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Abstract 

This paper introduces a new class of distributions called the generalized Ampadu-G (GA-

G for short) family of distributions, and with a certain restriction on the parameter space, 

the family is shown to be a life-time distribution. The shape of the density function and 

hazard rate function of the GA-G family is described analytically. When G follows the 

Weibull distribution, the generalized Ampadu-Weibull (GA-W for short) is presented 

along with its hazard and survival function. Several sub-models of the GA-W family are 

presented. The transformation technique is applied to this new family of distributions, and 

we obtain the quantile function of the new family. Power series representations for the 

cumulative distribution function (CDF) and probability density function (PDF) are also 

obtained. The rth non-central moments, moment generating function, and Renyi entropy 

associated with the new family of distributions are derived. Characterization theorems 

based on two truncated moments and conditional expectation are also presented. A 

simulation study is also conducted, and we find that using the method of maximum 

likelihood to estimate model parameters is adequate. The GA-W family of distributions is 

shown to be practically significant in modeling real life data, and is shown to be superior 

to some non-trivial generalizations of the Weibull distribution. A further development 

concludes the paper. 
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1. Introduction 

Statistical distributions have been developed in recent years by researchers in order 

to model and predict real world data. There has been a great number of flexible 

distributions developed by researchers for modelling data. Modelling techniques used are 

based statistical distributions and this has prompted many researchers in developing new 

family of distributions through various different methods for defining these families of 

distributions. Many attempts have been made to propose new families of distributions in 

the statistical papers by the use of some baseline distributions. Gupta et al. [1] introduced 

the exponentiated family where the introduction of an extra parameter was introduced. 

The cumulative distribution function (CDF) of the Gupta et al. [1] proposed 

exponentiated family is given by, 

( ) ( )a
xFaxG ψ=ψ ;,;           ,,0 R∈> xa  

where ψ  is a parameter vector of the baseline distribution ( ).; ψxG  In relation to [1], 

many lifetime distributions have been proposed. Some these distributions include, 

Exponentiated Exponential in Gupta and Kundu [2], Exponentiated beta in Nadarajah 

[3], exponentiated lognormal in Shirke and Kakade [4], exponentiated Kumaraswamy in 

Lemonte et al. [5], Exponentiated Power Lindley in Ashour and Eltehiwy [6] and 

exponentiated Weibull-Pareto in Afify et al. [7]. Another prominent method in this area, 

is Marshall-Olkin family of distributions proposed by Marshall and Olkin [8] defined by 

the CDF, 

( ) ( )( )
( ) ( )( )ψ−λ−−

ψ−λ−=ψλ
;111

;1
1,;

xG

xG
xF           ,,0 R∈>λ x  

where ψ  is a parameter vector of the baseline distribution ( ).; ψxG  in relation to [8], 

many distributions have been generalized. These include, Marshall Olkin extended 

Weibull of Ghitany et al. [9], Marshall Olkin gamma Marshall Olkin extended log-

Logistic Weibull of Lepetu et al. [10] and Marshall Olkin gamma Weibull of Saboor and 

Pogány [11]. Recently, [12] developed the Ampadu-G family of distributions and defined 

its CDF as 

( )
( )

a

xaG
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e
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          ,,0 R∈> xa  
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where ψ  is a parameter vector all of whose entries are positive of the baseline 

distribution. The corresponding probability density function can be obtained by 

differentiating the CDF. 

This article unfolds as follows. In Section 2, a brief description of the new family of 

distributions is introduced, where the generalized Ampadu-Weibull family of 

distributions is presented with sub-models. In Section 3, some statistical properties of the 

new family are derived. Section 4 presents results of a simulation study. Application of 

the new family to real-life data is discussed in Section 5, and some characterization 

theorems are presented in Section 6. The paper concludes with some further 

developments in Section 7. 

2. Description of the New Family of Distributions 

This section presents the GA-G family of distributions and applies the proposed 

family of distributions to the Weibull distribution and this new distribution is named the 

generalized Ampadu-Weibull distribution (GA-W for short). The sub-models of the GA-

W distribution are also presented. 

