Earthline Journal of Mathematical Sciences

ISSN (Online): 2581-8147

Volume 4, Number 2, 2020, Pages 227-251 https://doi.org/10.34198/ejms.4220.227251

A Study on Generalized Jacobsthal-Padovan Numbers

Yüksel Soykan

Abstract

In this paper, we investigate the generalized Jacobsthal-Padovan sequences and we deal with, in detail, four special cases, namely, Jacobsthal-Padovan, Jacobsthal-Perrin, adjusted Jacobsthal-Padovan and modified Jacobsthal-Padovan sequences. We present Binet's formulas, generating functions, Simson formulas, and the summation formulas for these sequences. Moreover, we give some identities and matrices related with these sequences.

1 Introduction

It is the aim of this paper to define and to explore some of the properties of generalized Jacobsthal-Padovan numbers and is to investigate, in details, four particular case, namely sequences of Jacobsthal-Padovan, Jacobsthal-Perrin, adjusted Jacobsthal-Padovan and modified Jacobsthal-Padovan numbers. Before, we recall the generalized Tribonacci sequence and its some properties.

The generalized Tribonacci sequence $\{W_n(W_0,W_1,W_2;r,s,t)\}_{n\geq 0}$ (or shortly $\{W_n\}_{n\geq 0}$) is defined as follows:

$$W_n = rW_{n-1} + sW_{n-2} + tW_{n-3}, W_0 = a, W_1 = b, W_2 = c, n \ge 3$$
 (1.1)

where W_0, W_1, W_2 are arbitrary complex (or real) numbers and r, s, t are real numbers.

This sequence has been studied by many authors, see for example [1, 2, 3, 6, 7, 11, 12, 13, 14, 18, 19, 20, 21].

The sequence $\{W_n\}_{n\geq 0}$ can be extended to negative subscripts by defining

$$W_{-n} = -\frac{s}{t}W_{-(n-1)} - \frac{r}{t}W_{-(n-2)} + \frac{1}{t}W_{-(n-3)}$$

Received: May 10, 2020; Accepted: May 21, 2020

2010 Mathematics Subject Classification: 11B39, 11B83.

Keywords and phrases: Jacobsthal-Padovan numbers, Jacobsthal-Perrin numbers, adjusted Jacobsthal-Padovan numbers, modified Jacobsthal-Padovan numbers.

for n = 1, 2, 3, ... when $t \neq 0$. Therefore, recurrence (1.1) holds for all integer n.

As $\{W_n\}$ is a third order recurrence sequence (difference equation), its characteristic equation is

$$x^3 - rx^2 - sx - t = 0 ag{1.2}$$

whose roots are

$$\alpha = \alpha(r, s, t) = \frac{r}{3} + A + B,$$

$$\beta = \beta(r, s, t) = \frac{r}{3} + \omega A + \omega^2 B,$$

$$\gamma = \gamma(r, s, t) = \frac{r}{3} + \omega^2 A + \omega B,$$

where

$$A = \left(\frac{r^3}{27} + \frac{rs}{6} + \frac{t}{2} + \sqrt{\Delta}\right)^{1/3},$$

$$B = \left(\frac{r^3}{27} + \frac{rs}{6} + \frac{t}{2} - \sqrt{\Delta}\right)^{1/3},$$

$$\Delta = \Delta(r, s, t) = \frac{r^3t}{27} - \frac{r^2s^2}{108} + \frac{rst}{6} - \frac{s^3}{27} + \frac{t^2}{4},$$

$$\omega = \frac{-1 + i\sqrt{3}}{2} = \exp(2\pi i/3).$$

Note that we have the following identities

$$\begin{array}{rcl} \alpha + \beta + \gamma & = & r, \\ \alpha \beta + \alpha \gamma + \beta \gamma & = & -s, \\ \alpha \beta \gamma & = & t. \end{array}$$

If $\Delta(r, s, t) > 0$, then the Equ. (1.2) has one real (α) and two non-real solutions with the latter being conjugate complex. So, in this case, it is well known that generalized Tribonacci numbers can be expressed, for all integers n, using Binet's formula

$$W_n = \frac{b_1 \alpha^n}{(\alpha - \beta)(\alpha - \gamma)} + \frac{b_2 \beta^n}{(\beta - \alpha)(\beta - \gamma)} + \frac{b_3 \gamma^n}{(\gamma - \alpha)(\gamma - \beta)},$$
 (1.3)

where

$$b_1 = W_2 - (\beta + \gamma)W_1 + \beta\gamma W_0,$$

$$b_2 = W_2 - (\alpha + \gamma)W_1 + \alpha\gamma W_0,$$

$$b_3 = W_2 - (\alpha + \beta)W_1 + \alpha\beta W_0.$$

Note that the Binet form of a sequence satisfying (1.2) for non-negative integers is valid for all integers n, for a proof of this result see [8]. This result of Howard and Saidak [8] is even true in the case of higher-order recurrence relations.

In this paper we consider the case r=0, s=1, t=2 and in this case we write $V_n=W_n$. A generalized Jacobsthal-Padovan sequence $\{V_n\}_{n\geq 0}=\{V_n(V_0,V_1,V_2)\}_{n\geq 0}$ is defined by the third-order recurrence relations

$$V_n = V_{n-2} + 2V_{n-3} (1.4)$$

with the initial values $V_0 = c_0, V_1 = c_1, V_2 = c_2$ not all being zero.

The sequence $\{V_n\}_{n\geq 0}$ can be extended to negative subscripts by defining

$$V_{-n} = -\frac{1}{2}V_{-(n-1)} + \frac{1}{2}V_{-(n-3)}$$

for n = 1, 2, 3, ... Therefore, recurrence (1.4) holds for all integer n.

(1.3) can be used to obtain Binet formula of generalized Jacobsthal-Padovan numbers. Binet formula of generalized Jacobsthal-Padovan numbers can be given as

$$V_n = \frac{b_1 \alpha^n}{(\alpha - \beta)(\alpha - \gamma)} + \frac{b_2 \beta^n}{(\beta - \alpha)(\beta - \gamma)} + \frac{b_3 \gamma^n}{(\gamma - \alpha)(\gamma - \beta)},$$

where

$$b_{1} = V_{2} - (\beta + \gamma)V_{1} + \beta\gamma V_{0},$$

$$b_{2} = V_{2} - (\alpha + \gamma)V_{1} + \alpha\gamma V_{0},$$

$$b_{3} = V_{2} - (\alpha + \beta)V_{1} + \alpha\beta V_{0}.$$
(1.5)

Here, α, β and γ are the roots of the cubic equation

$$x^3 - x - 2 = 0.$$

Moreover

$$\begin{split} \alpha &= \sqrt[3]{1 + \frac{\sqrt{78}}{9}} + \sqrt[3]{1 - \frac{\sqrt{78}}{9}} \simeq 1.521379706804568, \\ \beta &= \omega \sqrt[3]{1 + \frac{\sqrt{78}}{9}} + \omega^2 \sqrt[3]{1 - \frac{\sqrt{78}}{9}}, \\ \gamma &= \omega^2 \sqrt[3]{1 + \frac{\sqrt{78}}{9}} + \omega \sqrt[3]{1 - \frac{\sqrt{78}}{9}}, \end{split}$$

where

$$\omega = \frac{-1 + i\sqrt{3}}{2} = \exp(2\pi i/3).$$

Note that

$$\begin{array}{rcl} \alpha+\beta+\gamma & = & 0, \\ \alpha\beta+\alpha\gamma+\beta\gamma & = & -1, \\ \alpha\beta\gamma & = & 2. \end{array}$$

The first few generalized Jacobsthal-Padovan numbers with positive subscript and negative subscript are given in the following Table 1.

