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Some Fixed Point Theory Results for the Interpolative

Berinde Weak Operator

Clement Boateng Ampadu

Abstract

Partially inspired by [1] and [2], we introduce a concept of interpolative Berinde

weak contraction, and obtain some existence theorems for mappings satisfying

such a contractive definition, and some of its extensions.

1 A Result in Metric Space

Definition 1.1. Let (X, d) be a metric space. We say T : X 7→ X is an interpolative

Berinde weak operator if it satisfies

d(Tx, Ty) ≤ λ d(x, y)α d(x, Tx)1−α,

where λ ∈ [0, 1) and α ∈ (0, 1), for all x, y ∈ X, x, y /∈ Fix(T ).

Theorem 1.2. Let (X, d) be a metric space. Suppose T : X 7→ X is an interpolative

Berinde weak operator. If (X, d) is complete, then the fixed point of T exists.

Proof. Define the sequence {xn} ∈ X by xn+1 = Txn for all n ∈ N∪{0}, and observe

we have the following

d(xn+1, xn+2) = d(Txn, Txn+1)

≤ λ d(xn, xn+1)
α d(xn, Txn)1−α

= λ d(xn, xn+1)
α d(xn, xn+1)

1−α

= λd(xn, xn+1).
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By induction, the following is clear for all n ∈ N ∪ {0},

d(xn, xn+1) ≤ λn d(x0, x1).

Now we show the sequence is Cauchy. For this, let n,m ∈ N with m > n, and

observe we have the following

d(xm, xn) ≤ d(xm, xm−1) + d(xm−1, xm−2) + · · ·+ d(xn+1, xn)

≤ (λm−1 + λm−2 + · · ·+ λn)d(x0, x1)

≤ (λn + λn+1 + · · · )d(x0, x1)

= λn(1 + λ+ · · · )d(x0, x1)

≤ λn

1− λ
d(x0, x1).

Now letting m,n→∞ in the above, it follows that {xn} is Cauchy, and since X is

complete, there is a ∈ X such that

lim
n→∞

xn = a.

Now we show the fixed point exists. First observe that since limn→∞ xn = a, the

following is clear,

lim
n→∞

d(a, xn+1) = lim
n→∞

d(xn, a)

= lim
n→∞

d(xn, xn+1)

= 0.

Now if a 6= Ta, then we know d(a, Ta) > 0, and we have the following

0 < d(a, Ta)

≤ d(a, xn+1) + d(xn+1, Ta)

= d(a, xn+1) + d(Txn, Ta)

≤ d(a, xn+1) + λd(xn, a)αd(xn, Txn)1−α

= d(a, xn+1) + λd(xn, a)αd(xn, xn+1)
1−α.
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Now letting n→∞ in the above, we deduce that

0 < d(a, Ta) ≤ 0.

Thus, d(a, Ta) is bounded above and below by zero, hence d(a, Ta) = 0, and the

fixed point exists, that is, a = Ta.

2 A Result in Cone Metric Space over Banach Algebras

This section takes inspiration from [3] with preliminaries as is. Now we begin with

the following

Definition 2.1. Let Ω denote a Banach algebra, and let (X, d) denote a cone metric

space over Ω, and let T : X 7→ X be a mapping. If there exists λ, α ∈ P , where P

is a cone, with 0 ≤ ρ(λ) < 1, and 0 < ρ(α) < 1, where ρ is the spectral radius, such

that

d(Tx, Ty) � λ d(x, y)α d(x, Tx)1−α

for all x, y ∈ X, x, y /∈ Fix(T ) = {x ∈ X|Tx = x}, then we say T is an interpolative

Berinde weak contraction in the setting of cone metric spaces with Banach algebras.

Our main result is as follows

Theorem 2.2. Let (X, d) be a complete cone metric space over a Banach algebra

Ω. If T : X 7→ X is an interpolative Berinde weak contraction, then the fixed point

of T exists.