2.1. The GA-G family of distributions 

Definition 2.1. A random variable X is called generalized Ampadu-G distributed if 

the CDF is given by 

( )
( )

λ−

ξλ−

−
−=ξβλ

β

e

e
xF

xG

1

1
,,;

;

 

where ( ) ( ),,00, ∞∞−∈λ ∪  ,R∈x  ξ  is a vector of parameters in the baseline 

distribution with CDF G, and  .0>β  

Proposition 2.2. The PDF of the generalized Ampadu-G family of distributions is 

given by 

( )
( ) ( ) ( )

,
1

;;
,,;

1;

−
ξξλβ=ξβλ λ

−βξλ−λ β

e

xgxGe
xf

xG

 

where ( ) ( ),,00, ∞∞−∈λ ∪  ,R∈x  ξ  is a vector of parameters in the baseline 

distribution with CDF G and PDF g, and .0>β  
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Remark 2.3. If ,2=β  then the Ampadu-G family of distributions [12] can be 

recovered. Similarly, if ,1=β  the GPT
e

−







α

1
 family of distributions can be recovered 

[13]. In both instances the parameter space is a subspace of the generalized Ampadu-G 

family of distributions 

2.2. Physical interpretation of the GA-G family 

Suppose in Definition 2.1, the parameter space of λ  is restricted to ( ).,0 ∞  Let M 

follow zero truncated Poisson distribution with probability mass function 

( )
( )

0....,,2,1,
1!

>λ=
−

λ== λ m
em

mM
m

P  

Let the failure of each subsystem follow the exponentiated distribution with CDF given 

by 

( )βξ;xG  

where ,R∈x  0>β  and ξ  is a vector of parameters in the baseline distribution with 

CDF G. If jZ  is the failure time of the jth subsystem and X represents the time to failure 

of the first out of the M operating subsystems such that { }....,,min 1 MZZX =  Then the 

conditional CDF of X given M can be shown to be given by 

( ) ( )MxXmMxF |>−==| P1  

( )xZxZ M >>−= ...,,1 1P  

( )[ ]mxZ >−= 11 P  

( )[ ]mxZ <−−= 111 P  

[ ( ) ] .,;11 R∈ξ−−= β
xxG

m  

Thus, the marginal CDF of X is given by 

( ) { [ ( ) ] }m

m

m

xG
me

xF
β

∞

=
λ ξ−−λ

−
=  ;11

!1

1

1

 



The Generalized Ampadu-G Family of Distributions: …  

Earthline J. Math. Sci. Vol. 4 No. 1 (2020), 139-167 

143 

( )
,,

1

1 ;

R∈
−

−= λ−

ξλ− β

x
e

e
xG

 

where ( ),,0 ∞∈λ  and ξ  is a vector of parameters in the baseline distribution with CDF 

G, and .0>β  With this physical interpretation, and restriction on the parameter ,λ  the 

generalized Ampadu-G becomes the Poisson Exponentiated G family of distributions. 

The PDF of the Poisson Exponentiated G family of distributions can be obtained by 

differentiating the CDF immediately above. 

2.3. Shape of density and hazard function of the GA-G family 

The shapes of the density function and hazard rate function of the GA-G family can 

be described analytically. The critical points of the density function can be shown to be 

roots of the equation 
( )( )

0
,,;ln =

∂
ξβλ∂

x

xf
 or equivalently 

( ) ( )
( )

( )
x

xG

xGx

xG
xG

∂
ξ∂

ξ
−β−

∂
ξ∂ξλβ −β ;

;

1;
;

1

( )
( )

.0
;

;

1 =
∂

ξ∂
ξ

−
x

xG

xg
 

The above equation may have more than one root. If 0xx =  is a root of the above 

equation, then it corresponds to a local maximum if 
( )( )

,0
,,;ln

2

2

<
∂

ξβλ∂
x

xf
 a local 

minimum if 
( )( )

,0
,,;ln

2

2

>
∂

ξβλ∂
x

xf
 and a point of inflection if 

( )( )
.0

,,;ln

2

2

=
∂

ξβλ∂
x

xf
 

It can be shown that the hazard rate function of the GA-G family is given by 

( ) ( ) ( )
( )βξλλ

−βλ

−

ξξλβ=ξβλ
;

1
;;

,,;
xG

ee

xGxge
xh  

where the parameter space is the same as in the GA-G family. In a similar way the 

critical points of the hazard function can be shown to be roots of the equation 

( )( )
0

,,;ln =
∂

ξβλ∂
x

xh
 or equivalently 
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( )
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The above equation may have more than one root. If 0xx =  is a root of the above 

equation, then it corresponds to a local maximum if 
( )( )

,0
,,;ln

2

2

<
∂

ξβλ∂
x

xh
 a local 

minimum if 
( )( )

,0
,,;ln

2

2

>
∂

ξβλ∂
x

xh
 and a point of inflection if 

( )( )
.0

,,;ln

2

2

=
∂

ξβλ∂
x

xh
 

2.4. The GA-W family of distributions 

We apply the generalized Ampadu-G family to the Weibull distribution and this new 

class of distributions is called the generalized Ampadu-Weibull family of distribution. 

