h + \overline{g}$ with h and g are given by (1.1). If

$$
\sum_{n=2}^{\infty} n(n - \rho + (n-1)\tau) |\Phi_n(k, \alpha, \beta)|^q (|a_n| + |b_n|) \le 1 - \rho,
$$
 (2.1)

where $0 \le \rho < 1, \tau \ge 0$, then f is harmonic univalent in U and $f \in WS_{\mathcal{H}}(\rho, \tau, \alpha, \beta, k, q)$.

Proof. For proving $f \in WS_{\mathcal{H}}(\rho, \tau, \alpha, \beta, k, q)$, we must show that (1.3) holds true. Using the fact that $Re\{w\} \ge \tau$ if and only if $|1 - \tau + w| \ge |1 + \tau - w|$, it is suffices to show that

$$
Re\left\{\left(\frac{z\left(W_{\alpha,\beta}^{k,q}h(z)+(-1)^q\overline{W_{\alpha,\beta}^{k,q}g(z)}\right)''}{\left(W_{\alpha,\beta}^{k,q}h(z)+(-1)^q\overline{W_{\alpha,\beta}^{k,q}g(z)}\right)'}+1\right)(1+\tau e^{i\theta})-\tau e^{i\theta}\right\}>\rho\quad(-\pi\leq\theta\leq\pi),
$$

or equivalently

$$
Re\left\{\frac{\left(1+\tau e^{i\theta}\right)\left(z\left(W_{\alpha,\beta}^{k,q}h(z)+(-1)^q\overline{W_{\alpha,\beta}^{k,q}g(z)}\right)''+\left(W_{\alpha,\beta}^{k,q}h(z)+(-1)^q\overline{W_{\alpha,\beta}^{k,q}g(z)}\right)'\right)}{\left(W_{\alpha,\beta}^{k,q}h(z)+(-1)^q\overline{W_{\alpha,\beta}^{k,q}g(z)}\right)'\right\}}-\frac{\tau e^{i\theta}\left(W_{\alpha,\beta}^{k,q}h(z)+(-1)^q\overline{W_{\alpha,\beta}^{k,q}g(z)}\right)'}{\left(W_{\alpha,\beta}^{k,q}h(z)+(-1)^q\overline{W_{\alpha,\beta}^{k,q}g(z)}\right)'}\right\} > \rho. \quad (2.2)
$$

http://www.earthlinepublishers.com

If we put

$$
A(z) = (1 + \tau e^{i\theta}) \left(z \left(W_{\alpha,\beta}^{k,q} h(z) + (-1)^q W_{\alpha,\beta}^{k,q} g(z) \right)'' + \left(W_{\alpha,\beta}^{k,q} h(z) + (-1)^q W_{\alpha,\beta}^{k,q} g(z) \right)' \right)
$$

$$
- \tau e^{i\theta} \left(W_{\alpha,\beta}^{k,q} h(z) + (-1)^q W_{\alpha,\beta}^{k,q} g(z) \right)'
$$

and

$$
B(z) = \left(W_{\alpha,\beta}^{k,q} h(z) + (-1)^q W_{\alpha,\beta}^{k,q} g(z)\right)'.
$$