Proof. Define the sequence {xn} ∈ X by xn+1 = Txn for all n ∈ N∪{0}, and observe

we have the following

d(xn+1, xn+2) = d(Txn, Txn+1)

� λ d(xn, xn+1)
α d(xn, Txn)1−α

= λ d(xn, xn+1)
α d(xn, xn+1)

1−α

= λd(xn, xn+1).
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By induction, the following is clear for all n ∈ N ∪ {0},

d(xn, xn+1) � λn d(x0, x1).

Now for all n,m ∈ N with n < m, we have the following

d(xn, xm) � d(xn, xn+1) + d(xn+1, xn+2) + · · ·+ d(xm−1, xm)

� (λn + λn+1 + · · ·+ λm−1) d(x0, x1)

� λn(e+ λ+ λ2 + · · ·+ λm−n−1) d(x0, x1)

� λn(e− λ)−1 d(x0, x1).

Now by Lemma 2.7[3] and Lemma 2.10[3], it follows that {xn} is Cauchy. Since

(X, d) is complete, there is a point x ∈ X such that limn→∞ xn = x. Now we show

the fixed point exists. Since 1 − α ∈ [0, 1) and 21−α ≤ 2 , observe we have the

following

d(x, Tx) � d(x, xn+1) + d(xn+1, Tx)

= d(x, xn+1) + d(Txn, Tx)

� d(x, xn+1) + λ d(xn, x)α d(xn, Txn)1−α

= d(x, xn+1) + λ d(xn, x)α d(xn, xn+1)
1−α

� d(x, xn+1) + λ d(xn, x)α
[
d(xn, x) + d(x, xn+1)

]1−α
� d(x, xn+1) + 2λ d(xn, x)

� d(x, xn+1) + 2λ [d(xn, x) + 2d(xn+1, x)]

= d(x, xn+1) + 2λ d(xn, x) + 4λ d(xn+1, x)

= (e+ 4λ) d(x, xn+1) + 2λ d(xn, x).

Now put hn = (e+ 4λ) d(x, xn+1) + 2λ d(xn, x). It follows from Lemma 2.7, Lemma

2.9, and Lemma 2.6 all contained in [3], that {hn} is a c-sequence, and thus for each

θ � c, there is n0 ∈ N such that d(x, Tx) � hn � c for n ≥ n0. Thus, by Lemma

2.4[3], the fixed point exists, that is, Tx = x.
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3 A Result in Partial Cone Metric Space

This section is inspired by [4] with preliminaries as is. Our main result is as follows.

Theorem 3.1. Let (X, ρ) be a complete partial cone metric space, P be a normal

cone with normal constant K. Suppose T : X 7→ X satisfies

ρ(Tx, Ty) ≤ λ ρ(x, y)α ρ(x, Tx)1−α,

where λ ∈ [0, 1) and α ∈ (0, 1), for all x, y ∈ X, x, y /∈ Fix(T ). Then the fixed point

of T exists, and for each x0 ∈ X, the iterative sequence {Tnx0} converges to the

fixed point.

Proof. Define the sequence {xn} ∈ X by xn+1 = Txn for all n ∈ N∪{0}, and observe

we have the following

ρ(xn+1, xn+2) = ρ(Txn, Txn+1)

� λ ρ(xn, xn+1)
α d(xn, Txn)1−α

= λ ρ(xn, xn+1)
α ρ(xn, xn+1)

1−α

= λρ(xn, xn+1).

By induction, the following is clear for all n ∈ N ∪ {0},

ρ(xn, xn+1) � λn ρ(x0, x1).

