
Earthline Journal of Mathematical Sciences
ISSN (Online): 2581-8147
Volume 4, Number 2, 2020, Pages 211-225
https://doi.org/10.34198/ejms.4220.211225

Applications of Certain Operators to the Classes of

Analytic Functions Related to the Generalized

Janowski Functions

Khalida Inayat Noor and Shujaat Ali Shah*

Abstract

We introduce certain subclasses of analytic functions related to the class

of analytic, convex univalent functions. We discuss some results including

inclusion relationships and invariance of the classes under convex convolution

in terms of certain linear operators. Applications of these results associated

with the generalized Janowski functions and conic domains are considered.

Also, several radius problems are investigated.

1 Introduction

Let A be the class of analytic functions of the form

f(z) = z +
∞∑
n=2

anz
n, (1.1)

in the open unit disk E = {z : |z| < 1}. If f and g are analytic in E, we say that

f is subordinate to g, written f ≺ g or f(z) ≺ g(z), if there exists a Schwartz

function w in E such that f(z) = g(w(z)).

The convolution or Hadamard product of two functions f, g ∈ A is denoted

by f ∗ g and is defined as

(f ∗ g)(z) = z +

∞∑
n=2

anbnz
n, z ∈ E. (1.2)
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Analytic functions p in the class P [A,B] can be defined by using subordination

as follows [8].

Let p be analytic in E with p(0) = 1. Then p ∈ P [A,B], if and only if,

p(z) ≺ 1 +Az

1 +Bz
, − 1 ≤ B < A ≤ 1, z ∈ E.

Polatoglu et al. [23] introduced the class P [A,B, α] of analytic functions p, if

and only if, there exists p1 ∈ P [A,B] such that for z ∈ E,

p(z) = (1− α)p1(z) + α, (0 ≤ α < 1). (1.3)

The class P [A1, B1] of analytic functions p with p(z) ≺ 1+A1z
1+B1z

, z ∈ E, by

using more general bilinear transformation h(z) = 1+A1z
1+B1z

, with A1 ∈ C (complex

plane), B1 ∈ [−1, 0] and A1 6= B1.

If A1 = [(1−α)A+αB] and B1 = B for 0 ≤ α < 1, and −1 ≤ B < A ≤ 1, then

the class P [A1, B1] reduces to the class P [A,B, α], which is denoted by P [A1, B].

See [13].

For k > 0, the conic domains Ωk, defined as;

Ωk =

{
u+ iv : u > k

√
(u− 1)2 + v2

}
.

The domains Ωk (k = 0) represents right half plane, Ωk (0 < k < 1) represents

hyperbola, Ωk (k = 1) represents a parabola and Ωk (k > 1) represents an ellipse.

The extremal functions for these conic regions are given as

pk(z) =



1+z
1−z , k = 0

1 + 2
π2

(
log 1+

√
z

1−
√
z

)2
, k = 1

1 + 2
1−k2

[(
2
π arccos k

)
arctanh

√
z
]
, 0 < k < 1

1 + 1
k2−1 sin

(
π

2R(t)

∫ u(z)√
t

0

1√
1−x2
√

1−(tx)2
dx

)
+ 1

k2−1 , k > 1,

(1.4)

where u(z) = z−
√
t

z−
√
tz
, t ∈ (0, 1) , z ∈ E and z is chosen such that k =

cosh
(
πR′(t)
4R(t)

)
, R(t) is Legendre’s complete elliptic integral of the first kind and
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R′(t) is complementary integral of R(t); see [9, 10] for more information. These

conic regions are being studied by several authors. See [1, 15, 17, 21].

Let f ∈ A and Dm : A→ A be the operator defined by

Dmf(z) =


z

(1−z)m+1 ∗ f(z); m > −1

z(zm−1f(z))
m

m! m ∈ N0 = {0, 1, 2, ...}
.

Note that D0f(z) = f(z) and D1f(z) = zf ′(z). The operator Dmf is called the

Ruscheweyh derivative of mth order of f [24].

We can easily verify the following identity,

z(Dmf)′ = (m+ 1)Dm+1f −mDmf. (1.5)

Analogous to the Ruscheweyh derivative operator, Noor [16] and Noor and

Noor [19] defined an operator as follows:

Let

fm(z) =
z

(1− z)m+1 , m ∈ N0 = {0, 1, 2, ...}

and let f
(−1)
m be defined such that

fm(z) ∗ f (−1)m (z) =
z

(1− z)
.

Then, the operator Im : A→ A is defined by

Imf(z) = f (−1)m (z) ∗ f(z) =

(
z

(1− z)m+1

)(−1)
∗ f(z).