Table 1. A few generalized Jacobsthal-Padovan numbers.

n	V_n	V_{-n}
0	V_0	
1	V_1	$\frac{1}{2}V_2 - \frac{1}{2}V_0$
2	V_2	$-\frac{1}{4}V_2 + \frac{1}{2}V_1 + \frac{1}{4}V_0$
3	$V_1 + 2V_0$	$\frac{1}{8}V_2 - \frac{1}{4}V_1 + \frac{3}{8}V_0$
4	$V_2 + 2V_1$	$\frac{3}{16}V_2 - \frac{7}{16}V_0 + \frac{1}{8}V_1$
5	$2V_2 + V_1 + 2V_0$	$-\frac{7}{32}V_2 + \frac{3}{16}V_1 + \frac{11}{32}V_0$
6	$V_2 + 4V_1 + 4V_0$	$\frac{11}{64}V_2 - \frac{7}{32}V_1 + \frac{1}{64}V_0$
7	$4V_2 + 5V_1 + 2V_0$	$\frac{1}{128}V_2 - \frac{29}{128}V_0 + \frac{11}{64}V_1$
8	$5V_2 + 6V_1 + 8V_0$	$-\frac{29}{256}V_2 + \frac{1}{128}V_1 + \frac{73}{256}V_0$
9	$6V_2 + 13V_1 + 10V_0$	$\frac{73}{512}V_2 - \frac{29}{256}V_1 - \frac{69}{512}V_0$

Now we define four special cases of the sequence $\{V_n\}$. Jacobsthal-Padovan sequence $\{Q_n\}_{n\geq 0}$, Jacobsthal-Perrin (Jacobsthal-Perrin-Lucas) sequence $\{L_n\}_{n\geq 0}$, adjusted Jacobsthal-Padovan sequence $\{K_n\}_{n\geq 0}$ and modified Jacobsthal-Padovan sequence $\{M_n\}_{n\geq 0}$ are defined, respectively, by the third-order recurrence relations

$$Q_{n+3} = Q_{n+1} + 2Q_n,$$
 $Q_0 = 1, Q_1 = 1, Q_2 = 1,$
 $L_{n+3} = L_{n+1} + 2L_n,$ $L_0 = 3, L_1 = 0, L_2 = 2,$
 $K_{n+3} = K_{n+1} + K_n,$ $K_0 = 0, K_1 = 1, K_2 = 0,$
 $M_{n+3} = M_{n+1} + M_n,$ $M_0 = 3, M_1 = 1, M_2 = 3.$

The sequences $\{Q_n\}_{n\geq 0}$, $\{L_n\}_{n\geq 0}$, $\{K_n\}_{n\geq 0}$ and $\{M_n\}_{n\geq 0}$ can be extended to negative subscripts by defining

$$Q_{-n} = -\frac{1}{2}Q_{-(n-1)} + \frac{1}{2}Q_{-(n-3)}, \tag{1.6}$$

$$L_{-n} = -\frac{1}{2}L_{-(n-1)} + \frac{1}{2}L_{-(n-3)}, \tag{1.7}$$

$$K_{-n} = -\frac{1}{2}K_{-(n-1)} + \frac{1}{2}K_{-(n-3)},$$
 (1.8)

$$M_{-n} = -\frac{1}{2}M_{-(n-1)} + \frac{1}{2}M_{-(n-3)}, \tag{1.9}$$

for n = 1, 2, 3, ... respectively. Therefore, recurrences (1.6), (1.7), (1.8) and (1.9) hold for all integer n.

For more information on Jacobsthal-Padovan sequence, see [4] and [5].

 Q_n is the sequence A159284 in [15] associated with the expansion of $x(1 + x)/(1 - x^2 - 2x^3)$ and L_n is the sequence A072328 in [15] and K_n is the sequence A159287 in [15] associated with the expansion of $x^2/(1 - x^2 - 2x^3)$. M_n is not indexed in [15].

Next, we present the first few values of the Jacobsthal-Padovan, Jacobsthal-Perrin, adjusted Jacobsthal-Padovan and modified Jacobsthal-Padovan numbers with positive and negative subscripts:

Table 2. The first few values of the special third-order numbers with positive and negative subscripts.

n	0	1	2	3	4	5	6	7	8	9	10	11	12	13
Q_n	1	1	1	3	3	5	9	11	19	29	41	67	99	149
Q_{-n}		0	$\frac{1}{2}$	$\frac{1}{4}$	$-\frac{1}{8}$	$\frac{5}{16}$	$-\frac{1}{32}$	$-\frac{3}{64}$	$\frac{23}{128}$	$-\frac{27}{256}$	$\frac{15}{512}$	$\frac{77}{1024}$	$-\frac{185}{2048}$	$\frac{245}{4096}$
L_n	3	0	2	6	2	10	14	14	34	42	62	110	146	234
L_{-n}		$-\frac{1}{2}$	$\frac{1}{4}$	$\frac{11}{8}$	$-\frac{15}{16}$	$\frac{19}{32}$	$\frac{25}{64}$	$-\frac{85}{128}$	$\frac{161}{256}$	$-\frac{61}{512}$	$-\frac{279}{1024}$	$\frac{923}{2048}$	$-\frac{1167}{4096}$	$\frac{51}{8192}$
K_n	0	1	0	1	2	1	4	5	6	13	16	25	42	57
K_{-n}		0	$\frac{1}{2}$	$-\frac{1}{4}$	$\frac{1}{8}$	$\frac{3}{16}$	$-\frac{7}{32}$	$\frac{11}{64}$	$\frac{1}{128}$	$-\frac{29}{256}$	$\frac{73}{512}$	$-\frac{69}{1024}$	$-\frac{47}{2048}$	$\frac{339}{4096}$
M_n	3	1	3	7	5	13	19	23	45	61	91	151	213	333
M_{-n}		0	$\frac{1}{2}$	$\frac{5}{4}$	$-\frac{5}{8}$	$\frac{9}{16}$	$\frac{11}{32}$	$-\frac{31}{64}$	$\frac{67}{128}$	$-\frac{23}{256}$	$-\frac{101}{512}$	$\frac{369}{1024}$	$-\frac{461}{2048}$	$\frac{57}{4096}$

For all integers n, Jacobsthal-Padovan, Jacobsthal-Perrin, adjusted Jacobsthal-Padovan and modified Jacobsthal-Padovan numbers (using initial conditions in (1.5)) can be expressed using Binet's formulas as

$$Q_{n} = \frac{(\alpha+1)}{(\alpha-\beta)(\alpha-\gamma)}\alpha^{n+1} + \frac{(\beta+1)}{(\beta-\alpha)(\beta-\gamma)}\beta^{n+1} + \frac{(\gamma+1)}{(\gamma-\alpha)(\gamma-\beta)}\gamma^{n+1},$$

$$L_{n} = \alpha^{n} + \beta^{n} + \gamma^{n},$$

$$K_{n} = \frac{1}{(\alpha-\beta)(\alpha-\gamma)}\alpha^{n+1} + \frac{1}{(\beta-\alpha)(\beta-\gamma)}\beta^{n+1} + \frac{1}{(\gamma-\alpha)(\gamma-\beta)}\gamma^{n+1},$$

$$M_{n} = \frac{(3\alpha+1)}{(\alpha-\beta)(\alpha-\gamma)}\alpha^{n+1} + \frac{(3\beta+1)}{(\beta-\alpha)(\beta-\gamma)}\beta^{n+1} + \frac{(3\gamma+1)}{(\gamma-\alpha)(\gamma-\beta)}\gamma^{n+1},$$

respectively.

2 Generating Functions

Next, we give the ordinary generating function $\sum_{n=0}^{\infty} V_n x^n$ of the sequence V_n .

