Earthline Journal of Mathematical Sciences ISSN (Online): 2581-8147 Volume 4, Number 1, 2020, Pages 169-188 https://doi.org/10.34198/ejms.4120.169188 On Artin Cokernel of the Quaternion Group Q_{2m} when $m = 2^h \cdot p_1^{r_1} \cdot p_2^{r_2} \cdot ... \cdot p_n^{r_n}$, such that p_i are Primes, $g.c.d(p_i, p_j) = 1$ and $p_i \neq 2$ for all i = 1, 2, ..., n, h and r_i any Positive Integer Numbers # Sahar Jaafar Mahmood¹, Nesir Rasool Mahmood² and Dhirgam Allawy Hussein³ - ¹Department of Mathematics, College of Computer Science and Information Technology, University of Al_Qadisiyah, Iraq; e-mail: Sahar.abumalah@qu.edu.iq - ²Department of Mathematics, College of Education for Girls, University of Kufa, Iraq e-mail: naseer.mahmood@uokufa.edu.iq - ³Directorate of Education in Al_Qadisiyah, Iraq e-mail: dhirgam82@gmail.com #### **Abstract** In this article, we find the cyclic decomposition of the finite abelian factor group $AC(G) = \overline{R}(G)/T(G)$, where $G = Q_{2m}$ and m is an even number and Q_{2m} is the quaternion group of order 4m. (The group of all Z-valued generalized characters of G over the group of induced unit characters from all cyclic subgroups of G). We find that the cyclic decomposition $AC(Q_{2m})$ depends on the elementary divisor of m. We have found that if $m = p_1^{r_1} \cdot p_2^{r_2} \cdot ... \cdot p_n^{r_n} \cdot 2^h$, p_i are distinct primes, then: $$AC(Q_{2m}) = \bigoplus_{i=1}^{(r_1+1)(r_2+1)\dots(r_n+1)(h+2)-1} C_2.$$ Received: December 30, 2019; Revised & Accepted: April 18, 2020 2010 Mathematics Subject Classification: 20-XX. Keywords and phrases: Artin cokernel, quaternion group, cyclic decomposition, cyclic decomposition, Artin characters. Copyright © 2020 The Authors. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted, use, distribution and reproduction in any medium, or format for any purpose, even commercially provided the work is properly cited. Moreover, we have also found the general form of Artin characters table $Ar(Q_{2m})$ when m is an even number. ## 1. Introduction Representation theory is a branch of mathematics that studies abstract algebra structures by representing their elements as linear transformations of vector spaces. So that representation theory is a powerful tool because it reduces problems in abstract algebra to problems in a linear algebra which is a very well understood theory. Moreover, representation and characters theory provide applications, not only in other branches of mathematics but also in physics and chemistry. For a finite group G, the factor group $\overline{R}(G)/T(G)$ is called the Artin cokernel of G denoted AC(G), $\overline{R}(G)$ denotes the abelian group generated by Z-valued characters of G under the operation of pointwise addition, T(G) is a subgroup of $\overline{R}(G)$ which is generated by Artin characters. A well-known theorem which is due to Artin asserted that T(G) has a finite index in $\overline{R}(G)$, i.e., $[\overline{R}(G):T(G)]$ is finite so AC(G) is a finite abelian group. The exponent of AC(G) is called Artin exponent of G denoted by A(G). In 1968, Lam [10] proved a sharp form of Artin theorem and he determined the least positive integer A(G) such that $[\overline{R}(G):T(G)]=A(G)$. In 1976, David [4] studies A(G) of arbitrary characters of cyclic subgroups. In 1995, Mahmood [8] studied the cyclic decomposition of the factor group $cf(Q_{2m},Z)/\overline{R}(Q_{2m})$ and he found the rational valued characters table of the quaternion group Q_{2m} . In 1996, Knwabuez [6] studied A(G) of p-groups. In 2000, Yassein [5] found AC(G) for the group $\bigoplus_{i=1}^{n} Z_{p}$. In 2001 Ibraheem [3] studied A(G) of alternating group. **Proposition 1.1** [9]. *If p is a prime number and s is a positive integer, then* $$M(C_{p^s}) = \begin{bmatrix} 1 & 1 & 1 & \cdots & 1 \\ 0 & 1 & 1 & \cdots & 1 \\ 0 & 0 & 1 & \cdots & 1 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \end{bmatrix}$$ which is of order $(s+1)\times(s+1)$. **Example 1.2.