The following identity can easily be verified,

z(Im+1f)′ = (m+ 1)Imf −mIm+1f. (1.6)

The multiplier transformation [6] Lδb : A→ A is defined as follows:

Lδbf(z) = ψ(δ, b; z) ∗ f(z) = z +

∞∑
n=2

(
b+ n

b+ 1

)δ
anz

n,

where ψ(δ, b; z) = z +
∞∑
n=2

(
b+1
b+n

)δ
zn, (b > −1, δ be real, z ∈ E).
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One can easily verify the following identity,

z(Lδbf(z))′ = (1 + b)Lδ+1
b f(z)− bLδbf(z). (1.7)

For further detail about above given operators, one may see [5, 6, 13, 16, 18,

19].

Dziok and Noor [7], introduced the concepts of some general classes as follows:

Let A0 be the class of functions f ε A with f(0) = 1. Assume that µ, λ,

` be real parameters, µ ≥ 0, ` ≥ 2 and let Φ = (φ, ϕ) ∈ A×A, ξ ∈ A and

H = (h1, h2), where hi (i = 1, 2) are analytic, univalent convex functions with

hi(0) = 1 (i = 1, 2) . Then

P (h) = {q ∈ A0 : q ≺ h} ,

Pµ(H) = {µq1 + (1− µ)q2 : q1 ≺ h1, q2 ≺ h2} ,

Pµ((h, h)) = Pµ(h) and Pµ(
1 + z

1− z
) = P`,

(
µ =

`

4
+

1

2

)
where P` is the class introduced and studied by Pinchuk [22].

A function f ∈ A is said to be in the class Mλ
µ (Φ, ξ,H), if and only if,

Jλ(f(z)) ∈ Pµ(H), where

Jλ(f(z)) = (1− λ)
φ ∗ ξ ∗ f
ϕ ∗ ξ ∗ f

+ λ
φ ∗ f
ϕ ∗ f

.

We denote by Wµ(Φ, ξ,H) = M0
µ(Φ, ξ,H), the class of functions f ∈ A such

that
φ ∗ ξ ∗ f
ϕ ∗ ξ ∗ f

∈ Pµ(H).

Moreover, let us define

S∗(ϕ, ξ, h) = W1((zϕ
′, ϕ), ξ, h) and C(ϕ, ξ, h) = W1((ϕ2, ϕ1), ξ, h),

where ϕ1(z) = zϕ′(z) and ϕ2(z) = zϕ′1.

Definition 1. A function f ∈ A is in the class S∗(ϕ, ξ, h), if and only if,

z(ϕ ∗ ξ ∗ f)′

(ϕ ∗ ξ ∗ f)
∈ P (h) .
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Definition 2. A function f ∈ A is in the class C(ϕ, ξ, h), if and only if,

(z(ϕ ∗ ξ ∗ f)′)′

(ϕ ∗ ξ ∗ f)′
∈ P (h) .

For different choices of ϕ, ξ and h, we will obtain well-known classes, see

[4, 13, 14, 20, 27].

It is noted that

f ∈ C(ϕ, ξ, h)⇔ zf ′ ∈ S∗(ϕ, ξ, h). (1.8)

2 Preliminary Results

Lemma 1 ([12]). Let h be analytic, univalent convex function in E with h(0) = 1

and Re (γh(z) + σ) > 0, σ, γ ∈ C and γ 6= 0. If p(z) is analytic in E and

p(0) = h(0), then {
p(z) +

zp′(z)

γp(z) + σ

}
≺ h(z), (2.1)

implies p(z) ≺ q(z) ≺ h(z), where q(z) is best dominant and is given as,

q(z) =

[{∫ 1

0

(
exp

∫ tz

t

h(u)− 1

u
du

)
dt

}−1
− σ

γ

]
.

Lemma 2 ([26]). Let p be an analytic function in E with p(0) = 1 and Re{p(z)} >
0, z ∈ E. Then, for ϑ > 0 and ν 6= −1 (complex),

Re

{
p(z) +

ϑzp′(z)

p(z) + ν

}
> 0, for |z| < r0, where r0 is given by

r0 =
|ν + 1|√

s+

√
s2 − |ν2 − 1|2

, s = 2 (ϑ+ 1)2 + |ν|2 − 1 (2.2)

and this radius is best possible.