Now we show the sequence is Cauchy. For this, let m < n, and observe we have the

following

ρ(xm, xn) ≤ ρ(xm, xm−1) + ρ(xm−1, xm−2) + · · ·+ ρ(xn+1, xn)−
n−m−1∑
k=1

ρ(xn−k, xn−k)

≤ [λm−1 + λm−2 + · · ·+ λn]ρ(x0, x1)

≤ λn(1− λn−m)

1− λ
ρ(x0, x1)

≤ λn

1− λ
ρ(x0, x1).
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Now taking norm to inequality in above, we have

‖ρ(xm, xn)‖ ≤ Kλn

1− λ
‖ρ(x0, x1)‖.

It now follows that {Tnx0} is a Cauchy sequence in (X, ρ) such that

lim
n,m→∞

ρ(Tnx9, T
mx0) = 0.

As (X, ρ) is complete, there exists x0 ∈ X such that {Tnx0} converges to x and

ρ(x, x) = lim
n→∞

ρ(xn, x) = lim
n→∞

ρ(xn, xn) = 0.

Now we show existence of the fixed point. Observe, for any n ∈ N, that we have the

following

ρ(Tx, x) ≤ ρ(Tx, Tn+1x0) + ρ(Tn+1x0, x)− ρ(Tn+1x0, T
n+1x9)

≤ λρ(x, Tnx0)ρ(x, Tx)1−α + ρ(Tn+1x0, x).

Taking norm to inequality in above, we deduce

‖ρ(Tx, x)‖ ≤ λ‖ρ(x, Tnx0)‖‖ρ(x, Tx)‖1−α + ‖ρ(Tn+1x0, x)‖ → 0.

Hence, ρ(Tx, x) = 0. However,

ρ(Tx, Tx) ≤ λρ(x, x)αρ(x, Tx)1−α = 0.

Thus,

ρ(Tx, Tx) = ρ(x, Tx) = ρ(x, x) = 0.

which implies the fixed point exists, that is, Tx = x.

4 A Best Proximity Result

This section takes inspiration from [5] with preliminaries as is. However, some

additional notions and notations are necessary.
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Notation 4.1. The set of all best proximity points of T : A 7→ B will be denoted

BProx(T ) = {x ∈ A : d(x, Tx) = d(A,B)}.

Definition 4.2. A mapping T : A 7→ B will be called a proximal interpolative

Berinde weak contraction of the first kind if there exists λ ∈ [0, 1) and α ∈ (0, 1)

such that for all x1, x2, u1, u2 ∈ A, x1, x2 /∈ BProx(T ), the following implication holds

d(u1, Tx1) = d(A,B), d(u2, Tx2) = d(A,B)

=⇒
d(u1, u2) ≤ λ d(x1, x2)

αd(x1, u1)
1−α.

Definition 4.3. A mapping T : A 7→ B will be called a proximal interpolative

Berinde weak contraction of the second kind if there exists λ ∈ [0, 1) and α ∈ (0, 1)

such that for all x1, x2, u1, u2 ∈ A, x1, x2 /∈ BProx(T ), the following implication holds

d(u1, Tx1) = d(A,B), d(u2, Tx2) = d(A,B)

=⇒
d(Tu1, Tu2) ≤ λ d(Tx1, Tx2)

αd(Tx1, Tu1)
1−α.

Our main result is as follows, which extends the Interpolative Berinde Weak

Contraction Principle (of the first section) to the case of non-self mappings

Theorem 4.4. Let X be a complete metric space. Let A and B be nonempty, closed

subsets of X such that A is approximately compact with respect to B. Further,

suppose that A0 and B0 are nonempty. Let T : A 7→ B and g : A 7→ A satisfy the

following conditions

(a) T is a continuous proximal interpolative Berinde weak contraction of the second

kind.

(b) g is an isometry.

(c) T (A0) is contained in B0.
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(d) A0 is contained in g(A0).

(e) T preserves isometric distance with respect to g. Then there exists an element

x ∈ A such that

d(gx, Tx) = d(A,B).

Proof. Let x0 be a fixed element in A0. Since T (A0) is contained in B0 and A0 is

contained in g(A0), there exists an element x1 in A0 such that

g(gx1, Tx0) = d(A,B).

