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Abstract 

Alternatives to the existing axial distances of the Central Composite Design (CCD) in 

spherical design using three axial distances were studied. The aim of this study is to 

determine a better alternative to already existing axial distances whose prediction 

properties are more stable in the spherical design regions. Using the concepts of the three 

Pythagorean means, the arithmetic, harmonic and geometric axial distances for spherical 

regions were developed. The performances of the alternative axial distances were 

compared with the existing ones using the D and G optimality criteria. The study shows 

that the alternative axial distances are better using the D and G optimality criteria. 

1. Introduction 

Whenever multiple system variables may influence the outputs, response surface 

methodology (RSM) could be utilized in assessing the relationship between the 

dependent (response) and independent (input) variables as well as optimize the relevant 

processes (Mahsa et al. [9] and Diya’uddeen et al. [5]). Response surface methodology 

(RSM) is a collection of mathematical and statistical techniques for emperical model 

building. By careful design of experiments, the objective of RSM is to optimize a 

response (output variable) of interest which is influenced by several independent 

variables (input variables), Montgomery [10]. In this context, an experiment is a series of 

tests called runs in which changes are made to the input variables to understand the 

reasons for the changes in the output variable. In real life application of response surface 

methodology, the independent variable can be more than one. 
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The relationship between a response variable of interest, y, and the k independent 

variables is usually described by a first-order response surface model, 
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where 0β  and iβ  are the coefficients (parameters) of the model, ix ’s are the 

independent variables and e is the random error associated with the response variable 

such that the random error is normally and independently distributed with zero means 

and variance, 
2
eσ ; that is, ( ).,0~

2
eNIDe σ  However, if curvature exists, the 

relationship between the response variable and the independent variables is more 

appropriately described by a second-order response model, 
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where ,0β  ,iβ  iiβ
 

and ijβ  are coefficients of the response surface model, other 

components retain their original meanings. Expressed in matrix form, equation (2) 

becomes 

  ,0 e+′+′+β= Bxxbxy
 

(3) 

where y  is the 1×N  vector of responses, 0β  is a constant, x  is a point in the design 

space spanned by the design, b  is a 1×k  vector of first-order (linear) regression 

coefficients and N is the number of design runs, B  is a kk ×  symmetric matrix whose 

main diagonal entries are the coefficients of the pure quadratic terms and the off-

diagonal entries are coefficients of one-half the mixed quadratic (interaction) terms, and 

e is the random error term associated with the response. There is a total of 

( )( ) 221 ++= kkp  
model parameters to be estimated from the second-order response 

surface model which includes one constant, k first-order (linear) terms, k quadratic terms 

and ( ) 21−kk  interaction terms. The linear terms are the first-order components of the 

second-order model while the interaction terms are the cross-products of the second-

order model. 

Designs for fitting second-order response surface models like that of equation (2) are 
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called second-order response surface designs. However, a second-order response surface 

design is often chosen on the consideration of several criteria. Myers et al. [11] and 

Anderson-Cook et al. [2] stated that good second-order designs should: 

(a) result in a good fit of the model to the data; (b) provide sufficient information to 

allow for a test for model lack of fit; (c) allow models of increasing order to be 

constructed sequentially; (d) provide an estimate of pure experimental error; (e) be 

insensitive (robust) to the presence of outliers in the data; (f) be robust to errors in 

control of design levels; (g) be cost effective, that is, do not require too many runs; (h) 

allow experiments to be performed in blocks; (i) provide a check on the homogenous 

variance assumption; and (j) provide a good distribution of the variance of the predicted 

responses throughout the design region.  

However Anderson-Cook et al. [2] observed that not all the criteria are required or 

necessarily important in every RSM application. Some of the criteria listed above also 

present potential conflict with each other. For instance, one of the criteria suggests small 

experimental runs for cost effectiveness while another requires good distribution of the 

prediction variance. Studies have shown that often times, small design runs provide 

insufficient information for prediction variance evaluation (Li et al. [8]).  

Second-order models are used primarily for optimization and therefore, a model that 

performs well in response prediction is vital. This brings about the importance of the 

prediction variance highlighted in one of the criteria for adequate evaluation of design 

performance. Characterization of the prediction variance is very important in comparing 

competing designs. A good design will have minimum prediction variance distributed 

throughout the entire design space. 

There are types of CCD depending on the choice of α  value which is the axial runs 

from the center which specifies the type of Central Composite Designs. The most 

commonly used Central Composite Designs are: Spherical Central Composite Design 

(SCCD), Rotatable Central Composite Design (RCCD), Orthogonal Central Composite 

Designs (OCCD) and Face Centered Cube Design (FCCD). The choices of these designs 

depend on the axial runs ( ),α  cube and center points ( )cn  (Eze and Ngonadi [6]). 

