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Topological Properties for Harmonic z-Uniformly Convex Functions of

Order p Associated with Wanas Differential Operator

Abbas Kareem Wanas

Abstract

The purpose of the present paper is to establish some topological properties for a certain
family of harmonic t-uniformly convex functions of order p associated with Wanas

differential operator defined in the open unit disk U.
1. Introduction

A continuous function f = u+iv is a complex valued harmonic function in a
complex domain C, if both u and v are real harmonic in C. In any simply connected
domain D < C, we can write f = h + g, where h and g are analytic in D. We call h the
analytic part and g the co-analytic part of f. A necessary and sufficient condition for f to
be locally univalent and sense-preserving in D is that |h'(z)| > |g'(2)| in D (see Clunie
and Sheil-Small [6]).

Denote by H the family of harmonic functions in the open unit disk U = {z € C :
|z] < 1}. Let Sy indicate the family of functions f = h + g € H which are univalent
and sense-preserving in the open unit disk U and normalized by f(0) = £,(0) — 1 = 0.
Each f € Sy, can be expressed as

f(2) =h(2)+ 9@, (1.1)

where

h(z)=z+ Z a,z", g(2) = Z b,z™.
n=2 n=2
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Also note that I reduces to the family A of analytic functions in U if co-analytic part of
f is identically zero.

A function f € Sy is said to be harmonic starlike in U(r) = {z € C : |z| < r}, if (see
[11])

d ; B zh'(z) —z g'(2)
a(arg(f(re t))) = Re{ D+ e }> 0, (0<t<2m)

i.e., f maps the circle dU(r) onto a closed curve that is starlike with respect to the origin.

We consider the usual topology on H defined by a metric in which a sequence {f;,}
in H converges to f if and only if it converges to funiformly on each compact subset of
U. It follows from the theorems of Weierstrass and Montel that this topological space is
complete.

Let M be a sub-family of the set H. A function f € M is called an extreme point of
M if the condition f = Af; + (1 —A)f, (fi, L EM; 0<A<1)implies f; = f, = f.

We denote by EM the set of all extreme points of M. It is clear that EM € M.

A family M is locally uniformly bounded if for each r (0 < r < 1), there is a real
constant V =V (r) so that |f(2)| <V (f € M; |z| < 1).

A family M is convexif yfi + (1 =)L EM (fi, LEM; 0<y <1).

Moreover, we define the closed convex hull of M as the intersection of all closed
convex subsets of H (with respect to the topology of locally uniform convergence) that
contain M. We denote the closed convex hull of M’ by co M.

A real-valued functional F : 7 — R is called convex on a convex family M ¢ H
if
Fofi+ A=) <svyF)+A-F() (€M 0<sy<).
Fora €R, B =0 with a + 8 >0, m,q € N, = N U {0} and for analytic part h €
A, Wanas [15] introduced an operator (so-called Wanas operator) Wak'g : A—> A,
defined by

Wi h) =2+ ) [@nk @ )0an", (12)
n=2
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where
(1, B) = Zl (:l) (—pym+ (%).

Special cases of this operator can be found in [1, 2, 3, 4, 5, 8, 10, 12, 13, 14]. For more
details see [16].

Now, we extended this operator on the family of harmonic functions. For f = h +

g € H, we define the Wanas differential operator Wak_'; : H — H as follows:

v f (@) = W h(z) + (1) W, g(2),

where W, kq h(z) is defined by (1.2) and

i Dy (k, a, B)]bn 2",

We denote by WS4 (p, T, a, B8, k, q) the family of all functions of the form (1.1) that
satisfy the condition:

z(W)5 h(z) + (-1)W) g(z)) |

z (qu h(z) + (- l)qW g(z))
| +p, (1.3)

—— +1 P—
(W) h(2) + (DA g(2) (WS () + (~DWS 9@)

where 0 < p<1;7=>0andz € U.

Also denote by Ty the sub-family of Sy containing of all functions f = h + g, where
h and g are given by

h@) =2 ) lanls™, g(2) = (=D ) |bylz". (14
n=2 n=2
It is easily verified that if f € Ty, we also have
W ) = 2= ) 190 @ B)|anlz™ + (=T Y [@p (k@ I 1bal "
n=2 n=2

Moreover, let WTy (p, T, a, 8, k, q) be the sub-family of WSs:(p, 1, @, B, k, q), where

WTsw(p,T,a,B,k,q) = Tose N WSy (p, 7,2, B,k, q).
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We now recall the following lemmas that will be used to prove our main results.

Lemma 1.1 [7]. Let M be a nonempty compact convex subset of the family H and
F : H — R be a real-valued, continuous and convex functional on M. Then
max{F(f): f € M} = max{F(f): f € EM}.