Again since Tx1 is an element of T (A0) which is contained in B0 and A0 is contained

in g(A0) its follows there exists an element x2 in A0 such that

d(gx2, Tx1) = d(A,B).

Since T (A0) is contained in B0 and A0 is contained in g(A0), for every positive

integer n, haven chosen xn in A0, we can also find xn+1 in A0 such that

d(gxn+1, Txn) = d(A,B).

As T is a continuous proximal interpolative Berinde weak contraction of the second

kind we deduce the following

d(Tgxn+1, T gxn) ≤ λd(Txn, Txn−1)
αd(Txn, T gxn+1)

1−α.

Since T preserves isometric distance with respect to g, we have,

d(Txn+1, Txn) ≤ λd(Txn, Txn−1)
αd(Txn, Txn+1)

1−α.

From the above, we deduce,

d(Txn+1, Txn) ≤ λ
1
αd(Txn, Txn−1).
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Since λ
1
α < 1, it is easy to see that {Txn} is Cauchy, hence it converges to some

element y in B. Further,

d(y,A) ≤ d(y, gxn)

≤ d(y, Txn−1) + d(Txn−1, gxn)

= d(y, Txn−1) + d(A,B)

≤ d(y, Txn−1) + d(y,A).

Therefore d(y, gxn)→ A. In view of the fact that A is approximately compact with

respect to B, {gxn} has a subsequence {gxnk} converging to some z ∈ A. It follows

that

d(z, y) = lim
k→∞

d(gxnk , Txnk−1) = d(A,B).

Hence z is a member of A0. Since A0 is contained in g(A0), z = gx for some z ∈ A0.

As g(xnk)→ g(x) and g is an isometry, xnk → x. Since the mapping T is continuous,

it follows that Txnk → Tx. Consequently, y and Tx are identical. Thus, it follows

that

d(gx, Tx) = lim
k→∞

d(gxnk , Txnk−1) = d(A,B).

Hence the best proximity point exists, and the proof is finished.

If g is the identity in the above theorem, then we get the following

Theorem 4.5. Let X be a complete metric space. Let A and B be nonempty, closed

subsets of X such that A is approximately compact with respect to B. Further,

suppose that A0 and B0 are nonempty. Let T : A 7→ B satisfy the following

conditions

(a) T is a continuous proximal interpolative Berinde weak contraction of the second

kind.

(b) T (A0) is contained in B0.

Then there exists an element x ∈ A such that

d(x, Tx) = d(A,B).
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5 The Alternate Interpolative Berinde Weak Operator

in Metric Spaces

Keep α, λ ∈ (0, 1). Now

d(Tx, Ty) ≤ λ d(x, y)αd(x, Tx)1−α

=⇒

d(Tx, Ty)

λ
≤ d(x, y)αd(x, Tx)1−α

=⇒

log

(
d(Tx, Ty)

λ

)
≤ α log(d(x, y)) + (1− α) log(d(x, Tx))

≤ (α+ 1− α) max{log(d(x, y)), log(d(x, Tx))}

= max{log(d(x, y)), log(d(x, Tx))}

=⇒

2 log

(
d(Tx, Ty)

λ

)
≤ log(d(x, y) d(x, Tx))

=⇒

log

(
d(Tx, Ty)

λ

)
≤ log(d(x, y) d(x, Tx))

1
2

=⇒

d(Tx, Ty) ≤ λ d(x, y)
1
2d(x, Tx)

1
2 .

Thus we have the following

Definition 5.1. A map T : X 7→ X will be called an alternate Interpolative Berinde

Weak operator if it satisfies

d(Tx, Ty) ≤ λ d(x, y)
1
2d(x, Tx)

1
2 ,
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where λ ∈ (0, 1), for all x, y ∈ X, x, y /∈ Fix(T ).