For ,k=α  we have the spherical CCD, 4 f=α
 

gives the rotatable CCD, 

4 k=α  gives the practical CCD and 1=α  gives the Face-centered CCD. The problem 

with the spherical alpha, as identified by Li et al. [8], is that as the number of factors 
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increases, these alpha values could give impracticable axial distances. For instance, if 

,10=k  then 1623.310 =  for the spherical which are not feasible values when 

compared relative to –1 and +1, extreme values of the cube. Anderson and Whitcomb [1] 

proposed the practical alpha, 
4

k=α  as a compromise for the spherical alpha. The 

practical alpha, which is less extreme when compared to the spherical also offers 

reasonable variance inflation factor (VIF) as k increases (Li et al. [8]). However, often 

times, the practical α  tends to locate the star points very close to the centre of the design 

region that it is difficult to determine the true precision of the designs’ prediction 

capabilities. For instance, in the study by Li et al. [8], despite the advantages posed by 

the practical axial distance, the CCD with spherical α  consistently gave smaller and 

more stable prediction variance throughout the design region by using fraction of design 

space plots. 

The works of Box and Wilson [4] brought to fore the concepts of spherical α  for the 

CCD. The spherical alpha locates the star points at a distance of k  from the centre of 

the spherical design space, where k is a positive integer and represents the number of 

experimental factors. This places the star points and the factorial points on the surface of 

a sphere of radius, .k  The spherical axial distance of the star points usually provide 

values that are not feasible for large number of experimental factors. For ,20=k  for 

instance, 4.4721α =  which is an impractical value considering the fact that the extreme 

values of the design are placed at –1 and +1.  

The drawback of the spherical and rotatable axial distances with respect to high 

alpha values when there are high number of factors led to the recommendation of the 

practical axial distance by Anderson and Whitcomb [1]. The practical axial distance 

defines the practical CCD and is given by .4
k=α  This axial distance is a compromise 

between the cuboidal and spherical axial distances, 1=α  and ,k=α  respectively. 

According to the authors, the practical axial distance offers small and stable prediction 

variance with acceptable variance inflation factors. However, recent studies have shown 

that despite the obvious advantages of the practical axial distance, it does not necessarily 

provide consistently small prediction variances throughout the entire design region. In a 

study by Li et al. [8], the CCD with spherical α  is consistently superior to that of the 

practical α  in the spherical regions. 
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The aim of the study is therefore to construct alternative axial distances for the 

spherical design regions of the central composite designs which are less extreme but 

provides more stable prediction precision for the design. 

2. Methodology 

2.1. Pythagorean means 

The axial distance for the spherical region is developed using the three classical 

Pythagorean means namely the arithmetic mean, harmonic mean and geometric means. 

The Arithmetic mean A of a set of data 1 2, , ..., na a a  is defined as 
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Similarly the harmonic mean is expressed as the reciprocal of the arithmetic mean of the 

reciprocals of the given set of observations 
1 2, , ..., nx x x
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(5) 

The geometric mean of a data set { }1 2, , ..., na a a  is given by 

 

1

1 2

1

... .

n n
n

i n

i

a a a a

=

 
  =
 
 
∏

 

(6) 

The values of k ranges from 3 to 8 from where the axial distances were developed. The 

efficiency of these designs was evaluated using D and G efficiency. The highest value of 

the D and G efficiency is the most efficient to a particular efficiency criteria. 

2.2. Prediction variance 

In the design space x, the prediction variance is given by 

 
( ) 12

var[ ( )] ,
m m

y x x X X x
−′ ′= σ  (7) 
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where, ( )X X′
 
and ( ) 1

X X
−′  are information matrix and its inverse respectively of the 

second order composite design. The design matrix is X and 

( )2 2
1 1 1 2 11,  ,  ...,  ;  ,  ...,  ;  ,  ...,  k k k kx x x x x x x x−′ =m

x  is the vector of design points in the 

design space. 1 2, , ..., ;kx x x  2 2 2
1 2, , ..., ;kx x x  1 2 1, ..., k kx x x x−  

are the design points into 

linear, quadratic and mixed components of the model respectively. The Scaled Prediction 

Variance (SPV) of equation (7) is  

 
( ) 1

2

var ( )
.m mN y x

Nx X X x
−′ ′=

σ
 (8) 

The unknown parameter in equation (8) makes it difficult to use the equation. To 

eliminate the unknown parameter, Onukogu [12] assume 2 1σ = . However, some 

experimenters prefer the unscaled prediction variance (UPV) for design evaluation given 

by 

 
( ) 1

2

var[ ( )]
.m my x

x X X x
−′ ′=

σ
  (9) 

In equation (8), the cost of experimentation, N is influenced by using larger designs. On 

the other hand, scaled prediction variance allows the practitioner to measure the variance 

of the predicted responses on a per observation basis, thereby penalizing larger designs 

over smaller ones (Atkinson and Donev [3] and Li et al. [8]). By penalizing larger 

designs it means the prediction variance of such designs is expected to get bigger when it 

is scaled (multiplied by N). The rationale for scaling the prediction variance is to account 

for the cost of the design, represented by N in comparing designs of various sizes. 