Lemma 3 ([25]). If f ∈ C, g ∈ S∗, then for each h analytic in E with h(0) = 1,

(f ∗ hg) (E)

(f ∗ g) (E)
⊂ Coh(E), (2.3)

where Coh(E) denotes the convex hull of h(E).
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3 Main Results

We assume throughout this paper k ≥ 0, b > −1, δ be a real, m ∈ N0 =

{0, 1, 2, 3, ...} , A1 = [(1 − α)A + αB], B1 = B, (−1 ≤ B < A ≤ 1) and z ∈ E,

unless otherwise stated.

Theorem 1. Let Re {h(z) + b} > 0 and Re {h(z) +m} > 0. Then

S∗(ψ(δ + 1, b; z), f (−1)m , h) ⊂ S∗(ψ(δ, b; z), f (−1)m , h)

⊂ S∗(ψ(δ, b; z), f
(−1)
m+1, h).

Proof. Let f ∈ S∗(ψ(δ + 1, b; z), f
(−1)
m , h).

For Imf(z) = f
(−1)
m (z) ∗ f(z), we set

z
[
Lδa(Imf(z))

]′
[Lδa(Imf(z))]

= p(z), (3.1)

where p(z) is analytic with p(0) = 1.

Using identity (1.7) and (3.1), we have

(1 + b)
Lδ+1
b (Imf(z))

Lδb (Imf(z))
= p(z) + b.

Logarithmic differentiating both sides, to get

z
[
Lδ+1
b (Imf(z))

]′
Lδ+1
b (Imf(z))

= p(z) +
zp′(z)

p(z) + b
. (3.2)

Since f ∈ S∗(ψ(δ + 1, b; z), f
(−1)
m , h), so from (3.2) we have

p(z) +
zp′(z)

p(z) + b
≺ h(z). (3.3)

By applying Lemma 1, it conclude that, p(z) ≺ h(z) and consequently,

z
[
Lδa(Imf(z))

]′
[Lδa(Imf(z))]

≺ h(z).

This implies f(z) ∈ S∗(ψ(δ, b; z), f
(−1)
m , h).
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Now suppose that f ∈ S∗(ψ(δ, b; z), f
(−1)
m , h).

For Lδbf(z) = ψ(δ, b; z) ∗ f(z), we set

z
[
Im+1

(
Lδaf(z)

)]′
Im+1 (Lδaf(z))

= Q(z), (3.4)

where Q(z) is analytic with Q(0) = 1.

From (1.6) and (3.4), we have

(1 +m)
Im
(
Lδbf(z)

)
Im+1

(
Lδbf(z)

) = Q(z) +m.

Logarithmic differentiating both sides, to get

z
[
Im
(
Lδaf(z)

)]′
Im (Lδaf(z))

= Q(z) +
zQ′(z)

Q(z) +m
. (3.5)

Since f ∈ S∗(ψ(δ, b; z), f
(−1)
m , h), so from (3.5) we have

Q(z) +
zQ′(z)

Q(z) +m
≺ h(z). (3.6)

By applying Lemma 1, it conclude that, Q(z) ≺ h(z) and consequently,

z
[
Im+1

(
Lδaf(z)

)]′
Im+1 (Lδaf(z))

≺ h(z).

This implies f(z) ∈ S∗(ψ(δ, b; z), f
(−1)
m+1, h).

Theorem 2. Let Re {h(z) + b} > 0 and Re {h(z) +m} > 0. Then

C(ψ(δ + 1, b; z), f (−1)m , h) ⊂ C(ψ(δ, b; z), f (−1)m , h)

⊂ C(ψ(δ, b; z), f
(−1)
m+1, h).

Proof. Let

f ∈ C(ψ(δ + 1, b; z), f (−1)m , h).

⇔ zf ′ ∈ S∗(ψ(δ + 1, b; z), f (−1)m , h), (by (1.8))

⇒ zf ′ ∈ S∗(ψ(δ, b; z), f (−1)m , h), (by Theorem 1)

⇔ f ∈ C(ψ(δ, b; z), f (−1)m , h). (by (1.8))

Similarly, we can prove C(ψ(δ, b; z), f
(−1)
m , h) ⊂ C(ψ(δ, b; z), f

(−1)
m+1, h).
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We can deduce some main results as corollaries of the above theorems for

different values of h(z) given as bellow;

(a) h(z) = 1+A1z
1+Bz .

(b) h(z) = pk(z), where pk(z) is defined by (1.4).

Theorem 3. Let f ∈ S∗(ϕ, ξ, h) and g be any convex univalent functions in E.

Then f ∗ g ∈ S∗(ϕ, ξ, h).

Proof. Let f ∈ S∗(ϕ, ξ, h). Then for F = ξ ∗ f .