Lemma 1. Suppose that $f_{V_n}(x) = \sum_{n=0}^{\infty} V_n x^n$ is the ordinary generating function of the generalized Jacobsthal-Padovan sequence $\{V_n\}_{n\geq 0}$. Then, $\sum_{n=0}^{\infty} V_n x^n$ is given by

$$\sum_{n=0}^{\infty} V_n x^n = \frac{V_0 + V_1 x + (V_2 - V_0) x^2}{1 - x^2 - 2x^3}.$$
 (2.1)

Proof. Using the definition of generalized Jacobsthal-Padovan numbers, and substracting $x^2 \sum_{n=0}^{\infty} V_n x^n$ and $2x^3 \sum_{n=0}^{\infty} V_n x^n$ from $\sum_{n=0}^{\infty} V_n x^n$, we obtain

$$(1 - x^{2} - 2x^{3}) \sum_{n=0}^{\infty} V_{n} x^{n} = \sum_{n=0}^{\infty} V_{n} x^{n} - x^{2} \sum_{n=0}^{\infty} V_{n} x^{n} - 2x^{3} \sum_{n=0}^{\infty} V_{n} x^{n}$$

$$= \sum_{n=0}^{\infty} V_{n} x^{n} - \sum_{n=0}^{\infty} V_{n} x^{n+2} - 2 \sum_{n=0}^{\infty} V_{n} x^{n+3}$$

$$= \sum_{n=0}^{\infty} V_{n} x^{n} - \sum_{n=2}^{\infty} V_{n-2} x^{n} - 2 \sum_{n=3}^{\infty} V_{n-3} x^{n}$$

$$= (V_{0} + V_{1} x + V_{2} x^{2}) - V_{0} x^{2} + \sum_{n=3}^{\infty} (V_{n} - V_{n-2} - 2V_{n-3}) x^{n}$$

$$= V_{0} + V_{1} x + V_{2} x^{2} - V_{0} x^{2} = V_{0} + V_{1} x + (V_{2} - V_{0}) x^{2}.$$

Rearranging above equation, we obtain

$$\sum_{n=0}^{\infty} V_n x^n = \frac{V_0 + V_1 x + (V_2 - V_0) x^2}{1 - x^2 - 2x^3}.$$

The previous lemma gives the following results as particular examples.

Corollary 2. Generated functions of Jacobsthal-Padovan, Jacobsthal-Perrin, adjusted Jacobsthal-Padovan and modified Jacobsthal-Padovan numbers are

$$\sum_{n=0}^{\infty} Q_n x^n = \frac{1+x}{1-x^2-2x^3},$$

$$\sum_{n=0}^{\infty} L_n x^n = \frac{3-x^2}{1-x^2-2x^3},$$

$$\sum_{n=0}^{\infty} K_n x^n = \frac{x}{1-x^2-2x^3},$$

$$\sum_{n=0}^{\infty} M_n x^n = \frac{3+x}{1-x^2-2x^3},$$

respectively.

3 Obtaining Binet Formula from Generating Function

We next find Binet formula of generalized Jacobsthal-Padovan numbers $\{V_n\}$ by the use of generating function for V_n .

Theorem 3. (Binet formula of generalized Jacobsthal-Padovan numbers)

$$V_n = \frac{d_1 \alpha^n}{(\alpha - \beta)(\alpha - \gamma)} + \frac{d_2 \beta^n}{(\beta - \alpha)(\beta - \gamma)} + \frac{d_3 \gamma^n}{(\gamma - \alpha)(\gamma - \beta)},$$
 (3.1)

where

$$d_1 = V_0\alpha^2 + V_1\alpha + (V_2 - V_0),$$

$$d_2 = V_0\beta^2 + V_1\beta + (V_2 - V_0),$$

$$d_3 = V_0\gamma^2 + V_1\gamma + (V_2 - V_0).$$

Proof. Let

$$h(x) = 1 - x^2 - 2x^3.$$

Then for some α, β and γ , we write

$$h(x) = (1 - \alpha x)(1 - \beta x)(1 - \gamma x),$$

i.e.,

$$1 - x^2 - 2x^3 = (1 - \alpha x)(1 - \beta x)(1 - \gamma x). \tag{3.2}$$

Hence $\frac{1}{\alpha}, \frac{1}{\beta}$, and $\frac{1}{\gamma}$ are the roots of h(x). This gives α, β , and γ as the roots of

$$h(\frac{1}{x}) = 1 - \frac{1}{x^2} - \frac{2}{x^3} = 0.$$

This implies $x^3 - x - 2 = 0$. Now, by (2.1) and (3.2), it follows that

$$\sum_{n=0}^{\infty} V_n x^n = \frac{V_0 + V_1 x + (V_2 - V_0) x^2}{(1 - \alpha x)(1 - \beta x)(1 - \gamma x)}.$$

Then we write

$$\frac{V_0 + V_1 x + (V_2 - V_0)x^2}{(1 - \alpha x)(1 - \beta x)(1 - \gamma x)} = \frac{A_1}{(1 - \alpha x)} + \frac{A_2}{(1 - \beta x)} + \frac{A_3}{(1 - \gamma x)}.$$
 (3.3)

So

$$V_0 + V_1 x + (V_2 - V_0)x^2 = A_1(1 - \beta x)(1 - \gamma x) + A_2(1 - \alpha x)(1 - \gamma x) + A_3(1 - \alpha x)(1 - \beta x).$$

If we consider $x = \frac{1}{\alpha}$, we get $V_0 + V_1 \frac{1}{\alpha} + (V_2 - V_0) \frac{1}{\alpha^2} = A_1 (1 - \frac{\beta}{\alpha}) (1 - \frac{\gamma}{\alpha})$. This gives

$$A_1 = \frac{\alpha^2 (V_0 + V_1 \frac{1}{\alpha} + (V_2 - V_0) \frac{1}{\alpha^2})}{(\alpha - \beta)(\alpha - \gamma)} = \frac{V_0 \alpha^2 + V_1 \alpha + (V_2 - V_0)}{(\alpha - \beta)(\alpha - \gamma)}.$$

Similarly, we obtain

$$A_2 = \frac{V_0 \beta^2 + V_1 \beta + (V_2 - V_0)}{(\beta - \alpha)(\beta - \gamma)}, A_3 = \frac{V_0 \gamma^2 + V_1 \gamma + (V_2 - V_0)}{(\gamma - \alpha)(\gamma - \beta)}.$$

Thus (3.3) can be written as

$$\sum_{n=0}^{\infty} V_n x^n = A_1 (1 - \alpha x)^{-1} + A_2 (1 - \beta x)^{-1} + A_3 (1 - \gamma x)^{-1}.$$

This gives

$$\sum_{n=0}^{\infty} V_n x^n = A_1 \sum_{n=0}^{\infty} \alpha^n x^n + A_2 \sum_{n=0}^{\infty} \beta^n x^n + A_3 \sum_{n=0}^{\infty} \gamma^n x^n = \sum_{n=0}^{\infty} (A_1 \alpha^n + A_2 \beta^n + A_3 \gamma^n) x^n.$$

Therefore, comparing coefficients on both sides of the above equality, we obtain

$$V_n = A_1 \alpha^n + A_2 \beta^n + A_3 \gamma^n,$$

where

$$A_{1} = \frac{V_{0}\alpha^{2} + V_{1}\alpha + (V_{2} - V_{0})}{(\alpha - \beta)(\alpha - \gamma)},$$

$$A_{2} = \frac{V_{0}\beta^{2} + V_{1}\beta + (V_{2} - V_{0})}{(\beta - \alpha)(\beta - \gamma)},$$

$$A_{3} = \frac{V_{0}\gamma^{2} + V_{1}\gamma + (V_{2} - V_{0})}{(\gamma - \alpha)(\gamma - \beta)}.$$

and then we get (3.1).