6 A Contraction Mapping Theorem in the Sense of

Istratescu

This section takes inspiration from [6], where the idea of convex contractions

first appeared. In particular, we introduce the convex interpolative Berinde weak

operator in metric spaces, and obtain a so-called “Convex Interpolative Berinde

Weak Contraction Mapping Theorem’.”

Definition 6.1. A continuous mapping T : X 7→ X will be called a convex

interpolative Berinde weak operator if the following holds for all x, y ∈ X, x, y /∈
{Fix(T ), F ix(T 2)}

d(T 2x, T 2y) ≤ λ1d(x, y)
1
2d(x, Tx)

1
2 + λ2d(Tx, Ty)

1
2d(Tx, T 2x)

1
2 ,

where λ1, λ2 ∈ (0, 1) with λ1 + λ2 < 1.

Theorem 6.2. Let (X, d) be a metric space, and T : X 7→ X be a convex

interpolative Berinde weak operator. If (X, d) is complete, then the fixed point exists.

Proof. Define the sequence {xn} by xn+1 = Txn = T 2xn−1, and observe we have

the following

d(xn+1, xn+2) = d(T 2xn−1, T
2xn)

≤ λ1d(xn, xn−1)
1
2 d(xn−1, Txn−1)

1
2 + λ2d(Txn, Txn−1)

1
2 d(Txn−1, T

2xn−1)
1
2

= λ1d(xn, xn−1)
1
2 d(xn−1, xn)

1
2 + λ2d(xn, xn+1)

1
2 d(xn, xn+1)

1
2

= λ1d(xn, xn−1) + λ2d(xn, xn+1)

≤ (λ1 + λ2) max{d(xn, xn−1), d(xn, xn+1)}

= (λ1 + λ2)d(xn, xn+1).

From the above, we deduce that

d(xn+1, xn+2) ≤ hd(xn, xn+1),
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where h := λ1 + λ2 < 1. By induction, the following is clear for all n ∈ N ∪ {0}

d(xn, xn+1) ≤ hnd(x0, x1).

Now we show the sequence is Cauchy. For this, let n,m ∈ N with m > n, and observe we

have the following

d(xm, xn) ≤ d(xm, xm−1) + d(xm−1, xm−2) + · · ·+ d(xn+1, xn)

≤ (hm−1 + hm−2 + · · ·+ hn)d(x0, x1)

≤ (hn + hn+1 + · · · )d(x0, x1)

= hn(1 + h+ · · · )d(x0, x1)

≤ hn

1− h
d(x0, x1).

Now letting m,n→∞ in the above, it follows that {xn} is Cauchy, and since X is complete,

there is a ∈ X such that

lim
n→∞

xn = a.

Now we show the fixed point exists. Suppose d(a, Ta) = 0, but d(a, T 2a) > 0. Now observe

we have the following

0 < d(a, T 2a)

≤ d(a, xn+1) + d(xn+1, T
2a)

= d(a, xn+1) + d(T 2xn−1, T
2a)

≤ d(a, xn+1) + λ1d(xn−1, a)
1
2 d(xn−1, Txn−1)

1
2 + λ2d(Txn−1, Ta)

1
2 d(Txn−1, T

2xn−1)
1
2 .

Taking limits in the above, and using the continuity of T , we deduce that

0 < d(a, T 2a) ≤ 0

which implies that d(a, T 2a) = 0, which is a contradiction. So a is also a fixed point of T 2,

and the proof is finished.

7 A Result in the Sense of Wardowski on Metric Spaces

In [7], they introduced the notion of F -contraction, and used it to give a new proof

of the Banach contraction mapping theorem. Inspired by this development, this
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section introduces a notion of F -interpolative Berinde weak contraction, and uses it

to give a new proof of the Interpolative Berinde weak contraction mapping theorem

(Section 1). We begin with the following

Definition 7.1. A mapping T : X 7→ X will be called an F -interpolative Berinde

weak contraction if there exists τ > 0 such that for all x, y ∈ X, x, y /∈ Fix(T ), the

following implication holds

d(Tx, Ty) > 0 =⇒ τ + F (d(Tx, Ty)) ≤ F (d(x, y)
1
2d(x, Tx)

1
2 ),

where F is a mapping satisfying Definition 2.1[7].