** Consider the matrix $M(C_{64})$, we can find it by Proposition 1.1 $$M(C_{64}) = M(C_{2^6}) = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}.$$ It is 7×7 square matrix. **Lemma 1.3** [7]. Let A and B be two non-singular matrices of the ranks n and m respectively, over a principal domain R and let: $$P_1 \cdot A \cdot W_1 = D(A) = diag\{d_1(A), d_2(A), ..., d_n(A)\}$$ and $$P_2 \cdot B \cdot W_3 = D(B) = diag\{d_1(B), d_2(B), ..., d_m(B)\}$$ be the invariant factor matrices of A and B. Then: $$(P_1 \otimes P_2) \cdot (A \otimes B) \cdot (W_1 \otimes W_2) = D(A) \otimes D(B)$$ and from this we get the invariant factor matrices of $A \otimes B$. **Proposition 1.4** [9]. The general form of the matrices $P(C_{p^s})$ and $W(C_{p^s})$ are: which is $(s+1) \times (s+1)$ square matrix. $$W(C_{p^s}) = I_{s+1}$$, where I_{s+1} is an identity matrix and $D(C_{p^s}) = diag\{\underbrace{1, 1, 1, ..., 1}_{S+1}\}$. # Remarks 1.5 [2]. (1) If $m = 2^h$, h is any positive integer, then we can write $M(C_m)$ as follows: which is $(h+1)\times(h+1)$ square matrix, $R_1(C_m)$ is the matrix obtained by omitting the last two rows $\{0, 0, ..., 1, 1\}$ and $\{0, 0, ..., 0, 0, 1\}$ and the last two columns $\{1, 1, ..., 1, 0\}$ and $\{1, 1, ..., 1, 1\}$ from the matrix $M(C_{2^h})$ in Proposition 1.1. (2) In general, if $m = 2^h \cdot p_1^{r_1} \cdot p_2^{r_2} \cdot ... \cdot p_n^{r_n}$ such that p_i , i = 1, 2, ..., n are prime numbers $p_i \neq 2$ and $gcd(p_i, p_j) = 1$, h and r_i are any positive integer numbers for all i = 1, 2, ..., n, then we can write C_m in the form: $$C_m = C_{2^h} \times C_{p_1^{r_1}} \times C_{p_2^{r_2}} \times \cdots \times C_{p_n^{r_n}}.$$ (i) By proposition, we get $$M(C_m) = M(C_{2^h}) \otimes M(C_{p_1^{r_1}}) \otimes M(C_{p_2^{r_2}}) \otimes \cdots \otimes M(C_{p_n^{r_n}}).$$ We can write $M(C_m)$ in the form: $$M(C_m) = \begin{bmatrix} & & & & h \text{ times} \\ & R_2(C_m) & & 0 \\ & & & 0 \\ & & & h \text{ times} \\ \vdots \\ & & & 0 \\ & & & h \text{ times} \\ \vdots \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ \cdots \\ 0 \\ 1 \\ 1 \\ 1 \\ 0 \\ 0 \\ \cdots \\ 0 \\ 1 \end{bmatrix}$$ which is $(r_1 + 1) \cdot ... \cdot (r_n + 1)(h + 1) \times (r_1 + 1) \cdot ... \cdot (r_n + 1)(h + 1)$ square matrix, $R_2(C_m)$ is the matrix obtaining by omitted the last two rows $\{0, 0, ..., 1, 1\}$ and $\{0, 0, ..., 0, 1\}$ and the last two columns $\{1, ..., 1, 0, 1, ..., 1, 0, ..., 1, 0\}$ and $\{1, 1, ..., 1\}$ from the tensor product $$M(C_{2^h}) \otimes M(C_{p_1^{r_1}}) \otimes M(C_{p_2^{r_2}}) \otimes \cdots \otimes M(C_{p_n^{r_n}}).$$ (ii) By Lemma 1.3 we have: $$(1) \ P(C_m) = P(C_{2^h}) \otimes P(C_{p_1^{r_1}}) \otimes P(C_{p_2^{r_2}}) \otimes \cdots \otimes P(C_{p_n^{r_n}}).$$ $$(2) \ W(C_m) = W(C_{2^h}) \otimes W(C_{p_1^{r_1}}) \otimes W(C_{p_2^{r_2}}) \otimes \cdots \otimes W(C_{p_n^{r_n}}).$$ **Theorem 1.6** [6]. Let M be an $n \times n$ matrix with entries in a principal ideal domain R. Then there exist matrices P and W such that: - (1) P and W are invertible. - (2) PMW = D. - (3) D is a diagonal matrix. - (4) If we denote D_{ii} by d_i , then there exists a natural number m; $0 \le m \le n$ such that j > m implies $d_j = 0$ and $j \le m$ implies $d_j \ne 0$ and $1 \le j \le m$ implies $d_j \mid d_{j+1}$. # 2. The Main Results **Theorem 2.1.