Lemma 1.2 [9]. A family M c H is compact if and only if M is closed and locally
uniformly bounded.

2. A Set of Main Results

In the first theorem, we determine the sufficient condition for f =h+g to
be in the family WSy (p, 7, @, B, k, q).

Theorem 2.1. Let f = h + g with h and g are given by (1.1). If

(0]

Z n(n—p+ 0 =Dk, a B)|?(lan| + 1bn]) <1 -p, (2.1)

n=2
where 0 < p < 1,7 = 0, then f is harmonic univalent in U and f € WS4 (p, 7, , 8, k, q).

Proof. For proving f € WSy (p,7,a,0,k,q), we must show that (1.3) holds
true. Using the fact that Re{w} = if and only if |1—74+w|=|1+7—w|, it

is suffices to show that

n

z(Wej h@) + (D)W, g(2) | |
Re ( @b 2 ), +1|(1+ ‘L'e‘g) —te?'>p (-m<H<m),

(Waed h(z) + (~1)aWd g(2))

or equivalently

. (1+7e'?) (z (W;}? h(z) + (—1)‘?Wa’f§ 9(2))” + (W;EI h(z) + (—1)an'f}§ g(z))’)
e [
(Wil h(z) + (~1)aw) g(2))

we® (Wi h@) + (DWW 9(2))
— >p. (22)

(Wak'g h(z) + (—1)‘1Wa'fg g(z)),
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If we put
A(z)=(1+rei9)( (quh(z)+( DI g(z)),
+ (W50 1) + GO 9)) )
— 1 (WS b + DT 9(2))
and

B = (Wi o) + DI ()
We only need to prove that

|A(z) + (1 = p)B(2)| = |A(z) — (1 + p)B(2)| = 0.
But

|A(z) + (1 = p)B(2)]

= |(1+7e) (Z n(n = D@k, @ A1a,2" + (=D ) nln = D@,k @ HIB@"

n=2 n=2

1+ Z Py, ) anz™ + (<17 ) nldplk, a,ﬁ)]"E(Z)"*)

n=2

—te' (1 + Z n[®,(k, @, f)]%anz" "t + (-1)7 Z n[®n (k, a.ﬁ)]"ﬁ@”*)
n=2

n=2

+(1-p) (1 + Z n[@n(k, a, p)l9anz" " + (=11 Z n[ @y, (k, 06%)]‘*5@”*)

n=2 n=2

=|2-p)+ Z n(n+1-p+ mn—1Dre’) [,k a B)]9a,z"!

(0]

+(—1)4 Z n(n +1-p+(n-— 1)Tei9)[d>n(k, a, /3)]‘15(5)"_1 .

n=2
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Also

|A(z) = (1 + p)B(2)]

= [(1+pe) (Z n(n = D[P,k @, B)]7a,z" + (—1) ) nn = D@k, MI7Ba@"

n=2 n=2

1+ Z Dnlle, @, )19a,z" 1 + (=17 ) n[y(k, a,ﬁ)]qmz)"-1>

n=2

re!? (1 + ) (k@ f)]1a,z" 1 + (=17 )l (k a.mm@n*)
n=2

n=2

—(1+p) (1 + Z n[@n(k,a, p)l9anz" " + (-1 Z n[ @y, (k, 06%)]‘*5@”*)

n=2 n=2

—p+ Z n(n—1-p+n—1re)[d,(k a B)]a,z"!

[ee)

HEDY n(n =1 p + (0= Drel®) [y (k, 2, 17, D" |

n=2

Then

|A(z) + (1 = p)B(2)| = |A(2) = (1 + p)B(2)]

22(1-p) = ) 2n(n=p+ (= DOk @ B a2

n=2

- Z 2n(n—p+ (n— D) Pnk, a, BI|by| 2|1
n=2

[ee)

> 2{(1 —p) - Z nn—p+ 0 -0y, a B (lay| + [bp)¢ > 0

n=2

The harmonic univalent function

n

f@= 2+ ) o o DG T
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[ee]

Vn ,
+Zn(n—p+ (n— D7) [P, (k, a, B)]? @", (2.3)

n=2

where
lenl + Zlynl =1 - P
n=2 n=1

shows that the coefficient bound given by (2.1) is sharp.

The functions of the form (2.3) are in the family WSy (p, T, @, B, k, ), because

N [l
2, e 0 DI DI e o

|y |
nn—p+ n—1D1)|P,(k a, B

+ ) n(n—p+ -1k, a,B)|?