Definition 2.4. A random variable X is called generalized Ampadu-Weibull 

distributed if the CDF is given by 

( )
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,,,;
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where ( ) ( ) .0,,,,,00, >β∞∞−∈λ bax∪  

Proposition 2.5. The PDF of the generalized Ampadu-Weibull distribution is given 

by, 
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for ,0,,, >βbax and ( ) ( ).,00, ∞∞−∈λ ∪  
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Proposition 2.6. Let ,0,,, >βbax and ( ) ( ).,00, ∞∞−∈λ ∪  The survival function 

and hazard rate function of the generalized Ampadu-Weibull distribution is given by, 

( ) 1
1
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respectively. 

Using the estimated parameters in the GA-W distribution recorded in Table 1, we 

display the survival function and hazard rate function in Appendix H 

2.5. Sub-models of the GA-W family of distributions 

Several families can be derived from the generalized Ampadu-Weibull distribution 

for different choice of the parameters, and we list some of them below 

(i) When 1==β a  the generalized Ampadu-Weibull distribution reduces to the 

α








e

1
PT-Exponential distribution with the following CDF; 
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( )
1

,;
−

−=λ λ

λλ
π−

e

ee
bxF

be

 

for ,0, >bx  and ( ) ( ).,00, ∞∞−∈λ ∪  

(ii) When 1==β b  the generalized Ampadu-Weibull distribution reduces to the 

α








e

1
PT-Standard Exponential Distribution 

( )
1

;
−

−=λ λ

λλ −

e

ee
xF

x
e

 

for ,0>x  and ( ) ( ).,00, ∞∞−∈λ ∪  

(iii) When 1==β b  the generalized Ampadu-Weibull distribution reduces to the 

α








e

1
PT-Standard Exponential Exponentiated Uniform Distribution 

( )
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,;
−

−=λ λ

λλ −

e

ee
axF

a
x

e

 

for ,0, >ax ( ) ( ).,00, ∞∞−∈λ ∪  

(iv) When ,01 >β≠  1=a  the generalized Ampadu-Weibull distribution reduces to 

the generalized Ampadu-Exponential Distribution 

( )
1

,,;

1

−
−=βλ λ


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





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−λ−λ
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β
−

e

ee
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x

e

 

for ,0,, >βbx  and ( ) ( ).,00, ∞∞−∈λ ∪  

(v) When ,01 >β≠  1== ba  the generalized Ampadu-Weibull distribution reduces 

to the generalized Ampadu-Standard Exponential Distribution 

( )
( ) ( )( )

1
,;

1coshsinh

−
−=βλ λ

+−λ−λλ β

e

ee
xF

xx

 

for ,01, >β≠x  and ( ) ( ).,00, ∞∞−∈λ ∪  
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(vi) When 1,01 =>β≠ b  the generalized Ampadu-Weibull distribution reduces to 

the generalized Ampadu-Standard Exponential Exponentiated Uniform Distribution 

( )
1

,,;

1

−
−=βλ λ








 −λ−λ
λ

β
−

e

ee
axF

a
xe

 

for ,01,, >β≠ax  and ( ) ( ).,00, ∞∞−∈λ ∪  

3. Statistical Properties 

3.1. Transformation of random variables 

Theorem 3.1. If U is uniform on ( ),1,0  then 

( )
β

λ− 




















−−λ
=

1

11

1
ln

1

eU
X  

follows the generalized Ampadu-Standard Uniform family of distributions, where 

{ }0−∈λ R  

and .0>β  

3.2. Quantile function 

Theorem 3.2. If ,10 << p  then 

( )
( )

β
λ− 





















−−λ
=

1

11

1
ln

1

ep
pQ  

is the quantile function of the generalized Ampadu-Standard Uniform family of 

distributions, where 

{ }0−∈λ R  

and .0>β  

For some choices of ( ),1,0∈p  λ  and ,β  we display ( )pQ for the generalized 

Ampadu-Standard Uniform distribution in Appendix F 
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3.3. Expansion of CDF 