However, there is increasing awareness for the use of the UPV in design evaluation. 

Goos [7] and Piepel [13] argue that larger designs often lead to smaller prediction 

variances and provide the experimenter with more useful information than unscaling the 

prediction variance.  

Among competing designs, the design(s) with the smallest and stable scaled or 

unscaled prediction variance is/are the most desirable. Stability is in the sense that there 

is small difference between the minimum and maximum SPV of a design.  

2.3. D-efficiency 

A D-optimal design maximizes D, where D is given by  
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[ ]detD X X′=  (10) 

or equivalently ( ) 1
minimize ,X X

−′  where X is the design matrix. 

 In summary 
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2.4. G-efficiency 

G-efficiency is based on ‘prediction Criterion’. G-efficiency or optimality is defined 

as 

 
( )

, 1,2,...,
ˆmin var[( )].

i
x

x i n x X
Max y

= ∈  
(12)         

This means minimizing the maximum variance over the experimental space of any 

predicted value. That is  

 
2 1

( )ˆvar[( )] ( ) ( ) ( ),xy f x X X f x
−′ ′= σ  (13) 

where 

X is the design matrix and x is any point in the design region, 

1 2( ) [ ( ), ( ), ..., ( )] .pf x f x f x f x ′=
 

The efficiencies of the D and G optimality criteria are determined if the values are 

exactly 1 or closer to 1. This means an efficiency of 100%. The D and G efficiencies 

were calculated using Design Expert software.  

2.5. Axial distances for spherical regions 

The three existing axial distances for the spherical region are, namely: spherical 

alpha, ;k=α  practical alpha, 4
k=α  and rotatable alpha, ,4 f=α  where ,2

qk
f

−=  

k is the number of factors and q is a nonnegative integer less than k. The arithmetic, 

harmonic and geometric means of these three alpha values gave the three new axial 

distances for the placement of the star points in the spherical region. The first is the 

arithmetic axial distance. 
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Let  
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be the arithmetic mean of n random variables with A representing ‘arithmetic’. Then the 

arithmetic mean of the spherical, practical and rotatable axial distances is given by 
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be the harmonic mean of the n independent random variables. Then the harmonic mean 

of the three existing axial distances is given by 
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The geometric mean of a set of n independent random variables is 

1

1 2

1

... .

n n
n

i n

i

a a a a

=

 
  =
 
 
∏  

Hence, the geometric axial distance in the spherical region is 
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Therefore, 

 [ ( )] .0and3,2 4

1
3 ≥==α −

qnk n
qk

Gn   (16) 

Equations (14), (15) and (16) are the alternative axial distances for the CCD in spherical 

region based on the three Pythagorean means. 

3. Results and Discussions 

The D- and G-efficiency values are computed for the six variations of the CCD in 

spherical region. The variations of the CCD are based on the various axial distances 

defining the central composite designs under comparison. The D- and G-efficiencies are 

used to measure any improvement on the performances of the designs by the alternative 

axial distances. An efficiency of 100 percent is a more preferable design. We considered 

k = 2 to 8 factors using three centre points as recommended by Montgomery [10]. 

The catalogue of the alpha values for the spherical region is shown in Table 1. 

Table 1. Catalogue of alpha value for the spherical region. 

k f 
  Sα

     Pα
      Rα

    ASα
    HSα

       GSα  

2 

3 

4 

5 

6 

 

7 

 

 

8 

 

 

9 

 

2
2 

2
3 

2
4 

2
5 

26 

2
6-1 

2
7 

2
7-1 

2
7-2 

28 

2
8-1 

2
8-2 

2
9 

2
9-1 

1.4142          1.1892          1.4142            1.3392          1.3303            1.3348   

1.7321          1.3161          1.6818            1.5766          1.5530            1.5651 

2.0000          1.4142          2.0000            1.8047          1.7574            1.7818      

2.2361          1.4954          2.3784            2.0366          1.9526            1.9961 

2.4495          1.5651          2.8284            2.2810          2.1417            2.2134   

2.4495          1.5651          2.3784            2.1310          2.0441            2.0891 

2.6458          1.6266          3.3636            2.5453          2.3255            2.4371 

2.6458          1.6266          2.8284            2.3669          2.2283            2.3003 

2.6458          1.6266          2.3784            2.2169          2.1229            2.1712 

2.8284          1.6818          4.0000            2.8367          2.5038            2.6697 

2.8284          1.6818          3.3636            2.5246          2.4088            2.5198 