Note that from (1.5) and (3.1) we have

$$V_{2} - (\beta + \gamma)V_{1} + \beta\gamma V_{0} = V_{0}\alpha^{2} + V_{1}\alpha + (V_{2} - V_{0}),$$

$$V_{2} - (\alpha + \gamma)V_{1} + \alpha\gamma V_{0} = V_{0}\beta^{2} + V_{1}\beta + (V_{2} - V_{0}),$$

$$V_{2} - (\alpha + \beta)V_{1} + \alpha\beta V_{0} = V_{0}\gamma^{2} + V_{1}\gamma + (V_{2} - V_{0}).$$

Theorem Next, using 3, Binet formulas of we present the Jacobsthal-Perrin, Jacobsthal-Padovan, Jacobsthal-Padovan adjusted and modified Jacobsthal-Padovan sequences.

Corollary 4. Binet formulas of Jacobsthal-Padovan, Jacobsthal-Perrin, adjusted Jacobsthal-Padovan and modified Jacobsthal-Padovan sequences are

$$Q_{n} = \frac{(\alpha+1)}{(\alpha-\beta)(\alpha-\gamma)}\alpha^{n+1} + \frac{(\beta+1)}{(\beta-\alpha)(\beta-\gamma)}\beta^{n+1} + \frac{(\gamma+1)}{(\gamma-\alpha)(\gamma-\beta)}\gamma^{n+1},$$

$$L_{n} = \alpha^{n} + \beta^{n} + \gamma^{n},$$

$$K_{n} = \frac{1}{(\alpha-\beta)(\alpha-\gamma)}\alpha^{n+1} + \frac{1}{(\beta-\alpha)(\beta-\gamma)}\beta^{n+1} + \frac{1}{(\gamma-\alpha)(\gamma-\beta)}\gamma^{n+1},$$

$$M_{n} = \frac{(3\alpha+1)}{(\alpha-\beta)(\alpha-\gamma)}\alpha^{n+1} + \frac{(3\beta+1)}{(\beta-\alpha)(\beta-\gamma)}\beta^{n+1} + \frac{(3\gamma+1)}{(\gamma-\alpha)(\gamma-\beta)}\gamma^{n+1},$$

respectively.

We can find Binet formulas by using matrix method with a similar technique which is given in [10]. Take k = i = 3 in Corollary 3.1 in [10]. Let

$$\Lambda = \begin{pmatrix} \alpha^2 & \alpha & 1 \\ \beta^2 & \beta & 1 \\ \gamma^2 & \gamma & 1 \end{pmatrix}, \ \Lambda_1 = \begin{pmatrix} \alpha^{n-1} & \alpha & 1 \\ \beta^{n-1} & \beta & 1 \\ \gamma^{n-1} & \gamma & 1 \end{pmatrix},$$

$$\Lambda_2 = \begin{pmatrix} \alpha^2 & \alpha^{n-1} & 1 \\ \beta^2 & \beta^{n-1} & 1 \\ \gamma^2 & \gamma^{n-1} & 1 \end{pmatrix}, \ \Lambda_3 = \begin{pmatrix} \alpha^2 & \alpha & \alpha^{n-1} \\ \beta^2 & \beta & \beta^{n-1} \\ \gamma^2 & \gamma & \gamma^{n-1} \end{pmatrix}.$$

Then the Binet formula for Jacobsthal-Padovan numbers is

$$Q_{n} = \frac{1}{\det(\Lambda)} \sum_{j=1}^{3} Q_{4-j} \det(\Lambda_{j}) = \frac{1}{\Lambda} (Q_{3} \det(\Lambda_{1}) + Q_{2} \det(\Lambda_{2}) + Q_{1} \det(\Lambda_{3}))$$

$$= \frac{1}{\det(\Lambda)} (3 \det(\Lambda_{1}) + \det(\Lambda_{2}) + \det(\Lambda_{3}))$$

$$= \begin{pmatrix} 3 \begin{vmatrix} \alpha^{n-1} & \alpha & 1 \\ \beta^{n-1} & \beta & 1 \\ \gamma^{n-1} & \gamma & 1 \end{vmatrix} + \begin{vmatrix} \alpha^{2} & \alpha^{n-1} & 1 \\ \beta^{2} & \beta^{n-1} & 1 \\ \gamma^{2} & \gamma^{n-1} & 1 \end{vmatrix} + \begin{vmatrix} \alpha^{2} & \alpha & \alpha^{n-1} \\ \beta^{2} & \beta & \beta^{n-1} \\ \gamma^{2} & \gamma & \gamma^{n-1} \end{vmatrix} \end{pmatrix} / \begin{vmatrix} \alpha^{2} & \alpha & 1 \\ \beta^{2} & \beta & 1 \\ \gamma^{2} & \gamma & 1 \end{vmatrix}.$$

Similarly, we obtain the Binet formula for Jacobsthal-Perrin, adjusted Jacobsthal-Padovan and modified Jacobsthal-Padovan as

$$L_{n} = \frac{1}{\Lambda} (L_{3} \det(\Lambda_{1}) + L_{2} \det(\Lambda_{2}) + L_{1} \det(\Lambda_{3}))$$

$$= \left(2 \begin{vmatrix} \alpha^{n-1} & \alpha & 1 \\ \beta^{n-1} & \beta & 1 \\ \gamma^{n-1} & \gamma & 1 \end{vmatrix} + 3 \begin{vmatrix} \alpha^{2} & \alpha & \alpha^{n-1} \\ \beta^{2} & \beta & \beta^{n-1} \\ \gamma^{2} & \gamma & \gamma^{n-1} \end{vmatrix} \right) / \begin{vmatrix} \alpha^{2} & \alpha & 1 \\ \beta^{2} & \beta & 1 \\ \gamma^{2} & \gamma & 1 \end{vmatrix}.$$

and

$$K_{n} = \frac{1}{\Lambda} (K_{3} \det(\Lambda_{1}) + K_{2} \det(\Lambda_{2}) + K_{1} \det(\Lambda_{3}))$$

$$= \begin{pmatrix} \begin{vmatrix} \alpha^{n-1} & \alpha & 1 \\ \beta^{n-1} & \beta & 1 \\ \gamma^{n-1} & \gamma & 1 \end{vmatrix} + \begin{vmatrix} \alpha^{2} & \alpha & \alpha^{n-1} \\ \beta^{2} & \beta & \beta^{n-1} \\ \gamma^{2} & \gamma & \gamma^{n-1} \end{vmatrix} \end{pmatrix} / \begin{vmatrix} \alpha^{2} & \alpha & 1 \\ \beta^{2} & \beta & 1 \\ \gamma^{2} & \gamma & 1 \end{vmatrix}.$$

and

$$M_{n} = \frac{1}{\Lambda} (M_{3} \det(\Lambda_{1}) + M_{2} \det(\Lambda_{2}) + M_{1} \det(\Lambda_{3}))$$

$$= \left(7 \begin{vmatrix} \alpha^{n-1} & \alpha & 1 \\ \beta^{n-1} & \beta & 1 \\ \gamma^{n-1} & \gamma & 1 \end{vmatrix} + 3 \begin{vmatrix} \alpha^{2} & \alpha^{n-1} & 1 \\ \beta^{2} & \beta^{n-1} & 1 \\ \gamma^{2} & \gamma^{n-1} & 1 \end{vmatrix} + \begin{vmatrix} \alpha^{2} & \alpha & \alpha^{n-1} \\ \beta^{2} & \beta & \beta^{n-1} \\ \gamma^{2} & \gamma & \gamma^{n-1} \end{vmatrix} \right) / \begin{vmatrix} \alpha^{2} & \alpha & 1 \\ \beta^{2} & \beta & 1 \\ \gamma^{2} & \gamma & 1 \end{vmatrix}$$

respectively.

4 Simson Formulas

There is a well-known Simson Identity (formula) for Fibonacci sequence $\{F_n\}$, namely,

$$F_{n+1}F_{n-1} - F_n^2 = (-1)^n$$

which was derived first by R. Simson in 1753 and it is now called as Cassini Identity (formula) as well. This can be written in the form

$$\left|\begin{array}{cc} F_{n+1} & F_n \\ F_n & F_{n-1} \end{array}\right| = (-1)^n.$$

The following theorem gives generalization of this result to the generalized Jacobsthal-Padovan sequence $\{V_n\}_{n>0}$.

