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Abstract 

In this article, we find the cyclic decomposition of the finite abelian factor group 

( ) ( ) ( ),GTGRGAC =  where mQG 2=  and m is an even number and mQ2  is the 

quaternion group of order 4m. 

(The group of all Z-valued generalized characters of G over the group of induced unit 

characters from all cyclic subgroups of G). 

We find that the cyclic decomposition ( )mQAC 2  depends on the elementary divisor of m. 

We have found that if ,2...21
21

hr
n

rr npppm ⋅⋅⋅⋅=  ip  are distinct primes, then: 

( )
( ) ( ) ( ) ( )

.2

121...11

1
2

21

CQAC

hrrr

i
m

n −++++

=
⊕=  
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Moreover, we have also found the general form of Artin characters table ( )mQAr 2  when 

m is an even number. 

1. Introduction  

Representation theory is a branch of mathematics that studies abstract algebra 

structures by representing their elements as linear transformations of vector spaces. So 

that representation theory is a powerful tool because it reduces problems in abstract 

algebra to problems in a linear algebra which is a very well understood theory. 

Moreover, representation and characters theory provide applications, not only in other 

branches of mathematics but also in physics and chemistry. 

For a finite group G, the factor group ( ) ( )GTGR  is called the Artin cokernel of G 

denoted ( ),GAC  ( )GR  denotes the abelian group generated by Z-valued characters of G 

under the operation of pointwise addition, ( )GT  is a subgroup of ( )GR  which is 

generated by Artin characters. 

A well-known theorem which is due to Artin asserted that ( )GT  has a finite index in 

( ),GR  i.e., [ ( ) ( )]GTGR :  is finite so ( )GAC  is a finite abelian group.  

 The exponent of ( )GAC  is called Artin exponent of G denoted by ( ).GA  

In 1968, Lam [10] proved a sharp form of Artin theorem and he determined the least 

positive integer ( )GA  such that [ ( ) ( )] ( ) .GAGTGR =:   

In 1976, David [4] studies ( )GA  of arbitrary characters of cyclic subgroups.  

In 1995, Mahmood [8] studied the cyclic decomposition of the factor group 

( ) ( )mm QRZ,Q 22cf  and he found the rational valued characters table of the quaternion 

group mQ2 .   

In 1996, Knwabuez [6] studied ( )GA  of p-groups. In 2000, Yassein [5] found 

( )GAC  for the group .
1

p

n

i
Z

=
⊕  In 2001 Ibraheem [3] studied ( )GA  of alternating group.  

Proposition 1.1 [9]. If p is a prime number and s is a positive integer, then  
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( )























=

1000

1100

1110

1111

⋯

⋮⋱⋮⋮⋮

⋯

⋯

⋯

s
p

CM  

which is of order ( ) ( ).11 +×+ ss  

Example 1.2. Consider the matrix ( ),64CM  we can find it by Proposition 1.1  

( ) ( ) .

1000000

1100000

1110000

1111000

1111100

1111110

1111111

6264





























== CMCM  

It is 77 ×  square matrix. 

Lemma 1.3 [7]. Let A and B be two non-singular matrices of the ranks n and m 

respectively, over a principal domain R and let: 

( ) ( ) ( ) ( ){ }AdAdAddiagADWAP n...,,, 2111 ==⋅⋅  

and 

( ) ( ) ( ) ( ){ }BdBdBddiagBDWBP m...,,, 2132 ==⋅⋅  

be the invariant factor matrices of A and B. Then: 

( ) ( ) ( ) ( ) ( )BDADWWBAPP ⊗=⊗⋅⊗⋅⊗ 2121  

and from this we get the invariant factor matrices of BA ⊗ . 

Proposition 1.4 [9]. The general form of the matrices ( )sp
CP  and ( )sp

CW  are:  



Sahar Jaafar Mahmood, Nesir Rasool Mahmood and Dhirgam Allawy Hussein 

http://www.earthlinepublishers.com 

172 

( )





























−

−
−

−

=

1000000

1100000

0001100

0000110

0000011

⋯

⋯

⋱

⋮⋮⋮⋮⋮⋮⋮

⋯

⋯

⋯

sp
CP  

which is ( ) ( )11 +×+ ss  square matrix. 