Example 7.2. Let F : [0,∞) 7→ (−∞,∞) be given by F (α) = ln(α), then F

satisfies Definition 2.1 [7] for any λ ∈ (0, 1). Now each mapping satisfying the

Definition 7.1 is an F -interpolative Berinde weak contraction such that

d(Tx, Ty) ≤ e−τd(x, y)
1
2d(x, Tx)

1
2

for all x, y ∈ X, x, y /∈ Fix(T ), Tx 6= Ty.

Remark 7.3. For x, y ∈ X, x, y /∈ Fix(T ), such that Tx = Ty, the inequality

d(Tx, Ty) ≤ e−τd(x, y)
1
2d(x, Tx)

1
2 .

In particular, T is an interpolative Berinde weak operator in the sense of Section 1

Now our main result is as follows

Theorem 7.4. Let (X, d) be a complete metric space, and let T : X 7→ X be

a continuous F -interpolative Berinde weak contraction. Then T has a fixed point

x∗ ∈ X and for every x0 ∈ X, the sequence {Tnx0}n∈N converges to x∗

Proof. Let x0 ∈ X be arbitrary and fixed. Define the sequence {xn}n∈N ⊂ X by

xn+1 = Txn, n = 0, 1, 2, · · · . Put γn = d(xn+1, xn), n = 0, 1, 2, · · · . If there exists

Earthline J. Math. Sci. Vol. 4 No. 2 (2020), 253-271



266 Clement Boateng Ampadu

n0 ∈ N for which xn0+1 = xn0 , then Txn0 = xn0 , and the proof is finished. So let us

assume that xn+1 6= xn for every n ∈ N. Now observe we have the following

τ + F (d(xn+1, xn)) = τ + F (Txn, Txn−1)

≤ F (d(xn, xn−1)
1
2d(xn, Txn)

1
2 )

= F (d(xn, xn−1)
1
2d(xn, xn+1)

1
2 ).

Since

d(xn, xn−1)
1
2d(xn, xn+1)

1
2 < d(xn, xn−1) ⇐⇒ d(xn+1, xn) < d(xn, xn−1)

and F is strictly increasing, the above implies the following

τ + F (d(xn+1, xn)) ≤ F (d(xn, xn−1))

or equivalently

F (γn) ≤ F (γn−1)− τ.

By induction, we obtain

F (γn) ≤ F (γn−1)− τ ≤ F (γn−1)− 2τ ≤ · · · ≤ F (γ0)− nτ.

Taking limits in the above we deduce that

lim
n→∞

F (γn) = −∞.

From (F2) of Definition 2.1[7], we have limn→∞ γn = 0. From (F3) of Definition

2.1[7], there is λ ∈ (0, 1) such that

lim
n→∞

γλnF (γn) = 0.

Since F (γn) ≤ F (γ0)− nτ holds for all n ∈ N, we deduce the following for all n ∈ N

γλnF (γn)− γλnF (γ0) ≤ γλn(F (γ0)− nτ)− γλnF (γ0)

= −γλnnτ

≤ 0.
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Since limn→∞ γn = 0, and limn→∞ γ
λ
nF (γn) = 0, if we take limits in the inequality

immediately above we deduce that

lim
n→∞

nγλn = 0.

From the above, there is n1 ∈ N such that nγλn ≤ 1 for all n1 ≥ n. It follows we

have the following

γn ≤
1

n
1
λ

for all n ≥ n1. Now we show the sequence {xn} is Cauchy. For this, let m,n ∈ N
with m > n ≥ n1. From definition of metric and above inequality we deduce the

following

d(xm, xn) ≤ γm−1 + γm−2 + · · ·+ γn

≤
∞∑
i=n

γi

≤
∞∑
i=n

1

i
1
λ

.