We only need to prove that

$$
|A(z)+(1-\rho)B(z)|-|A(z)-(1+\rho)B(z)|\geq 0.
$$

But

$$
|A(z) + (1 - \rho)B(z)|
$$
\n
$$
= \left| (1 + \tau e^{i\theta}) \left(\sum_{n=2}^{\infty} n(n-1) [\Phi_n(k, \alpha, \beta)]^q a_n z^{n-1} + (-1)^q \sum_{n=2}^{\infty} n(n-1) [\Phi_n(k, \alpha, \beta)]^q \overline{b_n(z)}^{n-1} + 1 + \sum_{n=2}^{\infty} n [\Phi_n(k, \alpha, \beta)]^q a_n z^{n-1} + (-1)^q \sum_{n=2}^{\infty} n [\Phi_n(k, \alpha, \beta)]^q \overline{b_n(z)}^{n-1} \right) - \tau e^{i\theta} \left(1 + \sum_{n=2}^{\infty} n [\Phi_n(k, \alpha, \beta)]^q a_n z^{n-1} + (-1)^q \sum_{n=2}^{\infty} n [\Phi_n(k, \alpha, \beta)]^q \overline{b_n(z)}^{n-1} \right)
$$
\n
$$
+ (1 - \rho) \left(1 + \sum_{n=2}^{\infty} n [\Phi_n(k, \alpha, \beta)]^q a_n z^{n-1} + (-1)^q \sum_{n=2}^{\infty} n [\Phi_n(k, \alpha, \beta)]^q \overline{b_n(z)}^{n-1} \right)
$$
\n
$$
= \left| (2 - \rho) + \sum_{n=2}^{\infty} n(n+1 - \rho + (n-1) \tau e^{i\theta}) [\Phi_n(k, \alpha, \beta)]^q a_n z^{n-1} + (-1)^q \sum_{n=2}^{\infty} n(n+1 - \rho + (n-1) \tau e^{i\theta}) [\Phi_n(k, \alpha, \beta)]^q \overline{b_n(z)}^{n-1} \right|.
$$

Also

$$
|A(z) - (1 + \rho)B(z)|
$$

\n
$$
= |(1 + \rho e^{i\theta}) \left(\sum_{n=2}^{\infty} n(n-1)[\Phi_n(k, \alpha, \beta)]^q a_n z^{n-1} + (-1)^q \sum_{n=2}^{\infty} n(n-1)[\Phi_n(k, \alpha, \beta)]^q \overline{b_n}(\overline{z})^{n-1}
$$

\n
$$
+1 + \sum_{n=2}^{\infty} n[\Phi_n(k, \alpha, \beta)]^q a_n z^{n-1} + (-1)^q \sum_{n=2}^{\infty} n[\Phi_n(k, \alpha, \beta)]^q \overline{b_n}(\overline{z})^{n-1} \right)
$$

\n
$$
- \tau e^{i\theta} \left(1 + \sum_{n=2}^{\infty} n[\Phi_n(k, \alpha, \beta)]^q a_n z^{n-1} + (-1)^q \sum_{n=2}^{\infty} n[\Phi_n(k, \alpha, \beta)]^q \overline{b_n}(\overline{z})^{n-1} \right)
$$

\n
$$
- (1 + \rho) \left(1 + \sum_{n=2}^{\infty} n[\Phi_n(k, \alpha, \beta)]^q a_n z^{n-1} + (-1)^q \sum_{n=2}^{\infty} n[\Phi_n(k, \alpha, \beta)]^q \overline{b_n}(\overline{z})^{n-1} \right)
$$

\n
$$
= \left| -\rho + \sum_{n=2}^{\infty} n(n - 1 - \rho + (n - 1)\tau e^{i\theta})[\Phi_n(k, \alpha, \beta)]^q a_n z^{n-1} + (-1)^q \sum_{n=2}^{\infty} n(n - 1 - \rho + (n - 1)\tau e^{i\theta})[\Phi_n(k, \alpha, \beta)]^q \overline{b_n}(\overline{z})^{n-1} \right|.
$$

Then

$$
|A(z) + (1 - \rho)B(z)| - |A(z) - (1 + \rho)B(z)|
$$

\n
$$
\geq 2(1 - \rho) - \sum_{n=2}^{\infty} 2n(n - \rho + (n - 1)\tau)|\Phi_n(k, \alpha, \beta)|^q |a_n||z|^{n-1}
$$

\n
$$
- \sum_{n=2}^{\infty} 2n(n - \rho + (n - 1)\tau)|\Phi_n(k, \alpha, \beta)|^q |b_n||z|^{n-1}
$$

\n
$$
> 2\left\{(1 - \rho) - \sum_{n=2}^{\infty} n(n - \rho + (n - 1)\tau)|\Phi_n(k, \alpha, \beta)|^q (|a_n| + |b_n|)\right\} > 0.
$$