Let r be arbitrary positive integer, by the Binomial Theorem, we can write 

( ( ) ) ( ) ( ) .11 ;

0

; ββ ξλ−

=

ξλ−  −






=− xrG
r

k

rrxG
e

k

r
e  

By the power series representation for the exponential function, we can write 

( ) ( ) ( )

∞

=

β
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β
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;1

i

iiii
xrG
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xGr
e  

Thus if ,1=r  we can write 
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∞

=
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
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k
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Since ,1
1

1

0

1
=







=







 the equation immediately above can be written as 
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β
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i

iii
xG

i
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Thus we have the following 

Proposition 3.3. The CDF of the generalized Ampadu-G family of distributions 

admit the following expansion 

( )
∞

=

βξ
0

,;

i

i
i xGw  

where 
( ) ( )

,
!

112
11

i

e
w

ii

i

−λ−+ −λ−= { } ,,0,0 RR ∈>β−∈λ x  and ξ  is a vector of 

parameters in the baseline distribution with CDF ( ).; ξxG  

3.4. Expansion of PDF 

Proposition 3.4. The PDF of the generalized Ampadu-G family of distributions 

admit the following expansion 
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( ) ( )
∞

= =

−β+βξξ
0 0

1
, ,;;

k

k

j

j
jk xGxgw  

where 
( )

( )
,

1!

11

,
−

β−λ







= λ

+

ekj

k
w

jk

jk  { },0−∈λ R  ,0>β  ,R∈x  and ξ  is a vector of 

parameters in the baseline distribution with CDF ( )ξ;xG  and PDF ( ).; ξxg  

3.5. rth non-central moment 

Proposition 3.5. The rth non-central moments of the generalized Ampadu-G family 

of distributions, for N∈r  can be expressed as 

( ) ( ) 
∞

= =

∞

∞−
−β+βξξ=µ′

0 0

1
, ,;;

k

k

j

jr
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where 
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,
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β−λ

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

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= λ

+

ekj

k
w
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jk  { },0−∈λ R  ,0>β  ,R∈x  and ξ  is a vector of 

parameters in the baseline distribution with CDF ( )ξ;xG  and PDF ( ).; ξxg  

Given a random variable X with PDF ( ),xf  the ordinary moments, for ,N∈r  are 

given by 

[ ] ( )
∞

∞−
= .dxxfxXE

rr  

However, if the random variable X in question has CDF ( )xF  and quantile function 

,XQ  then after the substitution ( ),xFu =  he ordinary moments can be expressed as 

[ ] ( )( )=
1

0
.duuQXE

r
X

r  

Using this representation we display the first ten moments of the generalized Ampadu-

Standard Uniform distribution for some choice parameters in Appendix G. 

3.6. Moment generating function 

Proposition 3.6. The moment generating function of the generalized Ampadu-G 

family of distributions can be expressed as 
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jk  { },0−∈λ R  ,0>β  ,R∈x  and ξ  is a vector of 

parameters in the baseline distribution with CDF ( )ξ;xG  and PDF ( ).; ξxg  

3.7. Renyi entropy 

Proposition 3.7. The Renyi entropy of the generalized Ampadu-G family of 

distributions can be expressed as 

( ) ( ) ( ) ( )
,;;
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where 
( ) { } ,,0,0,01,

!

1
RR ∈>β−∈λ>δ≠λδ−= x

k
w

kkk

k  and ξ  is a vector of 

parameters in the baseline distribution with CDF ( )ξ;xG  and PDF ( ).; ξxg  

4. Simulation Study 

In this simulation study samples of sizes 400, 550, 700, and 900, are drawn from the 

generalized Ampadu-Weibull family of distributions. The samples have been drawn for 

( ) ( )9.1,2.2,2.2,4.1,,, =βλba  in the first simulation study, and the average bias and 

root mean square error are obtained. The procedure has been repeated 200 times and the 

results are summarized in Appendix A. In the second simulation study the samples have 

been drawn for ( ) ( )9.1,4.1,4.1,4.1,,, =βλba  and the average estimates and mean 

square error of the parameters are obtained. The procedure has been repeated 200 times 

and the results are summarized in Appendix B. 

From Appendix A, we find that the average bias is around zero and hence the 

estimation method is adequate. We have also observed that the estimated root mean 

square errors (RMSE) consistently decrease with increasing sample size as seen in 

Appendix C. From Appendix B, we find that the average estimates are consistently close 

to the true values, and hence the estimation method is adequate. We have also observed 



The Generalized Ampadu-G Family of Distributions: …  

Earthline J. Math. Sci. Vol. 4 No. 1 (2020), 139-167 

151 

that the estimated mean square errors (MSE) consistently decrease with increasing 

sample size as seen in Appendix D. 