** The Artin characters table of the quaternion group Q_{2m} when m is an even number is given as follows: $$Ar(Q_{2m}) =$$ | Γ-CLASSES | Γ-CLASSES OF C_{2m} | | | | | | [y] | [xy] | |-----------------------------------|-----------------------|----------------------|------------|------------|-----|------------|-----|------| | | [1] | $\left[x^{m}\right]$ | | | | | | | | $ \mathit{CL}_{\alpha} $ | 1 | 1 | 2 | 2 | | 2 | m | m | | $\Big C_{Q_{2m}}(CL_{lpha})\Big $ | 4 <i>m</i> | 4 <i>m</i> | 2 <i>m</i> | 2 <i>m</i> | | 2 <i>m</i> | 4 | 4 | | Φ_1 | | | 0 | 0 | | | | | | Φ_2 | | | | | | | 0 | 0 | | : | | | | | | | i | ÷ | | Φ_{l} | | | | | | | 0 | 0 | | Φ_{l+1} | m | m | 0 | 0 | ••• | 0 | 2 | 0 | | Φ_{l+2} | m | m | 0 | 0 | | 0 | 0 | 2 | where l is the number of Γ -classes of C_{2m} and Φ_j , $1 \le j \le l+2$ are the Artin characters of the quaternion group Q_{2m} . **Proof.** Let $g \in Q_{2m}$. Case (I): If *H* is a subgroup of $C_{2m} = \langle x \rangle$, $1 \le j \le l$ and φ is the principal character of *H*, then by using theorem $$\Phi_{j}(g) = \begin{cases} \frac{|C_{G}(g)|}{|C_{H}(g)|} \sum_{i=1}^{n} \varphi(h_{i}) & \text{if } h_{i} \in H \cap CL(g) \\ 0 & \text{if } H \cap CL(g) = \emptyset \end{cases}$$ (i) If g = 1 $$\Phi_{j}(1) = \frac{\left| C_{Q_{2m}}(1) \right|}{\left| C_{H}(1) \right|} \cdot \varphi(1) = \frac{4m}{\left| C_{H}(1) \right|} \cdot 1 = \frac{2 \cdot 2m}{\left| C_{H}(1) \right|} \cdot 1 = \frac{2 \left| C_{C_{2m}}(1) \right|}{\left| C_{H}(1) \right|} \cdot 1 = 2 \cdot \varphi'_{j}(1)$$ $$= 2\varphi'_{j}(1) \text{ since } H \cap CL(1) = \{1\}$$ and φ is the principal character where φ'_{j} is the Artin characters of C_{2m} . (ii) If $$g = x^m$$ and $g \in H$ $$\Phi_{j}(g) = \frac{\left| C_{Q_{2m}}(g) \right|}{\left| C_{H}(g) \right|} \cdot \varphi(g) = \frac{4m}{\left| C_{H}(g) \right|} \cdot 1 \text{ since } H \cap CL(g) = \{g\} \text{ and } \varphi(g) = 1$$ $$= \frac{2 \cdot 2m}{\left| C_{H}(g) \right|} \cdot \varphi(g) = \frac{2\left| C_{C_{2m}}(g) \right|}{\left| C_{H}(g) \right|} \cdot \varphi(g) = 2 \cdot \varphi'_{j}(g)$$ (iii) If $g \neq x^m$ and $g \in H$ $$\begin{split} \Phi_{j}(g) &= \frac{\left| C_{Q_{2m}}(g) \right|}{\left| C_{H}(g) \right|} (\varphi(g) + \varphi(g^{-1})) \\ &= \frac{2m}{\left| C_{H}(g) \right|} (1+1) \text{ since } H \cap CL(g) = \{g, g^{-1}\} \text{ and } \varphi(g) = \varphi(g^{-1}) = 1 \\ &= \frac{2\left| C_{C_{2m}}(g) \right|}{\left| C_{H}(g) \right|} = 2 \cdot \varphi'_{j}(g). \end{split}$$ (iv) If $g \notin H$ $$\Phi_j(g) = 0$$ since $H \cap CL(g) = \emptyset$ = $2 \cdot 0 = 2 \cdot \varphi'_j(g)$. Case (II): If $$H = \langle y \rangle = \{1, y, y^2, y^3\}.$$ (i) If $$g = 1$$ $$\Phi_{l+1}(1) = \frac{\left| C_{Q_{2m}}(1) \right|}{\left| C_H(1) \right|} \cdot \varphi(1) = \frac{4m}{4} \cdot 1 = m \text{ since } H \cap CL(1) = \{1\}$$ (ii) If $$g = x^m = y^2$$ and $g \in H$ $$\Phi_{l+1}(g) = \frac{\left| C_{Q_{2m}}(g) \right|}{\left| C_{H}(g) \right|} \cdot \varphi(g) = \frac{4m}{4} \cdot 1 = m \text{ since } H \cap CL(g) = \{g\} \text{ and } \varphi(g) = 1.$$ (iii) If $$g \neq x^m$$ and $g \in H$, i.e., $\{g = y \text{ or } g = y^3\}$ $$\Phi_{l+1}(g) = \frac{\left| C_{Q_{2m}}(g) \right|}{\left| C_H(g) \right|} (\varphi(g) + \varphi(g^{-1}))$$ $$= \frac{4}{4} (1+1) = 2 \text{ since } H \cap CL(g) = \{g, g^{-1}\} \text{ and } \varphi(g) = \varphi(g^{-1}) = 1$$ otherwise $$\Phi_{l+1}(g) = 0$$ since $H \cap CL(g) = \emptyset$. Case (III): If $$H = \langle xy \rangle = \{1, xy, (xy)^2 = y^2 = x^m, (xy)^3 = xy^3\}.