The harmonic univalent function

$$
f(z) = z + \sum_{n=2}^{\infty} \frac{x_n}{n(n - \rho + (n-1)\tau)|\Phi_n(k, \alpha, \beta)|^q} z^n
$$

$$
+\sum_{n=2}^{\infty} \frac{\overline{y}_n}{n(n-\rho+(n-1)\tau)|\Phi_n(k,\alpha,\beta)|^q}(\overline{z})^n,\tag{2.3}
$$

where

$$
\sum_{n=2}^{\infty} |x_n| + \sum_{n=1}^{\infty} |y_n| = 1 - \rho
$$

shows that the coefficient bound given by (2.1) is sharp.

The functions of the form (2.3) are in the family $WS_{H}(\rho, \tau, \alpha, \beta, k, q)$, because

$$
\sum_{n=2}^{\infty} n(n - \rho + (n - 1)\tau) |\Phi_n(k, \alpha, \beta)|^q \frac{|x_n|}{n(n - \rho + (n - 1)\tau) |\Phi_n(k, \alpha, \beta)|^q}
$$

+
$$
\sum_{n=2}^{\infty} n(n - \rho + (n - 1)\tau) |\Phi_n(k, \alpha, \beta)|^q \frac{|y_n|}{n(n - \rho + (n - 1)\tau) |\Phi_n(k, \alpha, \beta)|^q}
$$

=
$$
\sum_{n=2}^{\infty} |x_n| + \sum_{n=1}^{\infty} |y_n| = 1 - \rho.
$$

The restriction placed in Theorem 2.1 on the moduli of the coefficients of $f = h + \overline{g}$ enables us to conclude for arbitrary rotation of the coefficients of f that the resulting functions would still be harmonic univalent and $f \in WS_{\mathcal{H}}(\rho, \tau, \alpha, \beta, k, q)$.

The next theorem shows that condition (2.1) is also the sufficient condition for functions $f \in T_H$ to be in the family $WT_H(\rho, \tau, \alpha, \beta, k, q)$.

Theorem 2.2. *Let* $f \in T_{\mathcal{H}}$ *be a function of the form* (1.4). *Then* $f \in WT_{\mathcal{H}}(\rho, \tau, \alpha, \beta, k, q)$ *if and only if condition* (2.1) *holds true*.

Proof. In the light of Theorem 2.1, we need only to prove that each function $f \in$ $WT_{\mathcal{H}}(\rho, \tau, \alpha, \beta, k, q)$ satisfies coefficient inequality (2.1). If $f \in WT_{\mathcal{H}}(\rho, \tau, \alpha, \beta, k, q)$, then by (1.3) , we have

$$
Re \left\{ \left(\frac{z \left(W_{\alpha,\beta}^{k,q} \ h(z) + (-1)^q \overline{W_{\alpha,\beta}^{k,q} \ g(z)} \right)''}{\left(W_{\alpha,\beta}^{k,q} \ h(z) + (-1)^q \overline{W_{\alpha,\beta}^{k,q} \ g(z)} \right)'} + 1 \right) \left(1 + \tau e^{i\theta} \right) - \tau e^{i\theta} \right\} > \rho \left(-\pi \le \theta \le \pi \right).
$$