Since the series
∑∞

i=1
1

i
1
λ

is convergent, it follows that the sequence {xn}n∈N is a

Cauchy sequence. Since X is complete, there is a ∈ X such that limn→∞ xn = a.

Since T is continuous, we deduce the following

d(Ta, a) = lim
n→∞

d(Txn, xn) = lim
n→∞

d(xn+1, xn) = 0

and the proof is finished.

8 An Expanding Mapping Theorem in Partial Metric

Spaces

This section is inspired by [8] in which expanding mappings in the setting of partial

metric spaces analogous to expanding mappings in metric spaces are defined, and

some fixed point theorems for expanding mappings are obtained. In this section, we
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obtain a so-called Expanding Interpolative Berinde Weak Mapping Theorem in the

setting of partial metric spaces. We begin with the following

Definition 8.1. Let (X, ρ) be a partial metric space. We say a continuous mapping

T : X 7→ X is an interpolative Berinde weak expanding operator if it satisfies

ρ(Tx, Ty) ≥ λ ρ(x, y)
1
2 ρ(x, Tx)

1
2

for all x, y ∈ X, x, y /∈ Fix(T ), where λ > 1.

Our main result is as follows

Theorem 8.2. Let (X, ρ) be a complete partial metric space, and the continuous

mapping T : X 7→ X be a surjection. Suppose T : X 7→ X satisfies

ρ(Tx, Ty) ≥ λ ρ(x, y)
1
2 ρ(x, Tx)

1
2

for all x, y ∈ X, x, y /∈ Fix(T ), where λ > 1, and x 6= y. Then T has a fixed point

in X.

Proof. Let x0 ∈ X. Since T is surjective, choose x1 ∈ X such that Tx1 = x0.

By induction we have xn−1 = Txn for n = 1, 2, · · · . If there exists n0 such that

xn0−1 = xn0 , then xn0 is a fixed point of T , so we assume xn−1 6= xn for n = 1, 2, · · · .
Now observe we have the following

ρ(xn−1, xn) = ρ(Txn, Txn+1)

≥ λρ(xn, xn+1)
1
2 ρ(xn, Txn)

1
2

= λρ(xn, xn+1)
1
2 ρ(xn, xn−1)

1
2 .

The above implies

ρ(xn, xn+1)
1
2 ≤ 1

λ
ρ(xn−1, xn)

1
2

or equivalently

ρ(xn, xn+1) ≤
(

1

λ

)2

ρ(xn−1, xn).
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Since

(
1
λ

)2

< 1, by Lemma 2.1 [6], {xn} is a Cauchy sequence in X. Since (X, ρ)

is complete, then Lemma 1.1 [6], implies (X, ρs) is complete, and so {xn} converges

in the metric space (X, ρs), that is, there exists z ∈ X such that

lim
n→∞

ρs(xn, z) = 0.

Consequently, we can find u ∈ X such that z = Tu. Again from Lemma 1.1[6], we

have,

ρ(z, z) = lim
n→∞

ρ(xn, z) = lim
n,m→∞

ρ(xn, xm).

Moreover, since {xn} is Cauchy in (X, ρs), we have,

lim
n,m→∞

ρs(xn, xm) = 0.

On the other hand since

max{ρ(xn, xn), ρ(xn+1, xn+1)} ≤ ρ(xn, xn+1),

using ρ(xn, xn+1) ≤
(

1
λ

)2

ρ(xn−1, xn), by induction, we have

max{ρ(xn, xn), ρ(xn+1, xn+1)} ≤

(
1

λ

)2n

ρ(x1, x0).

It now follows that

lim
n→∞

ρ(xn, xn) = 0.

The definition of ρs implies

lim
n,m→∞

ρs(xn, xm) = 0.