$$ (i) If $$g = 1$$ $$\Phi_{l+2}(g) = \frac{\left| C_{Q_{2m}}(1) \right|}{\left| C_H(1) \right|} \cdot \varphi(1) = \frac{4m}{4} \cdot 1 = m \text{ since } H \cap CL(1) = \{1\}.$$ (ii) If $$g = (xy)^2 = y^2 = x^m$$ and $g \in H$ $$\Phi_{l+2}(g) = \frac{\left| C_{Q_{2m}}(g) \right|}{\left| C_{H}(g) \right|} \cdot \varphi(g) = \frac{4m}{4} \cdot 1 = m \text{ since } H \cap CL(g) = \{g\} \text{ and } \varphi(g) = 1.$$ (iii) If $$g \neq (xy)^2 = y^2 = x^m$$ and $g \in H$, i.e., $\{g = xy \text{ or } g = (xy)^3\}$ $$\Phi_{l+2}(g) = \frac{\left| C_{Q_{2m}}(g) \right|}{\left| C_H(g) \right|} (\varphi(g) + \varphi(g^{-1}))$$ $$= \frac{4}{4} (1+1) = 2 \text{ since } H \cap CL(g) = \{g, g^{-1}\} \text{ and } \varphi(g) = \varphi(g^{-1}) = 1$$ otherwise $$\Phi_{l+2}(g) = 0$$ since $H \cap CL(g) = \emptyset$. **Example 2.2.** To construct $Ar(Q_{256})$ by using Theorem 2.1 we get the following table: $$Ar(Q_{256}) = Ar(Q_{2^8}) =$$ | Γ-CLASSES | [1] | $[x^{128}]$ | $\left[x^{64}\right]$ | $[x^{32}]$ | $[x^{16}]$ | $[x^8]$ | $[x^4]$ | $[x^2]$ | [x] | [y] | [xy] | |-----------------------------|-----|-------------|-----------------------|------------|------------|---------|---------|---------|-----|-----|------| | $ CL_{\alpha} $ | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 128 | 128 | | $ C_{Q_{2m}}(CL_{\alpha}) $ | 512 | 512 | 256 | 256 | 256 | 256 | 256 | 256 | 256 | 4 | 4 | | Φ_1 | 512 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Φ_2 | 256 | 256 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Φ_3 | 128 | 128 | 128 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Φ_4 | 64 | 64 | 64 | 64 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Φ_5 | 32 | 32 | 32 | 32 | 32 | 0 | 0 | 0 | 0 | 0 | 0 | | Φ_6 | 16 | 16 | 16 | 16 | 16 | 16 | 0 | 0 | 0 | 0 | 0 | | Φ_7 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 0 | 0 | 0 | 0 | | Φ_8 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 0 | 0 | 0 | | Φ_9 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | | Ф ₁₀ | 128 | 128 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | | Φ ₁₁ | 128 | 128 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | **Proposition 2.3.** If $m = 2^h \cdot p_1^{r_1} \cdot p_2^{r_2} \cdot ... \cdot p_n^{r_n}$ such that p_i are primes, $g.c.d(p_i, p_j) = 1$ and $p_i \neq 2$ for all i = 1, 2, ..., h, h and n any positive integers, then $$M\left(Q_{2m}\right) = \begin{bmatrix} \begin{cases} 1 & 1 & 1 & 1 \\ \vdots & \vdots & \vdots & \vdots \\ 1 & 1 & 1 & 1 \\ \end{cases} \\ 2 \cdot R_{2}(C_{2m}) \\ \begin{cases} 2 \cdot R_{2}(C_{2m}) \end{cases} \\ \begin{cases} \begin{cases} 1 & 1 & 1 & 1 \\ \vdots & \vdots & \vdots & \vdots \\ \end{cases} \\ \begin{cases} 1 & 1 & 1 & 1 \\ \vdots & \vdots & \vdots & \vdots \\ \end{cases} \\ \begin{cases} 1 & 1 & 1 & 1 \\ \vdots & \vdots & \vdots & \vdots \\ \end{cases} \\ \begin{cases} 1 & 1 & 1 & 1 \\ \vdots & \vdots & \vdots & \vdots \\ \end{cases} \\ \begin{cases} 1 & 1 & 1 & 1 \\ \vdots & \vdots & \vdots & \vdots \\ \end{cases} \\ \begin{cases} 1 & 1 & 1 & 1 \\ \vdots & \vdots & \vdots & \vdots \\ \end{cases} \\ \begin{cases} 1 & 1 & 1 & 1 \\ \vdots & \vdots & \vdots & \vdots \\ \end{cases} \\ \begin{cases} 1 & 1 & 1 & 1 \\ \vdots & \vdots & \vdots & \vdots \\ \end{cases} \\ \begin{cases} 1 & 1 & 1 & 1 \\ \vdots & \vdots & \vdots & \vdots \\ \end{cases} \\ \begin{cases} 1 & 1 & 1 & 1 \\ \vdots & \vdots & \vdots & \vdots \\ \end{cases} \\ \begin{cases} 1 & 1 & 1 & 1 \\ \vdots & \vdots & \vdots & \vdots \\ \end{cases} \\ \begin{cases} 1 & 1 & 1 & 1 \\ \vdots & \vdots & \vdots & \vdots \\ \end{cases} \\ \begin{cases} 1 & 1 & 1 & 1 \\ \vdots & \vdots & \vdots & \vdots \\ \end{cases} \\ \begin{cases} 1 & 1 & 1 & 1 \\ \vdots & \vdots & \vdots & \vdots \\ \end{cases} \\ \begin{cases} 1 & 1 & 1 & 1 \\ \vdots & \vdots & \vdots & \vdots \\ \end{cases} \\ \begin{cases} 1 & 1 & 1 & 1 \\ \vdots & \vdots & \vdots & \vdots \\ \end{cases} \\ \begin{cases} 1 & 1 & 1 & 1 \\ \vdots & \vdots & \vdots & \vdots \\ \end{cases} \\ \begin{cases} 1 & 1 & 1 & 1 \\ \vdots & \vdots & \vdots & \vdots \\ \end{cases} \\ \begin{cases} 1 & 1 & 1 & 1 \\ \vdots & \vdots & \vdots & \vdots \\ \end{cases} \\ \begin{cases} 1 & 1 & 1 & 1 \\ \vdots & \vdots & \vdots & \vdots \\ \end{cases} \\ \begin{cases} 1 & 1 & 1 & 1 \\ \vdots & \vdots & \vdots & \vdots \\ \end{cases} \\ \begin{cases} 1 & 1 & 1 & 1 \\ \vdots & \vdots & \vdots & \vdots \\ \end{cases} \\ \begin{cases} 1 & 1 & 1 & 1 \\ \vdots & \vdots & \vdots & \vdots \\ \end{cases} \\ \begin{cases} 1 & 1 & 1 & 1 \\ \vdots & \vdots & \vdots & \vdots \\ \end{cases} \\ \begin{cases} 1 & 1 & 1 & 1 \\ \vdots & \vdots & \vdots & \vdots \\ \end{cases} \\ \begin{cases} 1 & 1 & 1 & 1 \\ \vdots & \vdots & \vdots & \vdots \\ \end{cases} \\ \begin{cases} 1 & 1 & 1 & 1 \\ \vdots & \vdots & \vdots & \vdots \\ \end{cases} \\ \begin{cases} 1 & 1 & 1 & 1 \\ \vdots & \vdots & \vdots & \vdots \\ \end{cases} \\ \begin{cases} 1 & 1 & 1 & 1 \\ \vdots & \vdots & \vdots & \vdots \\ \end{cases} \\ \begin{cases} 1 & 1 & 1 & 1 \\ \vdots & \vdots & \vdots & \vdots \\ \end{cases} \\ \begin{cases} 1 & 1 & 1 & 1 \\ \vdots & \vdots & \vdots & \vdots \\ \end{cases} \\ \begin{cases} 1 & 1 & 1 & 1 \\ \vdots & \vdots & \vdots & \vdots \\ \end{cases} \\ \begin{cases} 1 & 1 & 1 & 1 \\ \vdots & \vdots & \vdots & \vdots \\ \end{cases} \\ \begin{cases} 1 & 1 & 1 & 1 \\ \vdots & \vdots & \vdots & \vdots \\ \end{cases} \\ \begin{cases} 1 & 1 & 1 & 1 \\ \vdots & \vdots & \vdots & \vdots \\ \end{cases} \\ \begin{cases} 1 & 1 & 1 & 1 \\ \vdots & \vdots & \vdots & \vdots \\ \end{cases} \\ \begin{cases} 1 & 1 & 1 & 1 \\ \vdots & \vdots & \vdots & \vdots \\ \end{cases} \\ \begin{cases} 1 & 1 & 1 & 1 \\ \vdots & \vdots & \vdots & \vdots \\ \end{cases} \\ \begin{cases} 1 & 1 & 1 & 1 \\ \vdots & \vdots & \vdots & \vdots \\ \end{cases} \\ \begin{cases} 1 & 1 & 1 & 1 \\ \vdots & \vdots & \vdots & \vdots \\ \end{cases} \\ \begin{cases} 1 & 1 & 1 & 1 \\ \vdots & \vdots & \vdots & \vdots \\ \end{cases} \\ \begin{cases} 1 & 1 & 1 & 1 \\ \vdots & \vdots & \vdots & \vdots \\ \end{cases} \\ \begin{cases} 1 & 1 & 1 & 1 \\ \vdots & \vdots & \vdots & \vdots \\ \end{cases} \\ \begin{cases} 1 & 1 & 1 & 1 \\ \vdots & \vdots & \vdots \\ \end{cases} \\ \begin{cases} 1 & 1 & 1 & 1 \\ \vdots & \vdots & \vdots \\ \end{cases} \\ \end{cases} \\ \begin{cases} 1 & 1 & 1 & 1 \\ \vdots & \vdots & \vdots \\ \end{cases} \\ \end{cases} \\ \begin{cases} 1 & 1 & 1 & 1 \\ \vdots & \vdots & \vdots \\ \end{cases} \\ \end{cases} \\ \begin{cases} 1 & 1 & 1 & 1 \\ \vdots & \vdots & \vdots \\ \end{cases} \\ \end{cases} \\ \begin{cases} 1 & 1 & 1 & 1 \\ \vdots & \vdots & \vdots \\ \end{cases} \\ \end{cases} \\ \end{cases} \\ \begin{cases} 1 & 1 & 1 & 1 \\ \vdots & \vdots & \vdots \\ \end{cases} \\ \end{cases} \\ \end{cases} \\ \begin{cases} 1 & 1 & 1 & 1 \\ \vdots & \vdots$$ is $[(r_1+1)(r_2+1)\cdots(r_n+1)(h+2)+2]\times[(r_1+1)(r_2+1)\cdots(r_n+1)(h+2)+2]$ which square matrix. $R_2(C_{2m})$ is similar to the matrix in Remark 1.5. **Proof.