This is equivalent to

$$
Re \left\{ \frac{\left(1 + \tau e^{i\theta}\right) \left(z\left(W_{\alpha,\beta}^{k,q} h(z) + (-1)^q W_{\alpha,\beta}^{k,q} g(z)\right)'' + \left(W_{\alpha,\beta}^{k,q} h(z) + (-1)^q W_{\alpha,\beta}^{k,q} g(z)\right)'\right)}{\left(W_{\alpha,\beta}^{k,q} h(z) + (-1)^q W_{\alpha,\beta}^{k,q} g(z)\right)'} - \frac{\tau e^{i\theta} \left(W_{\alpha,\beta}^{k,q} h(z) + (-1)^q W_{\alpha,\beta}^{k,q} g(z)\right)'}{\left(W_{\alpha,\beta}^{k,q} h(z) + (-1)^q W_{\alpha,\beta}^{k,q} g(z)\right)'}\right\}
$$
\n
$$
= Re \left\{ \frac{(1 - \rho) - \sum_{n=2}^{\infty} n(n - \rho + (n - 1)\tau e^{i\theta}) |\Phi_n(k, \alpha, \beta)|^q |a_n| z^{n-1} - 1}{1 - \sum_{n=2}^{\infty} n |\Phi_n(k, \alpha, \beta)|^q |a_n| z^{n-1} - \sum_{n=2}^{\infty} n |\Phi_n(k, \alpha, \beta)|^q |b_n| (\overline{z})^{n-1}} - \frac{\sum_{n=1}^{\infty} n(n - \rho + (n - 1)\tau e^{i\theta}) |\Phi_n(k, \alpha, \beta)|^q |b_n| (\overline{z})^{n-1}}{1 - \sum_{n=2}^{\infty} n |\Phi_n(k, \alpha, \beta)|^q |a_n| z^{n-1} - \sum_{n=2}^{\infty} n |\Phi_n(k, \alpha, \beta)|^q |b_n| (\overline{z})^{n-1}} \right\} \ge 0. (2.4)
$$

The above required condition (2.4) must hold for all values of z in U . Upon choosing the values of z on the positive real axis where $0 \le z = r < 1$, we must have

$$
Re\left\{\frac{(1-\rho)-\left[\sum_{n=2}^{\infty}n(n-\rho)|\Phi_{n}(k,\alpha,\beta)|^{q}|a_{n}|r^{n-1}+\sum_{n=1}^{\infty}n(n-\rho)|\Phi_{n}(k,\alpha,\beta)|^{q}|b_{n}|r^{n-1}\right]}{1-\sum_{n=2}^{\infty}n|\Phi_{n}(k,\alpha,\beta)|^{q}|a_{n}|r^{n-1}-\sum_{n=1}^{\infty}n|\Phi_{n}(k,\alpha,\beta)|^{q}|b_{n}|r^{n-1}}\right\}}{1-\sum_{n=2}^{\infty}n(n-1)|\Phi_{n}(k,\alpha,\beta)|^{q}|a_{n}|r^{n-1}+\sum_{n=2}^{\infty}n(n-1)|\Phi_{n}(k,\alpha,\beta)|^{q}|b_{n}|r^{n-1}}\right\}}{-\frac{1-\sum_{n=2}^{\infty}n|\Phi_{n}(k,\alpha,\beta)|^{q}|a_{n}|r^{n-1}-\sum_{n=2}^{\infty}n|\Phi_{n}(k,\alpha,\beta)|^{q}|b_{n}|r^{n-1}}{1-\sum_{n=2}^{\infty}n|\Phi_{n}(k,\alpha,\beta)|^{q}|a_{n}|r^{n-1}-\sum_{n=2}^{\infty}n|\Phi_{n}(k,\alpha,\beta)|^{q}|b_{n}|r^{n-1}}\right\}}\geq 0.
$$

Since $Re(-e^{i\theta}) \ge -|e^{i\theta}| = -1$, and let $r \to 1^-$, the above inequality reduces to

$$
\frac{1 - \rho - \sum_{n=2}^{\infty} n(n - \rho + (n - 1)\tau)|\Phi_n(k, \alpha, \beta)|^q |a_n|}{1 - \sum_{n=2}^{\infty} n|\Phi_n(k, \alpha, \beta)|^q |a_n| - \sum_{n=2}^{\infty} n|\Phi_n(k, \alpha, \beta)|^q |b_n|}
$$

$$
-\frac{\sum_{n=1}^{\infty} n(n - \rho + (n - 1)\tau)|\Phi_n(k, \alpha, \beta)|^q |b_n|}{1 - \sum_{n=2}^{\infty} n|\Phi_n(k, \alpha, \beta)|^q |a_n| - \sum_{n=2}^{\infty} n|\Phi_n(k, \alpha, \beta)|^q |b_n|} \ge 0.
$$

This gives coefficient inequality (2.1), so the proof is complete.