Since ρ(z, z) = limn→∞ ρ(xn, z) = limn,m→∞ ρ(xn, xm), we have

ρ(z, z) = lim
n→∞

ρ(xn, z) = lim
n,m→∞

ρ(xn, xm) = 0.
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Now we show u = z. Using the inequality of the Theorem, we have

ρ(xn, z) = ρ(Txn+1, Tu)

≥ λρ(xn+1, u)
1
2 ρ(xn+1, Txn+1)

1
2 .

Taking limits in above as m→∞, and using continuity of T , we have

0 ≥ λρ(z, u)
1
2 ρ(z, Tz)

1
2 .

Since Tz = u, the above is equivalent to

0 ≥ λρ(z, u).

Since 1
λ 6= 0, the above implies ρ(z, u) = 0, that is, z = u. Since Tz = u, then we

have

Tz = u = z.

So z is a fixed point of T , and the proof is finished.

9 Concluding Remarks

In this work we introduced the Interpolative Berinde weak contraction, and obtained

some fixed point theory results for operators satisfying the inequality and its various

extensions in the setting of metric spaces, cone metric space over Banach algebras,

partial cone metric spaces, and partial metric spaces. The interpolative weak

contraction was extended to accomodate non-self maps leading to a best proximity

result, it was also extended to accomodate convexity conditions leading to a convex

type contraction mapping theorem. We also gave an implicit characterization leading

to a Wardowski type mapping theorem, finally, the expanding counterpart of the

inequality was also presented leading to an expansion type theorem.
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[3] Muttalip Özavsar, Fixed point theorems for (k, l)-almost contractions in cone metric

spaces over Banach algebras, Mathematical Advances in Pure and Applied Sciences

1(1) (2018), 46–51.

[4] R. Krishnakumar and M. Marudai, Fixed point theorems in partial cone metric spaces,

Global Journal of Mathematical Sciences: Theory and Practical 4(2) (2012), 97–105.

[5] S. Sadiq Basha, Best proximity point theorems, J. Approx. Theory 163 (2011),

1772–1781. https://doi.org/10.1016/j.jat.2011.06.012

[6] V. I. Istratescu, Some fixed point theorems for convex contraction mappings and

mappings with convex diminishing diameters, I, Ann. Mat. Pura Appl. 130 (1982),

89–104. https://doi.org/10.1007/BF01761490

[7] Dariusz Wardowsk, Fixed points of a new type of contractive mappings in complete

metric spaces, Fixed Point Theory Appl. 2012, 2012:94.

https://doi.org/10.1186/1687-1812-2012-94

[8] Xianjiu Huang, Chuanxi Zhu and Xi Wen, Fixed point theorems for expanding

mappings in partial metric spaces, An. Stiint. Univ. ”Ovidius” Constanta Ser. Mat.

20(1) (2012), 213–224. https://doi.org/10.2478/v10309-012-0014-7

Clement Boateng Ampadu

31 Carrolton Road, Boston, MA 02132-6303, USA

e-mail: drampadu@hotmail.com

This is an open access article distributed under the terms of the Creative Commons

Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted,

use, distribution and reproduction in any medium, or format for any purpose, even commercially

provided the work is properly cited.

Earthline J. Math. Sci. Vol. 4 No. 2 (2020), 253-271

https://doi.org/10.1016/j.jat.2011.06.012
https://doi.org/10.1007/BF01761490
https://doi.org/10.1186/1687-1812-2012-94
https://doi.org/10.2478/v10309-012-0014-7

	A Result in Metric Space
	A Result in Cone Metric Space over Banach Algebras
	A Result in Partial Cone Metric Space
	A Best Proximity Result
	The Alternate Interpolative Berinde Weak Operator in Metric Spaces
	A Contraction Mapping Theorem in the Sense of Istratescu
	A Result in the Sense of Wardowski on Metric Spaces
	An Expanding Mapping Theorem in Partial Metric Spaces
	Concluding Remarks