( ) ,1+= sp
ICW s  where 1+sI  is an identity matrix and ( ) { }.1...,,1,1,1

1

�������
+

=
S

p
diagCD s     

Remarks 1.5 [2].    

(1) If ,2h
m =  h is any positive integer, then we can write ( )mCM  as follows:   

( )
( )

.

11000

11000

11

11

11

1

























=

⋯

⋯

⋮⋮m
m

CR
CM  

which is ( ) ( )11 +×+ hh  square matrix, ( )mCR1  is the matrix obtained by omitting the 

last two rows { }1,1...,,0,0  and { }1,0,0...,,0,0  and the last two columns 

{ }0,1...,,1,1  and { }1,1...,,1,1  from the matrix ( )hCM
2

 in Proposition 1.1.    

(2) In general, if nr
n

rrh
pppm ⋅⋅⋅⋅= ...2 21

21
 such that nipi ...,,2,1, =  are prime 

numbers 2≠ip  and ( ) ,1,gcd =ji pp  h and ir  are any positive integer numbers for all 

,...,,2,1 ni =  then we can write mC  in the form: 

.
2

2
1

1
2 nr

n
rrh

pppm CCCCC ××××= ⋯  

(i) By proposition, we get  

( ) ( ) ( ) ( ) ( ).
2

2
1

1
2 nr

n
rrh

pppm CMCMCMCMCM ⊗⊗⊗⊗= ⋯  
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We can write ( )mCM  in the form:  

( )

( )

































































=

10

11

1

0

1

1

0

1

1

1

1

00

00

2

⋮

⋮

⋮

⋮

⋯

⋯

timesh

timesh

timesh

CR

CM

m

m  

which is ( ) ( ) ( ) ( ) ( ) ( )111111 11 ++⋅⋅+×++⋅⋅+ hrrhrr nn ……  square matrix, 

( )mCR2  is the matrix obtaining by omitted the last two rows { }1,1...,,0,0  and  

{ }1,0...,,0,0  and the last two columns { }0,1...,,0,1...,,1,0,1...,,1  and { }1...,,1,1  

from the tensor product  

( ) ( ) ( ) ( ).
2

2
1

1
2 nr

n
rrh

ppp
CMCMCMCM ⊗⊗⊗⊗ ⋯  

(ii) By Lemma 1.3 we have: 

(1) ( ) ( ) ( ) ( ) ( )
nr

n
rrh

pppm CPCPCPCPCP ⊗⊗⊗⊗= ⋯
2

2
1

1
2

. 

(2) ( ) ( ) ( ) ( ) ( ).
2

2
1

1
2 nr

n
rrh

pppm CWCWCWCWCW ⊗⊗⊗⊗= ⋯  

Theorem 1.6 [6]. Let M be an nn ×  matrix with entries in a principal ideal domain 

R. Then there exist matrices P and W such that: 

(1) P and W are invertible. 

(2) PMW = D. 

(3) D is a diagonal matrix. 

(4) If we denote iiD  by ,id  then there exists a natural number m; nm ≤≤0  such 

that mj >  implies 0=jd  and mj ≤  implies 0≠jd  and mj ≤≤1  implies 

.1+| jj dd  
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2. The Main Results  

Theorem 2.1. The Artin characters table of the quaternion group mQ2  when m is an 

even number is given as follows:  

( ) =mQAr 2  

2mCГ-CLASSES OF  [ ]xy [ ]y 

 m
x  

 [ ]1 

Г-CLASSES 

m m 2  2     2    …. 1 1 αCL 

4 4 2m  2m   2m …. 4m 4m 
2

( )
mQC CLα

 

0 0 
1Φ 

0 0 
2Φ 

⋮ ⋮ ⋮  

0 0 

( )mCAr 22  

lΦ 

0 2 0 0       0        … m m 
1+Φ l 

2 0 0 0       0        … m m 
2+Φ l 

where l is the number of Γ-classes of mC2  and 21, +≤≤Φ ljj  are the Artin 

characters of the quaternion group .2mQ  

Proof. Let .2mQg ∈  

Case (I): 

If H is a subgroup of ljxC m ≤≤= 1,2  and ϕ  is the principal character of H, then 

by using theorem  

( )
( )
( )

( ) ( )

( )