** By Theorem 2.1, we obtain the Artin character table $A(Q_{2m})$ of the quaternion group, and from previous proposition we get the rational valued character table $\equiv^* (Q_{2m})$ of the quaternion group. Thus, by the definition of the matrix $M(Q_{2m})$ $$M(Q_{2m}) = Ar(Q_{2m}). (\equiv^* (Q_{2m}))^{-1}$$ $$M\left(Q_{2m}\right) = \begin{bmatrix} 1 & 1 & 1 & 1 \\ \vdots & \vdots & \vdots & \vdots \\ 1 & 1 & 1 & 1 \end{bmatrix} h + 1 \cdot times \\ 2 \cdot R_2(C_{2m}) & \begin{cases} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ \vdots & \vdots & \vdots & \vdots \\ 1 & 1 & 1 & 1 \end{cases} h + 1 \cdot times \\ 0 & 1 & 0 & 1 \\ \vdots & \vdots & \vdots & \vdots \\ 1 & 1 & 1 & 1 \\ \vdots & \vdots & \vdots & \vdots \\ 1 & 1 & 1 & 1 \\ \vdots & \vdots & \vdots & \vdots \\ 1 & 1 & 1 & 1 \\ \vdots & \vdots & \vdots & \vdots \\ 1 & 1 & 1 & 1 \\ \vdots & \vdots & \vdots & \vdots \\ 1 & 1 & 1 & 1 \\ \vdots & \vdots & \vdots & \vdots \\ 1 & 1 & 1 & 1 \\ \vdots & \vdots & \vdots & \vdots \\ 1 & 1 & 1 & 1 \\ \vdots & \vdots & \vdots & \vdots \\ 1 & 1 & 1 & 1 \\ \vdots & \vdots & \vdots & \vdots \\ 1 & 1 & 1 & 1 \\ \vdots & \vdots & \vdots & \vdots \\ 1 & 1 & 1 & 1 \\ \vdots & \vdots & \vdots & \vdots \\ 1 & 1 & 1 & 1 \\ \vdots & \vdots & \vdots & \vdots \\ 1 & 1 & 1 & 1 \\ \vdots & \vdots & \vdots & \vdots \\ 1 & 1 & 1 & 1 \\ \vdots & \vdots & \vdots & \vdots \\ 1 & 1 & 1 & 1 \\ \vdots & \vdots & \vdots & \vdots \\ 1 & 1 & 1 & 1 \\ \vdots & \vdots & \vdots & \vdots \\ 1 & 1 & 1 & 1 \\ \vdots & \vdots & \vdots & \vdots \\ 1 & 1 & 1 & 1 \\ \vdots & \vdots & \vdots & \vdots \\ 1 & 1 & 1 & 1 \\ \vdots & \vdots & \vdots & \vdots \\ 1 & 1 & 1 & 1 \\ \vdots & \vdots & \vdots & \vdots \\ 1 & 1 & 1 & 1 \\ \vdots & \vdots & \vdots & \vdots \\ 1 & 1 & 1 & 1 \\ \vdots & \vdots & \vdots & \vdots \\ 1 & 1 & 1 & 1 \\ \vdots & \vdots & \vdots & \vdots \\ 1 & 1 & 1 & 1 \\ \vdots & \vdots & \vdots & \vdots \\ 1 & 1 & 1 & 1 \\ \vdots & \vdots & \vdots & \vdots \\ 1 & 1 & 1 & 1 \\ \vdots & \vdots & \vdots & \vdots \\ 1 & 1 & 1 & 1 \\ \vdots & \vdots & \vdots & \vdots \\ 1 & 1 & 1 & 1 \\ \vdots & \vdots & \vdots & \vdots \\ 1 & 1 & 1 & 1 \\ \vdots & \vdots & \vdots & \vdots \\ 1 & 1 & 1 & 1 \\ \vdots & \vdots & \vdots & \vdots \\ 1 & 1 & 1 & 1 \\ \vdots & \vdots & \vdots & \vdots \\ 1 & 1 & 1 & 1 \\ \vdots & \vdots & \vdots & \vdots \\ 1 & 1 & 1 & 1 \\ \vdots & \vdots & \vdots & \vdots \\ 1 & 1 & 1 & 1 \\ \vdots & \vdots & \vdots & \vdots \\ 1 & 1 & 1 & 1 \\ \vdots & \vdots & \vdots & \vdots \\ 1 & 1 & 1 & 1 \\ \vdots & \vdots & \vdots & \vdots \\ 1 & 1 & 1 & 1 \\ \vdots & \vdots & \vdots & \vdots \\ 1 & 1 & 1 & 1 \\ \vdots & \vdots & \vdots & \vdots \\ 1 & 1 & 1 & 1 \\ \vdots & \vdots & \vdots & \vdots \\ 1 & 1 & 1 & 1 \\ \vdots & \vdots & \vdots & \vdots \\ 1 & 1 & 1 & 1 \\ \vdots & \vdots & \vdots & \vdots \\ 1 & 1 & 1 & 1 \\ \vdots & \vdots & \vdots & \vdots \\ 1 & 1 & 1 & 1 \\ \vdots & \vdots & \vdots & \vdots \\ 1 & 1 & 1 & 1 \\ \vdots & \vdots & \vdots & \vdots \\ 1 & 1 & 1 & 1 \\ \vdots & \vdots & \vdots & \vdots \\ 1 & 1 & 1 & 1 \\ \vdots & \vdots & \vdots & \vdots \\ 1 & 1 & 1 & 1 \\ \vdots & \vdots & \vdots & \vdots \\ 1 & 1 & 1 & 1 \\ \vdots & \vdots & \vdots & \vdots \\ 1 & 1 & 1 & 1 \\ \vdots & \vdots & \vdots & \vdots \\ 1 & 1 & 1 & 1 \\ \vdots & \vdots & \vdots & \vdots \\ 1 & 1 & 1 & 1 \\ \vdots & \vdots & \vdots & \vdots \\ 1 & 1 & 1 & 1 \\ \vdots & \vdots & \vdots & \vdots \\ 1 & 1 & 1 & 1 \\ \vdots & \vdots & \vdots & \vdots \\ 1 & 1 & 1 & 1 \\ \vdots & \vdots & \vdots & \vdots \\ 1 & 1 & 1 & 1 \\ \vdots & \vdots & \vdots & \vdots \\ 1 & 1 & 1 & 1 \\ \vdots & \vdots & \vdots & \vdots \\ 1 & 1 & 1 & 1 \\ \vdots & \vdots & \vdots & \vdots \\ 1 & 1 & 1 & 1 \\ \vdots & \vdots & \vdots & \vdots \\ 1 & 1 &$$ which is $[(r_1+1)(r_2+1)\cdots(r_n+1)(h+2)+2]\times[(r_1+1)(r_2+1)\cdots(r_n+1)(h+2)+2]$ square matrix. **Example 2.4.