= len|+ Z|yn| =1-p.
n=2 n=1

The restriction placed in Theorem 2.1 on the moduli of the coefficients of f =h+g
enables us to conclude for arbitrary rotation of the coefficients of f that the resulting
functions would still be harmonic univalent and f € WSy (p, T, , B, k, q).

The next theorem shows that condition (2.1) is also the sufficient condition for
functions f € T4 to be in the family WTs (p, 7, @, B, k, q).

Theorem 2.2. Let f € Ty be a function of the form (1.4). Then f € WTy(p, T, a, 8, k, q)
if and only if condition (2.1) holds true.

Proof. In the light of Theorem 2.1, we need only to prove that each function f €
WTsy(p,7,a,8,k,q) satisfies coefficient inequality (2.1). If f € WTy(p, T, ,8,k,q),
then by (1.3), we have

z(Weg h(@ + (DWW, 9(2) _ _
Re ( P il ), +1 (1 + Te“g) —te? > p(-m <6 <.
(W h(@) + (1w 9()
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This is equivalent to

(1 + ‘L'eig) (z (W;q h(z) + (— 1)‘7W g(z)) (qu h(z) + (— 1)qW g(z)) )

(Wa’f 4 h(2) + (- g(z))

Re

o0 (Wk 9 h(z) + (- 1)"W—(Z))

(W 1)+ DI 9))

00

[(G=p= 3 nlnp+ (= ek @ B el —

n=2

= Re

1= nlonlla lllanlznt = > nldn(k,a /)]yl )"

n=2 n=2

00

Z n(n—p+ (n—D1e')| D, (k,a, B)||b,|(Z)"
_ - nl - >0. (2.4)

1= nlog(kap)laylznt = n|d>n<k,a.ﬂ)|Q|bn|<7)n—1J

n=2 n=2

The above required condition (2.4) must hold for all values of z in U. Upon choosing the
values of z on the positive real axis where 0 < z = r < 1, we must have

( o 00
|A=p) =D n=pIPnlleap)lanlr™ + Y n(n—p)|¢n(k,a,ﬁ)|Q|bn|r"-1]

Re n=2 n=1
1= nle(ka Dllanlr™=t = > nloyk,a B)19]byr
n=2 n=1

e | > ntn = DI,k @ f)a, "+ > n(n—1>|¢n(k,a,ﬁ>|q|bn|r"-1]

n=2 n=2

|
———

= 0.
1= @l Blelanr™t = D" nldnl,a B19]bylrmt J
n=2 n=2
Since Re(—eig) = —|ei9| = —1, and letr — 17, the above inequality reduces to
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1=p= n—p+0-1D0)0,k a Bl
n=2

(o) [ee]

1= nlontka Bllan] = D nldnk,a B)19bnl

n=2 n=2

(o)

D nn—p+@—DD)|Pnk, @ B)|bnl

- s > 0.
1= @k, aB)lan] — D nln(k,a,B)I91by]
n=2 n=2

This gives coefficient inequality (2.1), so the proof is complete.
Theorem 2.3. The family WTy(p, T, @, B, k, q) is a convex and compact subset of H .

Proof.Let 0 <y < 1and fi, f, € WTy(p, 7, a,f,k, q) be functions of the form:

(0]

fi(2) = Z (aje2° + bez®) (z€U,j € {12)). (2.5)
Since =

vhi(2)+ A =y)f(2)

= 2= (rara] + A = Plazal)z™ = DU |bia| + A =2 O™
n=2

Thus by Theorem 2.2, we have

[e0)

> (= p+ (= DOk & I (|asn] + (1 = P]azn])

n=2

+ (Y|byu] + (1 = )|b2]))
=y ) = p+ (1= DDIPa(k, @ HI(|asnl + [b1n])
n=2

+(1=7) ) nn=p+ (= DOk @ A (azn] + [bs])
n=2

<yQ-p+A-y)A-p)=1-p.

Earthline J. Math. Sci. Vol. 4 No. 2 (2020), 333-346
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Therefore

Vfl(Z) + (1 - )/)fz(Z) € WT?{(p' T, a,ﬁ, k, q)

Hence the family WTs (p, T, a, 8, k, q) is convex.