Theorem 2.3. *The family WT*_H(ρ , τ , α , β , k , q) *is a convex and compact subset of* \mathcal{H} . **Proof.** Let $0 \le \gamma \le 1$ and $f_1, f_2 \in WT_{\mathcal{H}}(\rho, \tau, \alpha, \beta, k, q)$ be functions of the form:

$$
f_j(z) = \sum_{\ell=0}^{\infty} \left(a_{j,\ell} z^{\ell} + \overline{b_{j,\ell} z^{\ell}} \right) \quad (z \in U, j \in \{1, 2\}).
$$
 (2.5)

Since

$$
\gamma f_1(z) + (1 - \gamma) f_2(z)
$$

= $z - \sum_{n=2}^{\infty} (\gamma |a_{1,n}| + (1 - \gamma) |a_{2,n}|) z^n - (-1)^q (\gamma |b_{1,n}| + (1 - \gamma) |b_{2,n}|) (\overline{z})^n$.

Thus by Theorem 2.2, we have

$$
\sum_{n=2}^{\infty} n(n - \rho + (n - 1)\tau) |\Phi_n(k, \alpha, \beta)|^q \left((\gamma |a_{1,n}| + (1 - \gamma) |a_{2,n}|) + (\gamma |b_{1,n}| + (1 - \gamma) |b_{2,n}|) \right)
$$

$$
= \gamma \sum_{n=2}^{\infty} n(n - \rho + (n - 1)\tau) |\Phi_n(k, \alpha, \beta)|^q (|a_{1,n}| + |b_{1,n}|)
$$

$$
+ (1 - \gamma) \sum_{n=2}^{\infty} n(n - \rho + (n - 1)\tau) |\Phi_n(k, \alpha, \beta)|^q (|a_{2,n}| + |b_{2,n}|)
$$

$$
\leq \gamma (1 - \rho) + (1 - \gamma) (1 - \rho) = 1 - \rho.
$$

Therefore

$$
\gamma f_1(z) + (1 - \gamma) f_2(z) \in WT_{\mathcal{H}}(\rho, \tau, \alpha, \beta, k, q).
$$

Hence the family $WT_{\mathcal{H}}(\rho, \tau, \alpha, \beta, k, q)$ is convex.

Furthermore, for $f \in WT_{\mathcal{H}}(\rho, \tau, \alpha, \beta, k, q), |z| \leq r, 0 < r < 1$, we have

$$
|f(z)| \le r + \sum_{n=2}^{\infty} (|a_n| + |b_n|)
$$

$$
< r + \sum_{n=2}^{\infty} n(n - \rho + (n-1)\tau) |\Phi_n(k, \alpha, \beta)|^q (|a_n| + |b_n|)
$$

$$
\le r + 1 - \rho.
$$

Then, we conclude that the family $WT_{\mathcal{H}}(\rho, \tau, \alpha, \beta, k, q)$ is locally uniformly bounded. By Lemma 1.2, we only need to show that it is closed, i.e., if $f_i \in WT_{\mathcal{H}}(\rho, \tau, \alpha, \beta, k, q)$ ($j \in$ N) and $f_j \to f$, then $f \in WT_{\mathcal{H}}(\rho, \tau, \alpha, \beta, k, q)$. Let f_j and f be given by (1.2) and (1.1), respectively. In view of Theorem 2.2, we find that

$$
\sum_{n=2}^{\infty} n(n - \rho + (n-1)\tau) |\Phi_n(k, \alpha, \beta)|^q (|a_{j,n}| + |b_{j,n}|) \le 1 - \rho \quad (j \in \mathbb{N}). \tag{2.6}
$$

Since $f_j \to f$, we conclude that $|a_{j,n}| \to |a_n|$ and $|b_{j,n}| \to |b_n|$ as $j \to \infty$ $(j \in \mathbb{N})$. The sequence of partial sums $\{S_n\}$ associated with the series

$$
\sum_{n=2}^{\infty} n(n-\rho + (n-1)\tau)|\Phi_n(k,\alpha,\beta)|^q(|a_n|+|b_n|)
$$

is a non-decreasing sequence.