∅=

∈ϕ=Φ 
=

gCLH

gCLHhh
gC

gC

g i

n

i

i
H

G

j

∩

∩

if0

if

1
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 (i) If 1=g  

( )
( )

( )
( )

( ) ( )
( )

( )
( )121

1

12
1

1

22
1

1

4
1

1

1
1 22

j
H

C

HHH

Q
j

C

C

C

m

C

m

C

C
mm ϕ′⋅=⋅=⋅⋅=⋅=ϕ⋅=Φ  

( )12 jϕ′=  since ( ) { }11 =CLH ∩  

and ϕ  is the principal character where jϕ′  is the Artin characters of .2mC  

(ii) If m
xg =  and Hg ∈  

( )
( )

( )
( )

( )
1

42 ⋅=ϕ⋅=Φ
gC

m
g

gC

gC
g

HH

Q
j

m  since ( ) { }ggCLH =∩  and ( ) 1=ϕ g  

( )
( )

( )
( )

( ) ( )gg
gC

gC
g

gC

m
j

H

C

H

m ϕ′⋅=ϕ⋅=ϕ⋅⋅= 2
222 2  

(iii) If m
xg ≠  and Hg ∈   

( )
( )

( )
( ( ) ( ))12 −ϕ+ϕ=Φ gg

gC

gC
g

H

Q
j

m  

( )
( )11

2 +=
gC

m

H

 since ( ) { }1, −= gggCLH ∩  and ( ) ( ) 11 =ϕ=ϕ −
gg   

( )
( )

( ).2
2

2 g
gC

gC
j

H

C m ϕ′⋅==   

(iv) If Hg ∉  

( ) 0=Φ gj  since  ( ) ∅=gCLH ∩  

                   ( ).202 gjϕ′⋅=⋅=  

Case (II): 

If { }.,,,1 32
yyyyH ==  

(i) If 1=g  



Sahar Jaafar Mahmood, Nesir Rasool Mahmood and Dhirgam Allawy Hussein 

http://www.earthlinepublishers.com 

176 

( )
( )

( )
( ) m

m

C

C

H

Q
l

m =⋅=ϕ⋅=Φ + 1
4

4
1

1

1
1 2

1  since ( ) { }11 =CLH ∩  

(ii) If 2
yxg

m ==  and Hg ∈  

( )
( )

( )
( ) m

m
g

gC

gC
g

H

Q
l

m =⋅=ϕ⋅=Φ + 1
4

42
1  since ( ) { }ggCLH =∩  and ( ) .1=ϕ g  

(iii) If m
xg ≠  and ,Hg ∈  i.e., { yg =  or }3

yg =  

( )
( )

( )
( ( ) ( ))1

1
2 −

+ ϕ+ϕ=Φ gg
gC

gC
g

H

Q
l

m  

( ) 211
4

4 =+=  since ( ) { }1
,

−= gggCLH ∩  and ( ) ( ) 1
1 =ϕ=ϕ −

gg  

otherwise  

( ) 01 =Φ + gl   since  ( ) .∅=gCLH ∩  

Case (III): 

If { ( ) ( ) }.,,,1
3322

xyxyxyxyxyxyH
m =====  

(i) If 1=g  

( )
( )

( )
( ) m

m

C

C
g

H

Q
l

m =⋅=ϕ⋅=Φ + 1
4

4
1

1

1
2

2  since ( ) { }.11 =CLH ∩  

(ii) If ( ) m
xyxyg === 22

 and Hg ∈  

( )
( )

( )
( ) m

m
g

gC

gC
g

H

Q
l

m =⋅=ϕ⋅=Φ + 1
4

42
2  since  ( ) { }ggCLH =∩  and ( ) .1=ϕ g  

(iii) If ( ) m
xyxyg ==≠ 22

 and ,Hg ∈  i.e., { xyg =  or ( ) }3
xyg =  

( )
( )

( )
( ( ) ( ))1

2
2 −

+ ϕ+ϕ=Φ gg
gC

gC
g

H

Q
l

m  

( ) 211
4

4 =+=  since ( ) { }1
,

−= gggCLH ∩  and ( ) ( ) 1
1 =ϕ=ϕ −

gg  
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  otherwise  

( ) 02 =Φ + gl  since  ( ) .∅=gCLH ∩  

Example 2.2. To construct ( )256QAr  by using Theorem 2.1 we get the following 

table:                                                                   