Theorem 5 (Simson Formula of Generalized Jacobsthal-Padovan Numbers). For all integers n, we have

$$\begin{vmatrix} V_{n+2} & V_{n+1} & V_n \\ V_{n+1} & V_n & V_{n-1} \\ V_n & V_{n-1} & V_{n-2} \end{vmatrix} = 2^n \begin{vmatrix} V_2 & V_1 & V_0 \\ V_1 & V_0 & V_{-1} \\ V_0 & V_{-1} & V_{-2} \end{vmatrix}.$$
(4.1)

Proof. (4.1) is given in Soykan [17].

The previous theorem gives the following results as particular examples.

Corollary 6. For all integers n, Simson formula of Jacobsthal-Padovan, Jacobsthal-Perrin, adjusted Jacobsthal-Padovan and modified Jacobsthal-Padovan numbers are given as

$$\begin{vmatrix} Q_{n+2} & Q_{n+1} & Q_n \\ Q_{n+1} & Q_n & Q_{n-1} \\ Q_n & Q_{n-1} & Q_{n-2} \end{vmatrix} = -2^n$$

and

$$\begin{vmatrix} L_{n+2} & L_{n+1} & L_n \\ L_{n+1} & L_n & L_{n-1} \\ L_n & L_{n-1} & L_{n-2} \end{vmatrix} = -26 \times 2^n$$

and

$$\begin{vmatrix} K_{n+2} & K_{n+1} & K_n \\ K_{n+1} & K_n & K_{n-1} \\ K_n & K_{n-1} & K_{n-2} \end{vmatrix} = -2^{n-1}$$

and

$$\begin{vmatrix} M_{n+2} & M_{n+1} & M_n \\ M_{n+1} & M_n & M_{n-1} \\ M_n & M_{n-1} & M_{n-2} \end{vmatrix} = -23 \times 2^n$$

respectively.

5 Some Identities

In this section, we obtain some identities of Jacobsthal-Padovan, Jacobsthal-Perrin, adjusted Jacobsthal-Padovan and modified Jacobsthal-Padovan numbers. First, we can give a few basic relations between $\{Q_n\}$ and $\{L_n\}$.

Lemma 7. The following equalities are true:

$$8L_{n} = -3Q_{n+4} + 14Q_{n+3} - 9Q_{n+2},$$

$$4L_{n} = 7Q_{n+3} - 6Q_{n+2} - 3Q_{n+1},$$

$$2L_{n} = -3Q_{n+2} + 2Q_{n+1} + 7Q_{n},$$

$$L_{n} = Q_{n+1} + 2Q_{n} - 3Q_{n-1},$$

$$L_{n} = 2Q_{n} - 2Q_{n-1} + 2Q_{n-2},$$

$$(5.1)$$

and

$$26Q_n = -L_{n+4} + 3L_{n+3} + 5L_{n+2},$$

$$26Q_n = 3L_{n+3} + 4L_{n+2} - 2L_{n+1},$$

$$26Q_n = 4L_{n+2} + L_{n+1} + 6L_n,$$

$$26Q_n = L_{n+1} + 10L_n + 8L_{n-1},$$

$$26Q_n = 10L_n + 9L_{n-1} + 2L_{n-2}.$$

Proof. Note that all the identities hold for all integers n. We prove (5.1). To show (5.1), writing

$$L_n = a \times Q_{n+4} + b \times Q_{n+3} + c \times Q_{n+2}$$

and solving the system of equations

$$L_0 = a \times Q_4 + b \times Q_3 + c \times Q_2$$

$$L_1 = a \times Q_5 + b \times Q_4 + c \times Q_3$$

$$L_2 = a \times Q_6 + b \times Q_5 + c \times Q_4$$

we find that $a = -\frac{3}{8}, b = \frac{7}{4}, c = -\frac{9}{8}$. The other equalities can be proved similarly.

Note that all the identities in the above Lemma can be proved by induction as well.

Next, we present a few basic relations between $\{Q_n\}$ and $\{K_n\}$.

Lemma 8. The following equalities are true:

$$\begin{array}{rcl} 4K_n & = & -Q_{n+4} + 3Q_{n+2}, \\ 2K_n & = & Q_{n+2} - Q_{n+1}, \\ 2K_n & = & -Q_{n+1} + Q_n + 2Q_{n-1}, \\ 2K_n & = & Q_n + Q_{n-1} - 2Q_{n-2}, \end{array}$$

and

$$\begin{array}{rcl} 4Q_n & = & K_{n+4} + 2K_{n+3} - K_{n+2}, \\ 2Q_n & = & K_{n+3} + K_{n+1}, \\ Q_n & = & K_{n+1} + K_n, \\ Q_n & = & K_n + K_{n-1} + 2K_{n-2}. \end{array}$$

Now, we give a few basic relations between $\{Q_n\}$ and $\{M_n\}$.

Lemma 9. The following equalities are true:

$$\begin{split} 4M_n &= -Q_{n+4} + 6Q_{n+3} - 3Q_{n+2}, \\ 2M_n &= 3Q_{n+3} - 2Q_{n+2} - Q_{n+1}, \\ M_n &= -Q_{n+2} + Q_{n+1} + 3Q_n, \\ M_n &= Q_{n+1} + 2Q_n - 2Q_{n-1}, \\ M_n &= 2Q_n - Q_{n-1} + 2Q_{n-2}, \end{split}$$

and

$$92Q_n = -7M_{n+4} + 10M_{n+3} + 19M_{n+2},$$

$$46Q_n = 5M_{n+3} + 6M_{n+2} - 7M_{n+1},$$

$$23Q_n = 3M_{n+2} - M_{n+1} + 5M_n,$$

$$23Q_n = -M_{n+1} + 8M_n + 6M_{n-1},$$

$$23Q_n = 8M_n + 5M_{n-1} - 2M_{n-2}.$$

Next, we present a few basic relations between $\{L_n\}$ and $\{K_n\}$.

Lemma 10. The following equalities are true

$$52K_n = L_{n+4} - 3L_{n+3} + 8L_{n+2},$$

$$52K_n = -3L_{n+3} + 9L_{n+2} + 2L_{n+1},$$

$$52K_n = 9L_{n+2} - L_{n+1} - 6L_n,$$

$$52K_n = -L_{n+1} + 3L_n + 18L_{n-1},$$

$$52K_n = 3L_n + 17L_{n-1} - 2L_{n-2},$$

and

$$8L_n = 11K_{n+4} + 2K_{n+3} - 15K_{n+2},$$

$$4L_n = K_{n+3} - 2K_{n+2} + 11K_{n+1},$$

$$2L_n = -K_{n+2} + 6K_{n+1} + K_n,$$

$$L_n = 3K_{n+1} - K_{n-1},$$

$$L_n = 2K_{n-1} + 6K_{n-2}.$$

Next, we give a few basic relations between $\{M_n\}$ and $\{L_n\}$.

Lemma 11. The following equalities are true

$$184L_n = -65M_{n+4} + 106M_{n+3} + 45M_{n+2},$$

$$92L_n = 53M_{n+3} - 10M_{n+2} - 65M_{n+1},$$

$$46L_n = -5M_{n+2} - 6M_{n+1} + 53M_n,$$

$$23L_n = -3M_{n+1} + 24M_n - 5M_{n-1},$$

$$23L_n = 24M_n - 8M_{n-1} - 6M_{n-2}$$

and

$$\begin{array}{rcl} 26M_n & = & -4L_{n+4} + 12L_{n+3} + 7L_{n+2}, \\ 26M_n & = & 12L_{n+3} + 3L_{n+2} - 8L_{n+1}, \\ 26M_n & = & 3L_{n+2} + 4L_{n+1} + 24L_n, \\ 26M_n & = & 4L_{n+1} + 27L_n + 6L_{n-1}, \\ 26M_n & = & 27L_n + 10L_{n-1} + 8L_{n-2}. \end{array}$$

Now, we present a few basic relations between $\{K_n\}$ and $\{M_n\}$.