Furthermore, by (2.6) it is bounded by $1 - \rho$. Thus, the sequence $\{S_n\}$ is convergent and

$$
\sum_{n=2}^{\infty} n(n-\rho + (n-1)\tau) |\Phi_n(k, \alpha, \beta)|^q (|a_n| + |b_n|) = \lim_{n \to \infty} S_n \le 1 - \rho.
$$

Hence $f \in WT_{\mathcal{H}}(\rho, \tau, \alpha, \beta, k, q)$ and this completes the proof.

Theorem 2.4. $EWT_{\mathcal{H}}(\rho, \tau, \alpha, \beta, k, q) = \{h_n : n \in \mathbb{N}\} \cup \{g_n : n \in \mathbb{N}_2\}$, where

$$
h_1(z) = z, \qquad h_n(z) = z - \frac{1 - \rho}{n(n - \rho + (n - 1)\tau)|\Phi_n(k, \alpha, \beta)|^q} z^n,
$$

$$
g_n(z) = z + \frac{1 - \rho}{n(n - \rho + (n - 1)\tau)|\Phi_n(k, \alpha, \beta)|^q} (\overline{z})^n. \tag{2.7}
$$

Proof. Assume that $0 < \lambda < 1$ and $g_n = \lambda f_1 + (1 - \lambda)f_2$, where $f_1, f_2 \in$ $WT_{\mathcal{H}}(\rho, \tau, \alpha, \beta, k, q)$ are functions of the form (2.5). Then by (2.1), we obtain

$$
|b_{1,n}| = |b_{2,n}| = \frac{1-\rho}{n(n-\rho + (n-1)\tau)|\Phi_n(k, \alpha, \beta)|^q}
$$

and $a_{1,j} = a_{2,j} = 0$ for $j \in \mathbb{N}_2$ and $b_{1,j} = b_{2,j} = 0$ for $j \in \mathbb{N}_2 \setminus \{n\}$. Then we have $g_n = f_1 = f_2$ and hence $g_n \in WT_{\mathcal{H}}(\rho, \tau, \alpha, \beta, k, q)$. Similarly, we prove that the functions h_n of the form (2.7) are the extreme points of the family $WT_{\mathcal{H}}(\rho, \tau, \alpha, \beta, k, q)$. Assume that $f \in EWT_{\mathcal{H}}(\rho, \tau, \alpha, \beta, k, q)$ and f is not of the form (2.7), then there are $j \in \mathbb{N}_2$ such that

$$
0 < |a_j| < \frac{1 - \rho}{j(j - \rho + (j - 1)\tau) |\Phi_j(k, \alpha, \beta)|^q}
$$

or

$$
0 < |b_j| < \frac{1 - \rho}{j(j - \rho + (j - 1)\tau) |\Phi_j(k, \alpha, \beta)|^{q}}.
$$

If

$$
0 < |a_j| < \frac{1 - \rho}{j(j - \rho + (j - 1)\tau) |\Phi_j(k, \alpha, \beta)|^{q'}}
$$

then, we taking

$$
\lambda = \frac{j(j - \rho + (j - 1)\tau)|\Phi_j(k, \alpha, \beta)|^q}{1 - \rho} |a_j| \quad \text{and} \quad \psi = \frac{1}{1 - \lambda}(f - \lambda h_j).
$$

We note that $0 < \lambda < 1$, $h_j \neq \psi$ and $f = \lambda h_j + (1 - \lambda)\psi$. Therefore, $f \notin \mathcal{F}$ $EWT_{\mathcal{H}}(\rho, \tau, \alpha, \beta, k, q).$

If

$$
0 < |b_j| < \frac{1 - \rho}{j(j - \rho + (j - 1)\tau) |\Phi_j(k, \alpha, \beta)|^{q'}}
$$