** Consider the quaternion group Q_{48} , we can find matrix $M(Q_{48})$ by two ways: First: by the definition of $M(Q_{48})$ $$M(Q_{48}) = M(Q_{3.2^4}).$$ We must find $Ar(Q_{3,2^4})$ and $(\equiv^* (Q_{3,2^4}))^{-1}$. By using corollary we get $$Ar(C_{48}) = Ar(C_{32^4}) = Ar(C_3) \otimes Ar(C_{2^4})$$ $$= \begin{bmatrix} 3 & 0 \\ 1 & 1 \end{bmatrix} \otimes \begin{bmatrix} 16 & 0 & 0 & 0 & 0 \\ 8 & 8 & 0 & 0 & 0 \\ 4 & 4 & 4 & 0 & 0 \\ 2 & 2 & 2 & 2 & 0 \\ 1 & 1 & 1 & 1 & 1 \end{bmatrix}$$ Then from Theorem 2.1 we find $Ar(Q_{3,2^4})$ as follows: Now, we find $$\stackrel{*}{\equiv} (C_{3,2^4})$$ as $$\stackrel{*}{\equiv} (C_{48}) = (\stackrel{*}{\equiv} (C_{3,2^4})) = (\stackrel{*}{\equiv} (C_3)) \otimes (\stackrel{*}{\equiv} (C_{2^4}))$$ $$= \begin{bmatrix} 2 & -1 \\ 1 & 1 \end{bmatrix} \otimes \begin{bmatrix} 8 & -8 & 0 & 0 & 0 \\ 4 & 4 & -4 & 0 & 0 \\ 2 & 2 & 2 & -2 & 0 \\ 1 & 1 & 1 & 1 & -1 \\ 1 & 1 & 1 & 1 & 1 \end{bmatrix}$$ By pervious proposition we get $(\equiv (Q_{3,2^4}))$ as: Now, $$M(Q_{48}) = Ar(Q_{48}) \cdot (\equiv (Q_{48}))^{-1}$$ ``` 96 0 0 0 0 0 0 0 0 0 0 0 48 48 0 0 0 0 0 0 0 0 0 0 32 0 32 0 0 0 0 0 0 0 0 0 24 24 24 0 0 0 0 0 0 0 0 0 16 16 16 0 16 0 0 0 0 0 0 0 12 12 12 0 0 12 0 0 0 0 0 0 8 8 8 8 8 0 8 0 0 0 0 0 6 6 0 6 0 6 0 6 0 0 0 0 4 0 4 4 4 4 4 4 4 0 0 0 2 2 2 2 2 2 2 2 2 2 0 0 24 24 0 0 0 0 0 0 0 0 2 0 24 24 0 0 0 0 0 0 0 0 0 2 1/48 1/48 1/96 1/96 1/96 1/48 1/48 1/48 1/48 1/48 1/48 1/96 -1/48 -1/48 1/48 1/48 1/48 1/48 1/48 1/48 1/96 1/96 1/96 1/96 -1/48 1/24 -1/48 1/24 -1/48 1/24 -1/48 -1/48 1/48 1/48 1/48 1/48 0 -1/24 -1/24 1/24 1/24 1/24 1/24 1/48 1/48 1/48 1/48 0 1/48 -1/24 1/24 -1/48 -1/48 -1/48 1/48 1/48 -1/48 1/24 1/48 1/48 0 0 0 0 -1/12 -1/12 1/12 1/12 1/24 1/24 1/24 1/24 1/24 -1/12 -1/24 1/12 -1/24 -1/24 1/24 1/24 1/24 1/24 0 0 0 0 0 0 1/12 -1/6 -1/12 -1/12 1/12 1/12 1/12 1/12 0 0 -1/6 1/6 -1/12 1/12 1/12 0 0 0 0 -1/12 0 0 0 -1/6 -1/6 0 0 0 1/6 -1/6 1/6 1/6 0 0 -1/4 0 0 0 0 0 0 -1/4 1/4 1/4 0 0 0 0 0 0 0 0 1/4 -1/4 -1/4 1/4 2 2 2 2 2 2 2 2 1 1 1 1 2 2 2 2 2 0 0 2 1 1 2 2 2 2 0 0 0 1 1 0 1 1 0 2 2 0 0 0 0 0 1 1 1 1 0 0 0 0 2 0 0 0 0 1 0 0 0 0 0 0 2 2 2 1 1 1 2 2 0 0 0 0 0 1 0 2 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1 0 ``` which is 12×12 square matrix. Second: By Proposition 2.3, we find $R(C_{3,2^4})$ by using Remark 1.5 as: $$M(C_{3,2^4}) = M(C_3) \otimes M(C_{2^4})$$ $$= \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \otimes \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$ Thus, by omitting the last two columns and the last two rows of this matrix, we get: $$R_2(C_{3.2^4}) = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$ which is 8×8 square matrix. Then, by Proposition 2.3 we have: which is 12×12 square matrix. Then: **Proposition 2.5.** If $m = 2^h \cdot p_1^{r_1} \cdot p_2^{r_2} \cdot ... \cdot p_n^{r_n}$ such that p_i are primes, $g.c.d(p_i, p_j) = 1$ and $p_i \neq 2$ for all i = 1, 2, ..., n, h and r_i any positive integers, then the matrices $P(Q_{2m})$ and $W(Q_{2m})$ take the forms: $$P(Q_{2m}) = \begin{bmatrix} & & & & 0 & 0 \\ & & & & 0 & 0 \\ & & & \vdots & \vdots \\ & & & & 0 & 0 \\ & & & & -1 & 1 \\ & & & & 0 & -1 \\ 0 & 0 & \cdots & \cdots & 0 & 1 & -1 \\ 0 & 0 & \cdots & \cdots & 0 & 0 & 1 \end{bmatrix}$$ and where $k = [(r_1 + 1)(r_2 + 1)\cdots(r_n + 1)(h + 2)] - 1$ and I_k is an identity matrix of the order k. These matrices are $$[(r_1+1)(r_2+1)\cdots(r_n+1)(h+2)+2]\times[((r_1+1)(r_2+1)\cdots(r_n+1)(h+2)+2]$$ square matrix. **Proof.