Lemma 12. The following equalities are true

$$4M_n = 5K_{n+4} + 2K_{n+3} - 5K_{n+2},$$

$$2M_n = K_{n+3} + 5K_{n+1},$$

$$M_n = 3K_{n+1} + K_n,$$

$$M_n = K_n + 3K_{n-1} + 6K_{n-2}$$

and

$$\begin{array}{lcl} 92K_n & = & M_{n+4} - 8M_{n+3} + 17M_{n+2}, \\ 46K_n & = & -3M_{n+1} + M_n + 18M_{n-1}, \\ 46K_n & = & 9M_{n+2} - 3M_{n+1} - 8M_n, \\ 46K_n & = & -3M_{n+1} + M_n + 18M_{n-1}, \\ 46K_n & = & M_n + 15M_{n-1} - 6M_{n-2}. \end{array}$$

6 Linear Sums

The following proposition presents some formulas of generalized Jacobsthal-Padovan numbers with positive subscripts.

Proposition 13. If r = 0, s = 1, t = 2, then for $n \ge 0$ we have the following formulas:

(a)
$$\sum_{k=0}^{n} V_k = \frac{1}{2} (V_{n+3} + V_{n+2} - V_2 - V_1)$$
.

(b)
$$\sum_{k=0}^{n} V_{2k} = \frac{1}{2} (V_{2n+1} + 2V_{2n} - V_1).$$

(c)
$$\sum_{k=0}^{n} V_{2k+1} = \frac{1}{2} (V_{2n+2} + 2V_{2n+1} - V_2)$$
.

Proof. Take r = 0, s = 1, t = 2 in Theorem 2.1 in [16].

As special cases of above proposition, we have the following four corollaries. First one presents some summing formulas of Jacobsthal-Padovan numbers (take $V_n = Q_n$ with $Q_0 = 1, Q_1 = 1, Q_2 = 1$).

Corollary 14. For $n \ge 0$ we have the following formulas:

(a)
$$\sum_{k=0}^{n} Q_k = \frac{1}{2} (Q_{n+3} + Q_{n+2} - 2)$$
.

(b)
$$\sum_{k=0}^{n} Q_{2k} = \frac{1}{2} (Q_{2n+1} + 2Q_{2n} - 1).$$

(c)
$$\sum_{k=0}^{n} Q_{2k+1} = \frac{1}{2} (Q_{2n+2} + 2Q_{2n+1} - 1)$$
.

Second one presents some summing formulas of Jacobsthal-Perrin (Jacobsthal-Perrin-Lucas) numbers (take $V_n = L_n$ with $L_0 = 3, L_1 = 0, L_2 = 2$).

Corollary 15. For $n \ge 0$ we have the following formulas:

- (a) $\sum_{k=0}^{n} L_k = \frac{1}{2} (L_{n+3} + L_{n+2} 2)$.
- **(b)** $\sum_{k=0}^{n} L_{2k} = \frac{1}{2} (L_{2n+1} + 2L_{2n}).$
- (c) $\sum_{k=0}^{n} L_{2k+1} = \frac{1}{2} (L_{2n+2} + 2L_{2n+1} 2)$.

Third one presents some summing formulas of adjusted Jacobsthal-Padovan numbers (take $V_n = K_n$ with $K_0 = 0, K_1 = 1, K_2 = 0$).

Corollary 16. For $n \geq 0$ we have the following formulas:

- (a) $\sum_{k=0}^{n} K_k = \frac{1}{2} (K_{n+3} + K_{n+2} 1)$.
- **(b)** $\sum_{k=0}^{n} K_{2k} = \frac{1}{2} (K_{2n+1} + 2K_{2n} 1).$
- (c) $\sum_{k=0}^{n} K_{2k+1} = \frac{1}{2} (K_{2n+2} + 2K_{2n+1}).$

Fourth one presents some summing formulas of modified Jacobsthal-Padovan numbers (take $V_n = M_n$ with $M_0 = 3, M_1 = 1, M_2 = 3$).

Corollary 17. For $n \geq 0$ we have the following formulas:

- (a) $\sum_{k=0}^{n} M_k = \frac{1}{2} (M_{n+3} + M_{n+2} 4)$.
- **(b)** $\sum_{k=0}^{n} M_{2k} = \frac{1}{2} (M_{2n+1} + 2M_{2n} 1)$.
- (c) $\sum_{k=0}^{n} M_{2k+1} = \frac{1}{2} (M_{2n+2} + 2M_{2n+1} 3)$.

The following proposition presents some formulas of generalized Jacobsthal-Padovan numbers with negative subscripts.

Proposition 18. If r = 0, s = 1, t = 2, then for $n \ge 1$ we have the following formulas:

- (a) $\sum_{k=1}^{n} V_{-k} = \frac{1}{2} \left(-3V_{-n-1} 3V_{-n-2} 2V_{-n-3} + V_2 + V_1 \right)$.
- **(b)** $\sum_{k=1}^{n} V_{-2k} = \frac{1}{2} \left(-V_{-2n+1} + V_1 \right)$.
- (c) $\sum_{k=1}^{n} V_{-2k+1} = \frac{1}{2} \left(-V_{-2n} 2V_{-2n-1} + V_2 \right)$.

Proof. Take r = 0, s = 1, t = 2 in Theorem 3.1 in [16].

From the above proposition, we have the following corollary which gives sum formulas of Jacobsthal-Padovan numbers (take $V_n = Q_n$ with $Q_0 = 1, Q_1 = 1, Q_2 = 1$).

Corollary 19. For $n \geq 1$, Jacobsthal-Padovan numbers have the following properties.

(a)
$$\sum_{k=1}^{n} Q_{-k} = \frac{1}{2} \left(-3Q_{-n-1} - 3Q_{-n-2} - 2Q_{-n-3} + 2 \right)$$
.

(b)
$$\sum_{k=1}^{n} Q_{-2k} = \frac{1}{2} (-Q_{-2n+1} + 1)$$
.

(c)
$$\sum_{k=1}^{n} Q_{-2k+1} = \frac{1}{2} \left(-Q_{-2n} - 2Q_{-2n-1} + 1 \right)$$
.

Taking $V_n = L_n$ with $L_0 = 3, L_1 = 0, L_2 = 2$ in the last proposition, we have the following corollary which presents sum formulas of Jacobsthal-Padovan-Lucas numbers.

Corollary 20. For $n \geq 1$, Jacobsthal-Perrin (Jacobsthal-Perrin-Lucas) numbers have the following properties.

(a)
$$\sum_{k=1}^{n} L_{-k} = \frac{1}{2} \left(-3L_{-n-1} - 3L_{-n-2} - 2L_{-n-3} + 2 \right)$$
.

(b)
$$\sum_{k=1}^{n} L_{-2k} = \frac{-1}{2} L_{-2n+1}$$
.

(c)
$$\sum_{k=1}^{n} L_{-2k+1} = \frac{1}{2} \left(-L_{-2n} - 2L_{-2n-1} + 2 \right)$$
.

From the above proposition, we have the following corollary which gives sum formulas of adjusted Jacobsthal-Padovan numbers (take $V_n = K_n$ with $K_0 = 0, K_1 = 1, K_2 = 0$).

Corollary 21. For $n \geq 1$, adjusted Jacobsthal-Padovan numbers have the following properties.

(a)
$$\sum_{k=1}^{n} K_{-k} = \frac{1}{2} \left(-3K_{-n-1} - 3K_{-n-2} - 2K_{-n-3} + 1 \right)$$
.