Earthline J. Math. Sci. Vol. 4 No. 2 (*2020*), *333-346*

then, we taking

$$
\lambda = \frac{j(j - \rho + (j - 1)\tau)|\Phi_j(k, \alpha, \beta)|^q}{1 - \rho} |b_j| \quad \text{and} \quad \phi = \frac{1}{1 - \lambda}(f - \lambda g_j).
$$

We note that $0 < \lambda < 1$, $g_i \neq \phi$ and $f = \lambda g_i + (1 - \lambda)\phi$. Therefore, $f \notin EWT_{\mathcal{H}}(\rho, \tau, \alpha, \beta, k, q).$

Remark 2.1. If the family $M = \{f_n \in \mathcal{H} : n \in \mathbb{N}\}\$ is locally uniformly bounded, then

$$
\overline{co} \ \mathcal{M} = \left\{ \sum_{n=1}^{\infty} \gamma_n f_n : \sum_{n=1}^{\infty} \gamma_n = 1, \ \gamma_n \ge 0 \ (n \in \mathbb{N}) \right\}.
$$

Corollary 2.1. *Let* h_n *and* g_n *be defined by* (2.7). *Then*

$$
WT_{\mathcal{H}}(\rho, \tau, \alpha, \beta, k, q) = \left\{ \sum_{n=1}^{\infty} (\gamma_n h_n + \mu_n g_n) : \sum_{n=1}^{\infty} (\gamma_n + \mu_n) = 1, \mu_1 = 0, \ \gamma_n, \mu_n \ge 0 \right\}.
$$

Remark 2.2. For each fixed value of $n \in \mathbb{N}_2$, $z \in U$, the following real-valued functions

$$
F(f) = |a_n|, \quad F(f) = |b_n|, \quad F(f) = |f(z)|, \quad F(f) = \left| W_{\alpha,\beta}^{k,q} f(z) \right| \quad (f \in \mathcal{H})
$$

are continuous and convex on H .

Also, for $\gamma \geq 0$, $0 < r < 1$, the real-valued functional

$$
F(f) = \left(\frac{1}{2\pi} \int_{0}^{2\pi} \left| f(re^{i\theta}) \right|^{\gamma} d\theta \right)^{\frac{1}{\gamma}} \quad (f \in \mathcal{H})
$$

is continuous and convex on H .

By making use of Theorem 2.4 and Lemma 1.1, we obtain the following corollaries:

Corollary 2.2. *Let* $f \in WT_{\mathcal{H}}(\rho, \tau, \alpha, \beta, k, q), |z| = r < 1$. *Then*

$$
r + \frac{1 - \rho}{2(2 - \rho + \tau)|\Phi_2(k, \alpha, \beta)|^q} r^2 \le |f(z)| \le r + \frac{1 - \rho}{2(2 - \rho + \tau)|\Phi_2(k, \alpha, \beta)|^q} r^2
$$

and

$$
r + \frac{1 - \rho}{2(2 - \rho + \tau)} r^2 \le |W_{\alpha,\beta}^{k,q} f(z)| \le r + \frac{1 - \rho}{2(2 - \rho + \tau)} r^2.
$$

The result is sharp. The function h_n *of the form* (2.7) *is the extremal function.*

Corollary 2.3. Let $\gamma \geq 0$, $0 < r < 1$. If $f \in WT_{\mathcal{H}}(\rho, \tau, \alpha, \beta, k, q)$, then

$$
\frac{1}{2\pi}\int_{0}^{2\pi} \left|f(re^{i\theta})\right|^{\gamma} d\theta \le \frac{1}{2\pi}\int_{0}^{2\pi} \left|h_2(re^{i\theta})\right|^{\gamma} d\theta
$$

and

$$
\frac{1}{2\pi}\int_{0}^{2\pi}\left|zf'(re^{i\theta})\right|^{y}d\theta\leq\frac{1}{2\pi}\int_{0}^{2\pi}\left|zh'_{2}(re^{i\theta})\right|^{y}d\theta.
$$

The function h_2 *is the function defined by* (2.7).