( ) ( ) == 82256 QArQAr  

Γ-CLASSES [ ]1  128x    
64x    

32x    
16x    

8x    
4x    

2x    [ ]x  [ ]y  [ ]xy  

αCL  1 1 2 2 2 2 2 2 2 128 128 

( )αCLC
mQ2  

512 512 256 256 256 256 256 256 256 4 4 

Ф1 512 0 0 0 0 0 0 0 0 0 0 

Ф2 256 256 0 0 0 0 0 0 0 0 0 

Ф3 128 128 128 0 0 0 0 0 0 0 0 

Ф4 64 64 64 64 0 0 0 0 0 0 0 

Ф5 32 32 32 32 32 0 0 0 0 0 0 

Ф6 16 16 16 16 16 16 0 0 0 0 0 

Ф7 8 8 8 8 8 8 8 0 0 0 0 

Ф8 4 4 4 4 4 4 4 4 0 0 0 

Ф9 2 2 2 2 2 2 2 2 2 0 0 

Ф10 128 128 0 0 0 0 0 0 0 2 0 

Ф11 128 128 0 0 0 0 0 0 0 0 2 

Proposition 2.3. If nr
n

rrh
pppm ⋅⋅⋅⋅= ...2 21

21
 such that ip  are primes, 

( ) 1,.. =ji ppdcg  and 2≠ip   for all  ,...,,2,1 hi =  h and n any positive integers, then  
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( )
2 2

2

1 1 1 1

1

1 1 1 1

0 1 0 1

1 1 1 1

2 ( ) 1

1 1 1 1

0 1 0 1

1 1 1 1

1

0 0 0 0 1 1 1 10 0

0 0 0 0 0 0 0 1 0 1

0 0 0 1 1 1 0 0 1 1

0 0 0 1 1 1 1 0 0 1

m

m

h times

R C h times

M Q

h times

  
  + ⋅  
    

 
 

    ⋅ + ⋅ 
  

  =  
 
  
   + ⋅  

   



 

⋮ ⋮ ⋮ ⋮

⋮ ⋮ ⋮ ⋮

⋮ ⋮ ⋮ ⋮

… ⋯

… ⋯

… ⋯

… ⋯







 

which is ( )( ) ( )( )[ ] ( )( ) ( )( )[ ]2211122111 2121 +++++×+++++ hrrrhrrr nn ⋯⋯  

square matrix.  

( )mCR 22  is similar to the matrix in Remark 1.5.  

Proof. By Theorem 2.1, we obtain the Artin character table ( )mQA 2  of the 

quaternion group, and from previous proposition we get the rational valued character 

table  ( )mQ2
∗≡  of the quaternion group. 

Thus, by the definition of the matrix ( )mQM 2  

( ) ( ) ( ( )) 1
222 .

−∗≡= mmm QQArQM  
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( )
2 2

2

1 1 1 1

1

1 1 1 1

0 1 0 1

1 1 1 1

2 ( ) 1

1 1 1 1

0 1 0 1

1 1 1 1

1

0 0 0 0 1 1 1 10 0

0 0 0 0 0 0 0 1 0 1

0 0 0 1 1 1 0 0 1 1

0 0 0 1 1 1 1 0 0 1

m

m

h times

R C h times

M Q

h times

  
  + ⋅  
   

 
 
 

    ⋅ + ⋅ 
  

  =  
 
  
   + ⋅  

   



 

⋮ ⋮ ⋮ ⋮

⋮ ⋮ ⋮ ⋮

⋮ ⋮ ⋮ ⋮

… ⋯

… ⋯

… ⋯

… ⋯







 

which is ( )( ) ( )( )[ ] ( )( ) ( )( )[ ]2211122111 2121 +++++×+++++ hrrrhrrr nn ⋯⋯  

square matrix. 

Example 2.4. Consider the quaternion group ,48Q  we can find matrix ( )48QM  by 

two ways: 

First: by the definition of ( )48QM  

( ) ( ).42.348 QMQM =  

We must find ( )42.3
QAr  and ( ( )) .

1

2.3 4
−∗≡ Q   

By using corollary we get  

( ) ( ) ( ) ( )44 232.348 CArCArCArCAr ⊗==  























⊗






=

11111

02222

00444

00088

000016

11

03
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.