Furthermore, for f € WTy(p, T, a,8,k,q),|z| <7r,0 <r <1, we have

@I <7+ (anl+ 15D
n=2

<r+ Z nn—p+ @ -0k, a, f)|(lan| + [bn])
n=2

<r+1-p.
Then, we conclude that the family WTy (p, T, @, 8, k, @) is locally uniformly bounded. By
Lemma 1.2, we only need to show that it is closed, i.e., if f; € WTy(p,7,a,8,k,q) ( €
N) and f; — f, then f € WTy(p,7,a, B, k,q). Let f; and f be given by (1.2) and (1.1),
respectively. In view of Theorem 2.2, we find that

[ee]

Z nn—p+ 0 —D0I0uk a, )| + |bin]) <1—p GEN). (26)

n=2
Since f; — f, we conclude that |aj_n| — |a,| and |bj_n| — |b,| as j — o (j € N). The
sequence of partial sums {S,,} associated with the series

[ee)

Z nn—p+n—-D0)|Pyk a B)|(lax| + |by])

n=2
is a non-decreasing sequence.
Furthermore, by (2.6) it is bounded by 1 — p. Thus, the sequence {S,,} is convergent

and

oo

> (= p+ (= DOk @ I an] + by = lim S, <1 p.

n=2

Hence f € WTy (p, 7, a, 8, k, q) and this completes the proof.
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Theorem 2.4. EWTs (p,T,a,8,k,q) = {h, : n € N}U{g, : n € N,}, where

1-p n
Tntn—p+ (- DD|bka, T

hi(z) = z, h,(z) =2z
1-p
n(n—p+n—1)7)|P,(k, a, B)|

Proof. Assume that 0<A<1 and g,=Afi + (1 —A)f,, where fi,f; €
WTs(p,7,a, 8, k, q) are functions of the form (2.5). Then by (2.1), we obtain

gn(2) =z + @". (27

1-p
nn—p+ n—1)7)|P,(k,a B)|?

and a;j =a,;=0 for jEN, and b;; =b,; =0 for j € N, \ {n}. Then we have

|b1,n| = |b2,n| =

gn=/fi=/f, and hence g, € WTy(p,7,, 0,k q). Similarly, we prove that the
functions h,, of the form (2.7) are the extreme points of the family WTy (p, 7, @, 8, k, q).
Assume that f € EWTs(p,7,a,8,k,q) and f is not of the form (2.7), then there are
Jj € N, such that

1_
0 < o] < — . 4 q
](]_p+(]_1)1—)|q)j(k'alﬁ)|
or
1_
0< |yl < ———F z
](]—p+(]—1)‘r)|<bj(k,a,ﬁ)|
If

1-p
jG—p+ G =Dk a )|

0< || <

then, we taking
G =P+ G = DDk )|
1-p
We note that 0<A<1, hj#y and f=A2Ah;j+ (1—A)P. Therefore, f €&
EWTy(p,T,a,8,k,q).
If

A

1
laj| and zp:m(f—mj).

1-p
jG = p+ G =Dk B)|"

0<|b| <

Earthline J. Math. Sci. Vol. 4 No. 2 (2020), 333-346
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then, we taking

i(i—p+(i—1 . k, i q
foptd 132' e ) |bj| and qb——(f Ag;).

We note that 0<A<1, gj#¢ and f=2Ag;+(1—21)¢p. Therefore,
f &€ EWTy(p,t,2,B,k q).
Remark 2.1. If the family M = {f,, € H : n € N} is locally uniformly bounded,

then
E]VFZ{ZYnfn: Z)fnzl, VnZO(HEN)}-
n=1 n=1

Corollary 2.1. Let h,, and g,, be defined by (2.7). Then

A=

WTy(p,t,a, B, k, q) = {Z(Vnhn + Ungn) Z(Vn i) =1L =0, Yo =20 }

n=1 n=1
Remark 2.2. For each fixed value of n € N,, z € U, the following real-valued
functions

F(F) = lagl, F(F) = Ibal, F(O) =@, F(P) = [Wigf@| (f €70
are continuous and convex on H .

Also, fory = 0,0 < r < 1, the real-valued functional
1

14

2T
1 .
F(f) = Ef |f(re®®)|" do (f € H)
0

is continuous and convex on H.
By making use of Theorem 2.4 and Lemma 1.1, we obtain the following corollaries:

Corollary 2.2. Let f € WT(p,t,a,8,k,q), |z| =1 < 1. Then

. L P If@l<r+ p b
22 -p+1)|Py(k,a, BT T 2@ -ptD)|Py(ka, B4
and
k.q 1-p
2(2 p+) |W f(Z)| Y=t re.

The result is sharp. The function h,, of the form (2.7) is the extremal function.
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Corollary 2.3. Lety =2 0,0 <r < 1. If f e WTy(p, T, a, B, k, q), then

1 21 1 21
Ef |f(rei9)|ydeg%f Iy (re®)|” do
0 0

and

1 21 1 21
= f j2f ' (re®)|" b < f |2k (ret®)|” do.
0 0
The function h, is the function defined by (2.7).

3. Conclusion

The results we obtained in this paper which may be considered as a useful tool for
those who are interested in the above-mentioned topics for further research. It may also
be used to find prospective applications in some areas of mathematics and physics.
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