3. Conclusion

The results we obtained in this paper which may be considered as a useful tool for those who are interested in the above-mentioned topics for further research. It may also be used to find prospective applications in some areas of mathematics and physics.

References

- [1] J. W. Alexander, Functions which map the interior of the unit circle upon simple region, *Ann. of Math.* 17(1) (1915), 12-22. https://doi.org/10.2307/2007212
- [2] F. M. Al-Oboudi, On univalent functions defined by a generalized Salagean operator, *Int. J. Math. Math. Sci.* 27 (2004), 1429-1436. https://doi.org/10.1155/S0161171204108090
- [3] S. D. Bernardi, Convex and starlike univalent functions, *Trans. Amer. Math. Soc.* 135 (1969), 429-446. https://doi.org/10.1090/S0002-9947-1969-0232920-2
- [4] N. E. Cho and H. M. Srivastava, Argument estimates of certain analytic functions defined by a class of multiplier transformations, *Math. Comput. Modeling* 37(1-2) (2003), 39-49. https://doi.org/10.1016/S0895-7177(03)80004-3
- [5] N. E. Cho and T. H. Kim, Multiplier transformations and strongly close-to-convex functions, *Bull. Korean Math. Soc.* 40(3) (2003), 399-410. https://doi.org/10.4134/BKMS.2003.40.3.399
- [6] J. Clunie and T. Sheil-Small, Harmonic univalent functions, *Ann. Acad. Aci. Fenn. Ser. A I Math.* 9 (1984), 3-25. https://doi.org/10.5186/aasfm.1984.0905
- [7] J. Dziok, On Janowski harmonic functions, *J. Appl. Anal.* 21(2) (2015), 99-107. https://doi.org/10.1515/jaa-2015-0010
- [8] I. B. Jung, Y. C. Kim and H. M. Srivastava, The Hardy space of analytic functions

associated with certain one-parameter families of integral operators, *J. Math. Anal. Appl.* 176 (1993), 138-147. https://doi.org/10.1006/jmaa.1993.1204

- [9] P. Montel, Sur les familles de fonctions analytiques qui admettent des valeurs exceptionnelles dans un domaine, *Ann. Sci. Ecole Norm. Sup*. 29 (1912), 487-535. https://doi.org/10.24033/asens.652
- [10] G. S. Salagean, Subclasses of univalent functions, *Lecture Notes in Math.*, Springer Verlag, Berlin 1013 (1983), 362-372. https://doi.org/10.1007/BFb0066543
- [11] T. Sheil-Small, Constants for planer Harmonic mappings, *J. London Math. Soc.* 42(2) (1990), 237-248. https://doi.org/10.1112/jlms/s2-42.2.237
- [12] H. M. Srivastava and A. A. Attiya, An integral operator associated with the Hurwitz-Lerch Zeta function and differential subordination, *Integral Transforms and Special Functions* 18(3) (2007), 207-216. https://doi.org/10.1080/10652460701208577
- [13] S. R. Swamy, Inclusion properties of certain subclasses of analytic functions, *Int. Math. Forum* 7(36) (2012), 1751-1760.
- [14] B. A. Uralegaddi and C. Somanatha, Certain classes of univalent functions, in: *Current Topics in Analytic Function Theory*, (Edited by H. M. Srivastava and S. Own), 371-374, World Scientific, Singapore, 1992. https://doi.org/10.1142/9789814355896_0032
- [15] A. K. Wanas, New differential operator for holomorphic functions, *Earthline J. Math. Sci.* 2(2) (2019), 527-537. https://doi.org/10.34198/ejms.2219.527537
- [16] A. K. Wanas and G. Murugusundaramoorthy, Differential sandwich results for Wanas operator of analytic functions, *Mathematica Moravica* 24(1) (2020), 17-28. https://doi.org/10.5937/MatMor2001017K

Abbas Kareem Wanas Department of Mathematics College of Science University of Al-Qadisiyah, Iraq e-mail: abbas.kareem.w@qu.edu.iq

This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted, use, distribution and reproduction in any medium, or format for any purpose, even commercially provided the work is properly cited..