Consider

z (ϕ ∗ ξ ∗ (g ∗ f))′

(ϕ ∗ ξ ∗ (g ∗ f))
=

z (g ∗ (ϕ ∗ F ))′

(g ∗ (ϕ ∗ F ))

=
g ∗ z (ϕ ∗ F )′

(g ∗ (ϕ ∗ F ))

=
g ∗ z(ϕ∗F )′

(ϕ∗F ) (ϕ ∗ F )

(g ∗ (ϕ ∗ F ))
.

Since ϕ∗F ∈ S∗(h) ⊂ S∗, so by lemma 3, it follows that f ∗g ∈ S∗(ϕ, ξ, h).

Theorem 4. Let f ∈ C(ϕ, ξ, h) and g be any convex univalent functions in E.

Then f ∗ g ∈ C(ϕ, ξ, h).

Proof. We can easily prove this result by using Theorem 3 along with relation

(1.8).

We can deduce some special cases for the Theorem 3 and Theorem 4, for

different choices of ϕ , ξ and h as given below:

(i) If ϕ(z) = ψ(δ, b; z), ξ(z) = f
(−1)
m (z) and h is analytic, univalent convex

function.

(ii) If ϕ(z) = fm(z), ξ(z) = z
(1−z) and h(z) is analytic, univalent convex

function.

(iii) If ϕ, ξ ∈ A and h(z) = 1+A1z
1+Bz .

(iv) ϕ, ξ ∈ A and h(z) = pk(z), where pk(z) is defined by (1.4).

We can apply Theorem 3 and Theorem 4 to prove Integral preserving

properties for the classes S∗(ϕ, ξ, h) and C(ϕ, ξ, h).
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Corollary 1. The class S∗(ϕ, ξ, h) and C(ϕ, ξ, h) is closed under the following

operators.

(i) f1(z) =
∫ z
0
f(t)
t dt.

(ii) f2(z) = 2
z

∫ z
0 f(t)dt, (Libera’s operator [11]).

(iii) f3(z) =
∫ z
0
f(t)−f(xt)

t−xt dt, |x| ≤ 1, x 6= 1.

(iv) f4(z) = c+1
zc

∫ z
0 t

c−1f(t), Re(c) ≥ 0, (Generalized Bernardi operator [3]).

Proof. We may write, fi(z) = f(z) ∗ φi(z), where φi(z), i = 1, 2, 3, 4, are convex

and given by

φ1(z) = − log (1− z) =
∞∑
n=1

1
nz

n,

φ2(z) = −2[z−log(1−z)]
z =

∞∑
n=1

2
n+1z

n,

φ3(z) = 1
1−x log

(
1−xz
1−z

)
=
∞∑
n=1

1−xn
(1−x)n z

n, |x| ≤ 1, x 6= 1,

φ4(z) =
∞∑
n=1

1+c
n+cz

n, Re(c) ≥ 0.

The proof follows easily by using Theorem 3 and Theorem 4.

Now, we discuss some radius problems as follows:

Theorem 5. Let f ∈ S∗(ψ(δ, b; z), f
(−1)
m , 1+A1z

1+Bz ). Then

f ∈ S∗(ψ(δ + 1, b; z), f (−1)m ,
1 +A1z

1 +Bz
), for |z| < rδ, where

rδ =
2 (1 + δ)

L+
√
L2 − 4M

, (3.7)

where L = 3A2
1 + δ (A1 +B) − B, M = (1 + δ)

(
A2

1 + δA1B
)
. The value of rδ

is sharp.

Proof. Let f ∈ S∗(ψ(δ, b; z), f
(−1)
m , 1+A1z

1+Bz ). Then, for Imf(z) = f
(−1)
m (z) ∗ f(z)

z
[
Lδa(Imf(z))

]′
[Lδa(Imf(z))]

= p(z), (3.8)
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where p(z) is analytic with p(0) = 1. Using identity (1.7) and (3.8), we have

(1 + b)
Lδ+1
b (Imf(z))

Lδb (Imf(z))
= p(z) + b.

Logarithmic differentiating both sides, to get

z
[
Lδ+1
b (Imf(z))

]′
Lδ+1
b (Imf(z))

= p(z) +
zp′(z)

p(z) + b
. (3.9)

Since 1−A1r
1−Br ≤ Rep(z) ≤ 1+A1r

1+Br and
∣∣∣ zp′(z)p(z)

∣∣∣ ≥ (A1−B)r
(1−A1r)(1−Br) , (see [2, 23]), then

(3.9) implies,

Re

(
p(z) +

zp′(z)

p(z) + b

)
≥ Rep(z)

[
(1−A1r) {(1−A1r) + δ (1−Br)} − (A1 −B) r

(1−A1r) {(1−A1r) + δ (1−Br)}

]
.