Overall, the simulation study conducted indicates that using the method of maximum 

likelihood to estimates the parameters in the generalized Ampadu-G family of 

distributions is adequate. 

5. Application 

5.1. Maximum likelihood estimation in the GA-G distribution 

In this section, we obtain the maximum likelihood estimators (MLEs) for the 

parameters in the generalized Ampadu-G family of distributions. For this, let 

nXXX ....,,, 21  be a random sample of size n from the generalized Ampadu-G family of 

distributions. The likelihood function from Proposition 2.2 is given by 

( ) ( ) ( )∏
=
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From the above the log-likelihood function is given by 
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Obtaining the partial derivatives of the equation immediately above, we get the following 
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By setting the three equations immediately above to zero and solving simultaneously we 

obtain the maximum likelihood estimates. 

5.2. Performance of GA-W distribution 

In this section we investigate the performance of the generalized Ampadu-Weibull 

distribution (GA-W) in fitting real-life data. We consider the data-set on the survival 

times of 72 guinea pigs infected with virulent tubercle bacilli [14]. The performance of 

the generalized Ampadu-Weibull distribution is compared with two other generalizations 

of the Weibull distribution, that is, the Marshall-Olkin Weibull (MOW) and the 

exponentiated Weibull (EW) distributions. The measures of goodness of fit we consider 

include Akaike information criterion (AIC), Bayesian information criterion (BIC), -

2Log-Likelihood, and second-order Akaike Information Criterion (AICc). The Weibull 

distribution can be written in different forms, however in defining the MOW distribution 

and the EW distribution, we use the form of the Weibull distribution as employed in 

Definition 2.4. In particular, using the form of the Weibull distribution in Definition 2.4 

in equation (1.1) of [8], and then differentiating, we have the following as the PDF of the 

MOW distribution 

( )
2

1
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and the following as the PDF of the EW distribution, upon powering a positive real 

number to the form of the Weibull distribution in Definition 2.4, and then differentiating 

the result 
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The idea of powering a positive real number (say) to the CDF of any distribution is 

popular technique in distribution theory, and is due to [1] 

Table 1. Estimates for the parameter of fitted distribution 

 

The parameter estimates in the GA-W, MOW, and EW distributions along with their 

standard errors are summarized in Table 1 above. An inspection of Table 2 below shows 

that the EW distribution is preferred in comparison with the other distributions in fitting 

the same data. Among the non-trivial generalizations of the Weibull distribution, it can 

be seen that the GA-W distribution is preferred to the MOW distribution in fitting the 

same data. The GA-W distribution as a non-trivial generalization of the Weibull 

distribution should play significant role in fitting real-life data from various disciplines. 

Table 2. Goodness-of-fit measures 

 

The estimated PDFs to the histogram and the estimated CDFs to the empirical 

distribution are displayed in Appendix E. 

6. Characterization Theorems 

The characterization of statistical distributions plays a major role in stochastic 

modeling. In this section we present some characterizations of the generalized Ampadu-

G family of distributions. Our first characterization theorem is based on a simple 
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relationship between two truncated moments, and for related works in this direction, the 

reader is referred to [15]-[20]. 

At first, we recall the following which will be useful in the sequel 

Theorem 6.1. [16] Let ( )P,, Ω  be a given probability space, and let [ ]baI ,=  be 

an interval for some ba < ∞=−∞= ba ,(  might as well be allowed). Let IX ֏Ω:  be 

a continuous random variable with probability distribution function F, and let 1q  and 

2q  be two real functions on I such that 

( )[ ] ( )[ ] ( ) ,,21 IxxxXXqxXXq ∈η≥|=≥| EE  

is defined with some real function .η  Assume that ( ),,
1

21 ICqq ∈  and ( ),
2

IC∈η  and 

F is twice continuously differentiable and strictly monotone increasing on the set I. 

Finally, assume that the equation 12 qnq =  has no real solutions in the interior of I. 