1111111111

0222202222

0044400444

0008800088

000016000016

0000033333

0000006666

0000000121212

000000002424

00000000044







































=  

Then from Theorem 2.1 we find ( )42.3
QAr  as follows: 

( )













































=

20000000002424

02000000002424

002222222222

000404444444

000060606066

000008088888

0000001201201212

0000000160161616

000000002402424

00000000032032

00000000004848

0000000000096

42.3
QAr  

Now, we find ( )42.3
C

∗
≡  as  

( ) ( ( )) ( ( )) ( ( ))44 232.348 CCCC
∗∗∗∗
≡⊗≡=≡=≡  
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





















−
−

−
−

⊗






 −
=

11111

11111

02222

00444

00088

11

12
 







































−−
−−

−−
−−

−−−−−
−−−−−

−−−−
−−−

−−

=

1111111111

1111111111

0222202222

0044400444

0008800088

1111122222

1111122222

0222204444

0044400888

000880001616

 

By pervious proposition we get ( ( ))42.3
Q

∗
≡  as: 













































−−−
−−

−−−
−−−−−

−−−−−
−−

−−−−
−−

−−−
−−

−−

=

111111111111

111111111111

111111111111

111111111111

001121212122

001121212122

000202222222

000202424244

000004044444

000004048488

000000080888

00000008081616

 

Now, 

( ) ( ) ( ( )) 1
484848

−∗
≡⋅= QQArQM  
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











































=

20000000002424

02000000002424

002222222222

000404444444

000060606066

000008088888

0000001201201212

0000000160161616

000000002402424

00000000032032

00000000004848

0000000000096

 













































−−
−−

−−−
−−−

−−−
−−−−

−−
−−−−−

−−
−−−−−

−−

•

4141414100000000

4141414100000000

616161616161000000

1211211211216161000000

121121121121121121611210000

24124124124124124112124112124100

2412412412411211211211210000

481481481481481481241481241481241481

48148148148124124124124124124100

481481481481481481241481241481241481

961961961961481481481481481481481481

961961961961481481481481481481481481

 













































=

100111111100

110011111100

101000000000

111100000000

111120000000

111122000000

111122200000

101000020000

111100022000

111120022200

111122022220

111122222222

 

which is 1212 ×  square matrix. 
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Second: 

        By Proposition 2.3, we find ( )4
2.3

CR  by using Remark 1.5 as: 

( ) ( ) ( )44 232.3
CMCMCM ⊗=  























⊗






=

10000

11000

11100

11110

11111

10

11
 







































=

1000000000

1100000000

1110000000

1111000000

1111100000

1000010000

1100011000

1110011100

1111011110

1111111111

. 

Thus, by omitting the last two columns and the last two rows of this matrix, we get: 

( )

































=

10000000

11000000

11100000

00010000

00011000

10011100

11011110

11111111

42.32 CR  

which is 88 ×  square matrix. 

Then, by Proposition 2.3 we have: 
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( )

( )4

4

2 3.2

3.2

1 1 1 1

1 1 1 1
2 4

1 1 1 1

1 1 1 1

0 1 0 1

1 1 1 1

1 1 1 1
4

1 1 1 1

0 0 0 0 0 0 1 1 1 1

0 0 0 0 0 0 0 1 0 1

0 0 0 1 1 1 0 0 1 1

0 0 0 1 1 1 1 0 0 1

R C times

M Q

times

  
  

  ⋅  
  
   

 
 
  =   

  ⋅  
  
   

 
 
 
 
 

⋯ ⋯ ⋯ ⋯

⋯ ⋯ ⋯ ⋯

⋯ ⋯ ⋯ ⋯

⋯ ⋯ ⋯ ⋯

 

which is 1212 ×  square matrix. 

Then:  

( ) .