The right hand side of above inequality is positive, for |z| < rδ, where rδ is given

by (3.7).

Corollary 2. Let f ∈ S∗(ψ(δ, b; z), f
(−1)
m , 1+Az1+Bz ). Then

f ∈ S∗(ψ(δ+1, b; z), f (−1)m ,
1 +Az

1 +Bz
), for |z| < rδ, where

rδ =
2 (1 + δ)

L+
√
L2 − 4M

,

where L = 3A2 + δ (A+B)− B, M = (1 + δ)
(
A2 + δAB

)
. The value of rδ is

sharp.

Corollary 3. Let f ∈ S∗(ψ(δ, b; z), f
(−1)
m , 1+z1−z ). Then

f ∈ S∗(ψ(δ+1, b; z), f (−1)m ,
1 + z

1− z
), for |z| < rδ, where

rδ =
(1 + δ)

2 +
√

3 + δ2
.

The value of rδ is sharp.
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Theorem 6. Let Fc ∈ S∗(ψ(δ, b; z), fm,
1+A1z
1+Bz ), where Fc is defined by

Fc =
c+ 1

zc

∫ z

0
tc−1f(t).

Then

Lδa(Dmf(z)) ∈ S∗
(

1 + (1− 2β) z

1− z

)
, for |z| < rβ, where

rβ =
|ν + 1|√

s+

√
s2 − |ν2 − 1|2

, (3.10)

where s = 2 (ϑ+ 1)2 + |ν|2 − 1, ϑ = 1
1−β , ν = β+c

1−β , β = 1−A1
1−B . The value of rβ

is sharp.

Proof. Let Fc ∈ S∗(ψ(δ, b; z), fm,
1+A1z
1+Bz ). Then for DmFc(z) = fm(z) ∗ Fc(z),

p(z) =
z
[
Lδa(DmFc(z))

]′
[Lδa(DmFc(z))]

∈ P
(

1 +A1z

1 +Bz

)
, (3.11)

where p(z) is analytic with p(0) = 1.

Since Fc = c+1
zc

∫ z
0 t

c−1f(t), so by differentiating, we have

(zcFc(z))
′ = (1 + c)zc−1f(z),

zF ′c(z) + cFc(z) = (1 + c)f(z).

Taking convolution both sides of the above equation by ψ(δ, b; z) ∗ fm, to get

z
[
Lδa(DmFc(z))

]′
+ c

[
Lδa(DmFc(z))

]
= (1 + c)Lδa(Dmf(z)),

z
[
Lδa(DmFc(z))

]′
Lδa(DmFc(z))

+ c = (1 + c)
Lδa(Dmf(z))

Lδa(DmFc(z))
,

(1 + c)
Lδa(Dmf(z))

Lδa(DmFc(z))
= p(z) + c. (by (3.11))

Logarithmic differentiating both sides, we get

z
[
Lδa(Imf(z))

]′
Lδa(Imf(z))

= p(z) +
zp′(z)

p(z) + c
. (3.12)
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Since p(z) ∈ P
(
1+A1z
1+Bz

)
⊂ P

(
1+(1−2β)z

1−z

)
, so

p(z) = (1− β) p1(z) + β, p1 ∈ P, (3.13)

where β = 1−A1
1−B .

From (3.12) and (3.13), we have

1

(1− β)

[
z
[
Lδa(Dmf(z))

]′
Lδa(Dmf(z))

− β

]
= p1(z) +

1
(1−β)zp

′
1(z)

p1(z) + (c+β)
(1−β)

.

Take ϑ = 1
1−β > 0 and ν = β+c

1−β 6= −1, then by applying Lemma 2, we conclude

that
1

(1− β)

[
z
[
Lδa(Dmf(z))

]′
Lδa(Dmf(z))

− β

]
> 0, for |z| < rβ (3.14)

where rβ is given by (3.10).

Hence Lδa(Dmf(z) ∈ S∗
(
1+(1−2β)z

1−z

)
, for |z| < rβ, where rβ is given by (3.10).

4 Conclusion

In the present work, we have introduced subclasses of analytic functions, which are

generalization of many well-known classes. Several inclusion and inverse inclusion

properties in terms of certain linear operators are discussed. We have proved

preserving properties for these subclasses under convex convolution. Also, various

applications of these results are deduced by using generalized Janowski functions

and conic domains.
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