** By using Theorem 1.6 and taking the form of $M(Q_{2m})$ from Proposition 2.3 and the above forms of $P(Q_{2m})$ and $W(Q_{2m})$, then: $$P(Q_{2m}) \cdot M(Q_{2m}) \cdot W(Q_{2m}) = \begin{bmatrix} 2 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 & \cdots & 0 & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots & \vdots \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & 2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & \cdots & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & 1 \end{bmatrix}$$ $$= D(Q_{2m}) = diag\{2, 2, ..., 2, 1, 1, 1\}$$ which is $[(r_1 + 1)(r_2 + 1)\cdots(r_n + 1)(h + 2) + 2] \times [((r_1 + 1)(r_2 + 1)\cdots(r_n + 1)(h + 2) + 2]$ square matrix. **Example 2.6.** Consider the Q_{96} , then we can find the matrices $P(Q_{96})$ and $W(Q_{96})$ immediately by using Proposition 2.5 and we can find $M(Q_{96})$ by Proposition 2.3, where $Q_{96} = Q_{75,3}$: ``` P(Q_{96}) \cdot M(Q_{96}) \cdot W(Q_{96}) ``` ``` 0 0 0 0 0 0 0 0 1 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 1 0 0 0 0 0 0 0 0 0 0 -1 0 0 1 0 0 0 0 0 0 -1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 -1 0 - 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 ``` ``` 2 2 2 2 2 2 2 2 2 2 2 2 2 0 0 2 2 2 2 2 0 0 2 1 0 2 2 2 2 0 0 0 0 0 1 0 2 0 0 0 0 2 0 0 0 0 0 1 0 0 0 0 0 0 0 0 2 2 2 2 1 0 2 2 2 0 0 0 0 0 0 0 0 0 0 0 2 2 2 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 1 1 1 1 0 0 1 1 ``` $= diag\{2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1\}$ which is 14×14 square matrix. **Theorem 2.7.** If $m = 2^h \cdot p_1^{r_1} \cdot p_2^{r_2} \cdot ... \cdot p_n^{r_n}$ such that p_i are primes $g.c.d(p_i, p_j)$ = 1 and $p_i \neq 2$ for all i = 1, 2, ..., n, h and r_i any positive integers, then the cyclic decomposition of $AC(Q_{2m})$ is: $$AC(Q_{2m}) = \bigoplus_{\substack{i=1\\i=1}}^{(r_1+1)(r_2+1)\dots(r_n+1)(h+2)-1} C_2.$$ **Proof.** By pervious proposition we find $M(Q_{2m})$ and by Proposition 2.5 we have $P(Q_{2m})$ and $W(Q_{2m})$. Hence $$\begin{split} P(Q_{2m})\cdot M(Q_{2m})\cdot W(Q_{2m}) &= diag\{2,\,2,\,...,\,2,\,1,\,1,\,1\} \\ &= \{d_1,\,d_2,\,...,\,d_{(\eta+1)(r_2+1)...(r_n+1)(h+2)-1},\,d_{(\eta+1)(r_2+1)...(r_n+1)(h+2)+2},\\ &d_{(\eta+1)(r_2+1)...(r_n+1)(h+2)-1},\,d_{(\eta+1)(r_2+1)...(r_n+1)(h+2)+2}\}. \end{split}$$ Then by theorem we have $$AC(Q_{2m}) = \bigoplus_{\substack{i=1 \ i=1}}^{(n_1+1)(n_2+1)\dots(n_n+1)(h+2)-1} C_2.$$ ## References - [1] A. H. Abdul-Mun'em, On Artin cokernel of the quaternion group Q_{2m} when m is an odd number, M.Sc. thesis, University of Kufa, 2008. - [2] A. H. Mohammed, On Artin cokernel of finite groups, M.Sc. thesis, University of Kufa, 2007. - [3] A. M. Ibraheem, On another definition of Artin exponent, M.Sc. thesis, University of AL-Mustansiriya, 2001. - [4] G. David, Artin's exponent of arbitrary characters of cyclic sub groups, *Journal of Algebra* 61 (1976), 58-76. - [5] H. R. Yassien, On Artin cokernel of finite groups, M.Sc. thesis, University of Babylon, 2000. - [6] K. Knwabusz, Some definitions of Artin's exponent of finite group, USA, National Foundation Math, GR, 1996. - [7] M. J. Hall, The Theory of Groups, Macmillan, New York, 1959. - [8] N. R. Mahamood, The cyclic decomposition of the factor group $cf(Q_{2m}, Z)/\overline{R}(Q_{2m})$, M.Sc. thesis, University of Technology, 1995. - [9] R. N. Mirza, On Artin cokernel of dihedral group D_n when n is an odd number, M.Sc. thesis, University of Kufa, 2007. - [10] T. Y. Lam, Artin exponent of finite group, *Journal of Algebra* 9 (1968), 94-119. https://doi.org/10.1016/0021-8693(68)90007-0