2.8284          1.6818          2.8284            2.4462          2.3047            2.3784 

3.0000          1.7321          4.7568            3.1630          2.6764            2.9130 

3.0000          1.7321          4.0000            2.9107          2.5847            2.7495 
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10 

 

 

 

2
9-2 

2
10 

2
10-1 

2
10-2 

210-3 

3.0000          1.7321          3.3636            2.6986          2.3415            2.5952 

3.1623          1.7783          5.6569            3.5325          2.8427            3.1686 

3.1623          1.7783          4.7568            3.2325          2.7554            2.9907 

3.1623          1.7783          4.0000            2.9802          2.6583            2.8229 

3.1623          1.7783          3.3636            2.7681          2.4197            2.6644 

The values of the D- and G-efficiencies values for the axial distances for the 

spherical regions have been computed and presented in Tables 2 and 3, respectively. 

Table 2. D-efficiency values with three centre points in spherical region. 

k F N 
Sα

  Pα
  ASα

  HSα
  GSα

  Rα  

2 

3 

4 

5 

6 

7 

8 

2
2 

2
3 

2
4 

2
5 

2
6-1 

2
7-1 

2
8-2

 

11 

17 

27 

45 

47 

81 

83 

61.76  44.77  57.59  57.12  57.36  61.76  

70.05  52.51  62.53  53.04  53.20  100 

76.40   55.80  68.98  67.30  68.16  100 

80.70  58.70  74.42  71.93  73.51  85.60 

83.50  59.60  74.62  72.33  73.51  100 

85.94  62.16  79.41  76.29  77.91  90.61 

87.87  63.38  79.84  76.94  78.46  87.87 

Table 3. G-efficiency values with three centre points in spherical region. 

k F N 
Sα

  Pα   ASα
  HSα

  GSα
  Rα  

2 

3 

4 

5 

6 

7 

8 

2
2 

2
3 

2
4 

2
5 

2
6-1 

2
7-1 

2
8-2

 

11 

17 

27 

45 

47 

81 

83 

87.27          57.65            83.52            83.52            83.30         61.76 

89.03          79.25            85.20            79.54            79.63         77.30  

95.21          58.50            92.50            91.84            92.63         76.30 

86.00          80.90            88.60            89.19            88.92         83.00 

94.90          90.00            92.88            92.36            92.63         86.10 

83.68          81.64            85.37            85.52            85.46         81.06 

94.58          95.48            97.35            96.93            97.14         94.58 
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 The best results for the D-efficiency in spherical region is given by the CCD with 

rotatable axial distance, .Rα  This is followed by the CCD with spherical axial distances, 

.Sα
 
The central composite designs with the three alternative axial distances, ,ASα  

HSα  and ,GSα  consistently give D-efficiency values that are better than the CCD with 

practical axial distance, .Pα  Among the arithmetic, harmonic and geometric axial 

distances, the CCD with arithmetic axial distance is the best in terms of D-efficiency, 

followed by the CCD with geometric axial distance. The CCD with harmonic axial 

distance consistently gave the worst D-efficiency performance among the three 

alternative axial distances. Therefore, the central composite designs with arithmetic, 

harmonic and geometric axial distances should be used in place of the CCD with 

practical axial distance when the D-efficiency is the criterion chosen by the experimenter 

for response surface exploration. 

The CCDs with arithmetic, harmonic and geometric axial distances, ,ASα  HSα  and 

,GSα  gave the highest G-efficiency values for k = 5, 7 and 8 factors. Only the 

G-efficiency values of the CCD with spherical axial distance, ,Sα  are higher than those 

of the arithmetic, harmonic and geometric axial distances for k = 3, 4 and 6 factors. In 

the spherical region, the CCD with practical axial distance offered the lowest 

G-efficiency values, followed by the CCD with rotatable axial distance. It is only at k = 8 

that the CCD with rotatable and spherical axial distances have the same G-efficiency 

values which are however, lower than those of the three new alternative axial distances. 

Hence, if the G-efficiency is the experimenter’s preferred criterion for response surface 

exploration in spherical region, the CCD with arithmetic axial distance should be used or 

any of harmonic and geometric axial distances. It is only for k = 3, 4 and 6 factors that 

the CCD with spherical axial distance should be preferred. 

4. Conclusion  

The Pythagorean means of arithmetic, harmonic and geometric alphas were 

developed as alternative distances for the spherical regions of the central composite 

design. These axial distances were evaluated using the D and G efficiencies criteria. It 

was observed that the D-efficiency values of the arithmetic, harmonic and geometric 

axial distances are consistently better than those of the practical axial distance. The 

G-efficiency values of the three alternative axial distances in most cases remained the 
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highest among the six variations of the central composite designs simultaneously 

evaluated in the spherical regions.  
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