(b)
$$\sum_{k=1}^{n} K_{-2k} = \frac{1}{2} (-K_{-2n+1} + 1)$$
.

(c)
$$\sum_{k=1}^{n} K_{-2k+1} = \frac{1}{2} \left(-K_{-2n} - 2K_{-2n-1} \right)$$
.

From the above proposition, we have the following corollary which gives sum formulas of modified Jacobsthal-Padovan numbers (take $V_n = M_n$ with $M_0 = 3, M_1 = 1, M_2 = 3$).

Corollary 22. For $n \geq 1$, modified Jacobsthal-Padovan numbers have the following properties.

(a)
$$\sum_{k=1}^{n} M_{-k} = \frac{1}{2} \left(-3M_{-n-1} - 3M_{-n-2} - 2M_{-n-3} + 4 \right)$$
.

(b)
$$\sum_{k=1}^{n} M_{-2k} = \frac{1}{2} (-M_{-2n+1} + 1)$$
.

(c)
$$\sum_{k=1}^{n} M_{-2k+1} = \frac{1}{2} \left(-M_{-2n} - 2M_{-2n-1} + 3 \right)$$
.

7 Matrices related with Generalized Jacobsthal-Padovan numbers

Matrix formulation of W_n can be given as

$$\begin{pmatrix} W_{n+2} \\ W_{n+1} \\ W_n \end{pmatrix} = \begin{pmatrix} r & s & t \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}^n \begin{pmatrix} W_2 \\ W_1 \\ W_0 \end{pmatrix}.$$
 (7.1)

For matrix formulation (7.1), see [9]. In fact, Kalman gives the formula in the following form

$$\begin{pmatrix} W_n \\ W_{n+1} \\ W_{n+2} \end{pmatrix} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ r & s & t \end{pmatrix}^n \begin{pmatrix} W_0 \\ W_1 \\ W_2 \end{pmatrix}.$$

We define the square matrix A of order 3 as

$$A = \left(\begin{array}{ccc} 0 & 1 & 2 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{array}\right)$$

such that $\det A = 2$. From (1.4) we have

$$\begin{pmatrix} V_{n+2} \\ V_{n+1} \\ V_n \end{pmatrix} = \begin{pmatrix} 0 & 1 & 2 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} V_{n+1} \\ V_n \\ V_{n-1} \end{pmatrix}$$
(7.2)

and from (7.1) (or using (7.2) and induction) we have

$$\begin{pmatrix} V_{n+2} \\ V_{n+1} \\ V_n \end{pmatrix} = \begin{pmatrix} 0 & 1 & 2 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}^n \begin{pmatrix} V_2 \\ V_1 \\ V_0 \end{pmatrix}.$$

If we take V = Q in (7.2) we have

$$\begin{pmatrix} Q_{n+2} \\ Q_{n+1} \\ Q_n \end{pmatrix} = \begin{pmatrix} 0 & 1 & 2 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} Q_{n+1} \\ Q_n \\ Q_{n-1} \end{pmatrix}.$$
 (7.3)

We also define

$$B_{n} = \begin{pmatrix} \frac{1}{2}(Q_{n+3} - Q_{n+2}) & \frac{1}{2}(Q_{n+4} - Q_{n+3}) & Q_{n+2} - Q_{n+1} \\ \frac{1}{2}(Q_{n+2} - Q_{n+1}) & \frac{1}{2}(Q_{n+3} - Q_{n+2}) & Q_{n+1} - Q_{n} \\ \frac{1}{2}(Q_{n+1} - Q_{n}) & \frac{1}{2}(Q_{n+2} - Q_{n+1}) & Q_{n} - Q_{n-1} \end{pmatrix}$$

$$= \frac{1}{2}\begin{pmatrix} Q_{n+3} - Q_{n+2} & Q_{n+4} - Q_{n+3} & 2(Q_{n+2} - Q_{n+1}) \\ Q_{n+2} - Q_{n+1} & Q_{n+3} - Q_{n+2} & 2(Q_{n+1} - Q_{n}) \\ Q_{n+1} - Q_{n} & Q_{n+2} - Q_{n+1} & 2(Q_{n} - Q_{n-1}) \end{pmatrix}$$

and

$$C_n = \begin{pmatrix} \frac{1}{2}(V_{n+3} - V_{n+2}) & \frac{1}{2}(V_{n+4} - V_{n+3}) & V_{n+2} - V_{n+1} \\ \frac{1}{2}(V_{n+2} - V_{n+1}) & \frac{1}{2}(V_{n+3} - V_{n+2}) & V_{n+1} - V_n \\ \frac{1}{2}(V_{n+1} - V_n) & \frac{1}{2}(V_{n+2} - V_{n+1}) & V_n - V_{n-1} \end{pmatrix}.$$

Theorem 23. For all integers $m, n \geq 0$, we have

- (a) $B_n = A^n$.
- **(b)** $C_1A^n = A^nC_1$.
- (c) $C_{n+m} = C_n B_m = B_m C_n$.

Proof.

(a) By expanding the vectors on the both sides of (7.3) to 3-columns and multiplying the obtained on the right-hand side by A, we get

$$B_n = AB_{n-1}.$$

By induction argument, from the last equation, we obtain

$$B_n = A^{n-1}B_1.$$

But $B_1 = A$. It follows that $B_n = A^n$.

NOTE: (a) can be proved by mathematical induction (using directly).

(b) Using (a) and definition of C_1 , (b) follows.

(c) We have

$$AC_{n-1} = \begin{pmatrix} 0 & 1 & 2 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} \frac{1}{2}(V_{n+2} - V_{n+1}) & \frac{1}{2}(V_{n+3} - V_{n+2}) & V_{n+1} - V_n \\ \frac{1}{2}(V_{n+1} - V_n) & \frac{1}{2}(V_{n+2} - V_{n+1}) & V_n - V_{n-1} \\ \frac{1}{2}(V_n - V_{n-1}) & \frac{1}{2}(V_{n+1} - V_n) & V_{n-1} - V_{n-2} \end{pmatrix}$$

$$= \begin{pmatrix} \frac{1}{2}V_n - V_{n-1} + \frac{1}{2}V_{n+1} & \frac{1}{2}V_{n+1} - V_n + \frac{1}{2}V_{n+2} & V_n + V_{n-1} - 2V_{n-2} \\ \frac{1}{2}V_{n+2} - \frac{1}{2}V_{n+1} & \frac{1}{2}V_{n+3} - \frac{1}{2}V_{n+2} & V_{n+1} - V_n \\ \frac{1}{2}V_{n+1} - \frac{1}{2}V_n & \frac{1}{2}V_{n+2} - \frac{1}{2}V_{n+1} & V_n - V_{n-1} \end{pmatrix}$$

$$= \begin{pmatrix} \frac{1}{2}(V_{n+3} - V_{n+2}) & \frac{1}{2}(V_{n+4} - V_{n+3}) & V_{n+2} - V_{n+1} \\ \frac{1}{2}(V_{n+2} - V_{n+1}) & \frac{1}{2}(V_{n+3} - V_{n+2}) & V_{n+1} - V_n \\ \frac{1}{2}(V_{n+1} - V_n) & \frac{1}{2}(V_{n+2} - V_{n+1}) & V_n - V_{n-1} \end{pmatrix} = C_n,$$

i.e., $C_n = AC_{n-1}$. From the last equation, using induction we obtain $C_n = A^{n-1}C_1$. Now

$$C_{n+m} = A^{n+m-1}C_1 = A^{n-1}A^mC_1 = A^{n-1}C_1A^m = C_nB_m$$

and similarly

$$C_{n+m} = B_m C_n$$
.

Note that Theorem 23 is true for all integers m, n.

Some properties of matrix A^n can be given as

$$A^n = A^{n-2} + 2A^{n-3}$$

and

$$A^{n+m} = A^n A^m = A^m A^n$$

and

$$\det(A^n) = 2^n$$

for all integers m and n.