100111111100

110011111100

101000000000

111100000000

111120000000

111122000000

111122200000

101000020000

111100022000

111120022200

111122022220

111122222222

423







































=
⋅

QM  

Proposition 2.5. If nr
n

rrh
pppm ⋅⋅⋅⋅= ...2 21

21
 such that ip  are primes, 

( ) 1,.. =ji ppdcg   and 2≠ip   for all ,...,,2,1 ni =  h and ir  any positive integers, 

then the matrices ( )mQP 2  and ( )mQW 2  take the forms: 
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( )
( )































−
−

−
=

10000

11000

10

11

00

00

00

2

2

⋯⋯

⋯⋯

⋮⋮

⋮⋮

m

m

CP

QP  

and  

( ) ,

1001111000

0101000000

0011111000

000

000

000

2





























−−−−

=

⋯⋯

⋯⋯

⋯⋯

⋮⋮⋮

⋮⋮⋮k

m

I

QW  

where ( ) ( ) ( ) ( )[ ] 12111 21 −++++= hrrrk n⋯  and kI  is an identity matrix of the 

order k. These matrices are 

( ) ( ) ( ) ( )[ ] ( )( ( ) ( ) ( )[ ]2211122111 2121 +++++×+++++ hrrrhrrr nn ⋯⋯  

square matrix. 

Proof. By using Theorem 1.6 and taking the form of ( )mQM 2  from Proposition 2.3 

and the above forms of ( )mQP 2 and ( ),2mQW  then: 

( ) ( ) ( )































=⋅⋅

10000000

01000000

00100000

00020000

00000200

00000020

00000002

222

⋯

⋯

⋯

⋯

⋮⋮⋮⋮⋮⋮⋮⋮

⋮⋮⋮⋮⋱⋮⋮⋮⋮

⋯

⋯

⋯

mmm QWQMQP  

( ) { }1,1,1,2...,,2,22 diagQD m ==  

which is ( ) ( ) ( ) ( )[ ] ( )( ( ) ( ) ( )[ ]2211122111 2121 +++++×+++++ hrrrhrrr nn ⋯⋯  

square matrix. 
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Example 2.6. Consider the ,96Q  then we can find the matrices ( )96QP  and ( )96QW  

immediately by using Proposition 2.5 and we can find ( )96QM  by Proposition 2.3, 

where 
3296 5 ⋅

= QQ : 

( ) ( ) ( )969696 QWQMQP ⋅⋅  













































−
−

−−
−

−
−

−
−

−
−

−
−

−

=

10000000000000

11000000000000

10100000000000

11110000000000

00011000000000

00001100000000

00000110000000

00000011000000

00000001100000

00000000110000

00000000011000

00000000001100

00000000000110

00000000000011

  













































•

10011111111100

11001111111100

10100000000000

11110000000000

11112000000000

11112200000000

11112220000000

11112222000000

10100000200000

11110000220000

11112000222000

11112200222200

11112220222220

11112222222222
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











































−−−−−−−−−

•

10011111111100

01010000000000

00111111111100

00010000000000

00001000000000

00000100000000

00000010000000

00000001000000

00000000100000

00000000010000

00000000001000

00000000000100

00000000000010

00000000000001

 













































=

10000000000000

01000000000000

00100000000000

00020000000000

00002000000000

00000200000000

00000020000000

00000002000000

00000000200000

00000000020000

00000000002000

00000000000200

00000000000020

00000000000002

 

{ }1,1,1,2,2,2,2,2,2,2,2,2,2,2diag=  

which is 1414 ×  square matrix. 

Theorem 2.7. If nr
n

rrh
pppm ⋅⋅⋅⋅= ...2 21

21
 such that ip  are primes ( )ji ppdcg ,..  

1=  and 2≠ip  for all ,...,,2,1 ni =  h and ir  any positive integers, then the cyclic 

decomposition of ( )mQAC 2  is: 

( )
( ) ( ) ( ) ( )

.2

12111

1
2

21

CQAC
hrrr

i
m

n −++++

=
⊕=
…

 

Proof. By pervious proposition we find ( )mQM 2  and by Proposition 2.5 we have 

( )mQP 2  and ( ).2mQW  Hence  
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( ) ( ) ( ) { }1,1,1,2...,,2,2222 diagQWQMQP mmm =⋅⋅  

{ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ),,...,,, 21111211121 2121 ++++−++++= hrrrhrrr nn
dddd ……  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) }., 2211112111 2121 +++++−++++ hrrrhrrr nn
dd ……  

Then by theorem we have 

( )
( ) ( ) ( ) ( )

.2

12111

1
2

21

CQAC
hrrr

i
m

n −++++

=
⊕=
…
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