Theorem 24. For $m, n \geq 0$, we have

$$2(V_{n+m+2} - V_{n+m+1}) = (V_{n+2} - V_{n+3})(Q_{m+1} - Q_{m+2}) + (V_{n+1} - V_{n+2})(Q_{m+2} - Q_{m+3}) + 2(V_n - V_{n+1})(Q_m - Q_{m+1}).$$

$$(7.4)$$

Proof. From the equation $C_{n+m} = C_n B_m = B_m C_n$ we see that an element of C_{n+m} is the product of row C_n and a column B_m . From the last equation we say that an element of

 C_{n+m} is the product of a row C_n and column B_m . We just compare the linear combination of the 2nd row and 1st column entries of the matrices C_{n+m} and C_nB_m . This completes the proof.

Remark 25. By induction, it can be proved that for all integers $m, n \leq 0$, (7.4) holds. So for all integers m, n, (7.4) is true.

Corollary 26. For all integers m, n, we have

$$\begin{split} 2(Q_{n+m+2}-Q_{n+m+1}) &= (Q_{n+2}-Q_{n+3})(Q_{m+1}-Q_{m+2}) \\ &+ (Q_{n+1}-Q_{n+2})(Q_{m+2}-Q_{m+3}) \\ &+ 2(Q_n-Q_{n+1})(Q_m-Q_{m+1}), \\ 2(L_{n+m+2}-L_{n+m+1}) &= (L_{n+2}-L_{n+3})(Q_{m+1}-Q_{m+2}) \\ &+ (L_{n+1}-L_{n+2})(Q_{m+2}-Q_{m+3}) \\ &+ 2(L_n-L_{n+1})(Q_m-Q_{m+1}), \\ 2(K_{n+m+2}-K_{n+m+1}) &= (K_{n+2}-K_{n+3})(Q_{m+1}-Q_{m+2}) \\ &+ (K_{n+1}-K_{n+2})(Q_{m+2}-Q_{m+3}) \\ &+ 2(K_n-K_{n+1})(Q_m-Q_{m+1}), \\ 2(M_{n+m+2}-M_{n+m+1}) &= (M_{n+2}-M_{n+3})(Q_{m+1}-Q_{m+2}) \\ &+ (M_{n+1}-M_{n+2})(Q_{m+2}-Q_{m+3}) \\ &+ 2(M_n-M_{n+1})(Q_m-Q_{m+1}). \end{split}$$

Note that using Theorem 23 (a) and the property

$$2K_n = Q_{n+2} - Q_{n+1}$$

we see that

$$A^{n} = \begin{pmatrix} K_{n+1} & K_{n+2} & 2K_{n} \\ K_{n} & K_{n+1} & 2K_{n-1} \\ K_{n-1} & K_{n} & 2K_{n-2} \end{pmatrix} = B_{n}.$$

We define

$$E_n = \begin{pmatrix} V_{n+1} & V_{n+2} & 2V_n \\ V_n & V_{n+1} & 2V_{n-1} \\ V_{n-1} & V_n & 2V_{n-2} \end{pmatrix}.$$

In this case, Theorem 23, Theorem 24 and Corollary 26 can be given as follows:

Theorem 27. For all integer m, n, we have

- (a) $B_n = A^n$.
- **(b)** $E_1 A^n = A^n E_1$.
- (c) $E_{n+m} = E_n B_m = B_m E_n$.

Theorem 28. For all integers m, n, we have

$$V_{n+m} = V_{n+1}K_m + V_nK_{m+1} + 2V_{n-1}K_{m-1}. (7.5)$$

Corollary 29. For all integers m, n, we have

$$\begin{array}{lcl} Q_{n+m} & = & Q_{n+1}K_m + Q_nK_{m+1} + 2Q_{n-1}K_{m-1}, \\ \\ L_{n+m} & = & L_{n+1}K_m + L_nK_{m+1} + 2L_{n-1}K_{m-1}, \\ \\ K_{n+m} & = & K_{n+1}K_m + K_nK_{m+1} + 2K_{n-1}K_{m-1}, \\ \\ M_{n+m} & = & M_{n+1}K_m + M_nK_{m+1} + 2M_{n-1}K_{m-1}. \end{array}$$

References

- [1] I. Bruce, A modified Tribonacci sequence, Fibonacci Quart. 22(3) (1984), 244-246.
- [2] M. Catalani, Identities for Tribonacci-related sequences, arXiv:math/0209179, 2012.
- [3] E. Choi, Modular tribonacci numbers by matrix method, Journal of the Korean Mathematical Education Society Series B: Pure and Applied Mathematics 20(3) (2013), 207-221.

https://doi.org/10.7468/jksmeb.2013.20.3.207

- [4] O. Deveci, The Pell-Padovan sequences and the Jacobsthal-Padovan sequences in finite groups, *Util. Math.* 98 (2015), 257-270.
- [5] Ö. Deveci, The Jacobsthal-Padovan p-sequences and their applications, *Proc. Rom. Acad. Ser. A* 20(3) (2019), 215-224.
- [6] M. Elia, Derived sequences, the Tribonacci recurrence and cubic forms, Fibonacci Quart. 39(2) (2001), 107-115.
- [7] M.C. Er, Sums of Fibonacci numbers by matrix methods, *Fibonacci Quart.* 22(3) (1984), 204-207.

[8] F.T. Howard and F. Saidak, Zhou's theory of constructing identities, Congr. Numer. 200 (2010), 225-237.

- [9] D. Kalman, Generalized Fibonacci numbers by matrix methods, *Fibonacci Quart*. 20(1) (1982), 73-76.
- [10] E. Kiliç and P. Stanica, A matrix approach for general higher order linear recurrences, Bull. Malays. Math. Sci. Soc. (2) 34(1) (2011), 51-67.
- [11] P.Y. Lin, De Moivre-Type identities for the Tribonacci numbers, Fibonacci Quart. 26 (1988), 131-134.
- [12] S. Pethe, Some identities for Tribonacci sequences, Fibonacci Quart. 26(2) (1988), 144-151.
- [13] A. Scott, T. Delaney and V. Hoggatt, Jr., The Tribonacci sequence, *Fibonacci Quart*. 15(3) (1977), 193-200.
- [14] A. Shannon, Tribonacci numbers and Pascal's pyramid, *Fibonacci Quart.* 15(3) (1977), pp. 268 and 275.
- [15] N.J.A. Sloane, The on-line encyclopedia of integer sequences, http://oeis.org/
- [16] Y. Soykan, Summing formulas for generalized Tribonacci numbers, Universal Journal of Mathematics and Applications 3(1) (2020), 1-11. https://doi.org/10.32323/ujma.637876
- [17] Y. Soykan, Simson identity of generalized m-step Fibonacci numbers, Int. J. Adv. Appl. Math. Mech. 7(2) (2019), 45-56.
- [18] Y. Soykan, Tribonacci and Tribonacci-Lucas sedenions, Mathematics 7(1) (2019), 74. https://doi.org/10.3390/math7010074.
- [19] W. Spickerman, Binet's formula for the Tribonacci sequence, Fibonacci Quart. 20 (1982), 118-120.
- [20] C.C. Yalavigi, Properties of Tribonacci numbers, Fibonacci Quart. 10(3) (1972), 231-246.
- [21] N. Yilmaz and N. Taskara, Tribonacci and Tribonacci-Lucas numbers via the determinants of special matrices, Appl. Math. Sci. 8(39) (2014), 1947-1955. https://doi.org/10.12988/ams.2014.4270

Department of Mathematics, Art and Science Faculty, Zonguldak Bülent Ecevit University, 67100, Zonguldak, Turkey e-mail: yuksel_soykan@hotmail.com

This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted, use, distribution and reproduction in any medium, or format for any purpose, even commercially provided the work is properly cited.