Then F is uniquely determined by the functions .,, 21 ηqq  In particular, 

( ) ( )
( ) ( ) ( )

( )( ) ,exp
12

duus
uququ

u
CxF

x

a
−

−η
η′

=   

where the function s is a solution of the differential equation 

12

2

qq

q
s

−η
η′

=′  

and C is a constant chosen to make  =
I
dF .1  

Remark 6.2. The characterization based on the ratio of two truncated moments is 

stable in the sense of weak convergence, and for more details see [21] 

Our second characterization result employs a single function ψ  of X and states a 

characterization result in terms of ( ).Xψ  The following known results is useful for our 

purposes here. 

Proposition 6.3. [22] Let ( )baX ,: ֏Ω  be a continuous random variable with 

CDF F. Let ( )xψ  be a differentiable function on ( )ba,  with ( ) 1lim >δ=ψ+→
x

ax
 and 

( ) ∞=ψ
−→

x
bx

lim  
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Then 

[ ( )( ) ] ( )( ) ( ),,,
1

baxxxXX ∈ψδ=≤|ψ −δδ
E  

implies 

( ) [ ( )( ) ] ( ).,,1
1

1

1

baxxFx ∈−δ=ψ −
δ−  

Proposition 6.4. [22] Let ( )baX ,: ֏Ω  be a continuous random variable with 

CDF F. Let ( )x1ψ  be a differentiable function on ( )ba,  with ( )
2

1

2
lim 1 >δ=ψ+→

x
ax

 

and 

( ) ∞=ψ
−→

x
bx

1lim  

Then 

[ ( )( ) ] ( )( ) ( ),,,
1

11 baxxxXX ∈ψδ=≤|ψ −δδ
E  

implies 

( ) [ ( )( ) ] ( ).,,1
1

1

1

1 baxxFx ∈+δ=ψ −
δ−  

6.1. Characterization based on two truncated moments 

The main result here is the following 

Proposition 6.5. Let R֏Ω:X  be a continuous random variable, and let 

( ) ,12 =xq  and 

( )
( )

λ−

ξλ−

−
−=

β

e

e
xq

xG

1

1 ;

1  

then the PDF of X is 

( ) ( ) ( )
1

;;
1;

−
ξξλβ

λ

−βξλ−λ β

e

xgxGe
xG

 

iff the function η  in Theorem 6.1 has the form 
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( )
( )

( )λ−

ξλ−

−
−=η

β

e

e
x

xG

12

1 ;

 

where ( ) ( ) ξ∈∞∞−∈λ ,,,00, Rx∪  is a vector of parameters in the baseline 

distribution with CDF G and PDF g, and .0>β  

Proof. Let X have PDF 
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then for all R∈x  we deduce the following 
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Conversely, if 
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and hence 
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Now in view of Theorem 6.1, X has PDF 
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e
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If 2q  is given by the previous Proposition, then we have the following 

Corollary 6.6. Let R֏Ω:X  be a continuous random variable. The PDF of X is 

( ) ( ) ( )
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iff there exist functions 1q  and η  defined in Theorem 6.1 satisfying the differential 

equation 
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for all R∈x , where ( ) ( ) ξ∞∞−∈λ ,,00, ∪  is a vector of parameters in the baseline 

distribution with CDF G and PDF g, and .0>β  

Remark 6.7. The general solution of the differential equation in the above Corollary 

is given by 

( )
( )

( )
( ) ( ) ( )


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
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for all ,R∈x  where ( ) ( ) ξ∞∞−∈λ ,,00, ∪  is a vector of parameters in the baseline 

distribution with CDF G and PDF g,  ,0>β  and D is a constant. One set of appropriate 

functions is given by the previous Proposition with .0=D  
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6.2. Characterization based on conditional expectation 

6.2.1. Characterization based on Proposition 6.3 

A characterization of the generalized Ampadu-G family of distributions based on the 

first Proposition is obtained by taking ( ) ( )∞= ,0, ba  and 

( )
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1

1
1

1

1

1

;
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e

e
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where ( ) ( ) ξ∈∞∞−∈λ ,,,00, Rx∪  is a vector of parameters in the baseline 

distribution with CDF G, ,0>β  and .1>δ  

6.2.2. Characterization based on Proposition 6.4 

A characterization of the generalized Ampadu-G family of distributions based on the 

second Proposition is obtained by taking ( ) ( )∞= ,0, ba  and 
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1
11

1

1

1

;
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e
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where ( ) ( ) ξ∈∞∞−∈λ ,,,00, Rx∪  is a vector of parameters in the baseline 

distribution with CDF G, ,0>β  and .
2

1>δ  

7. Further Development 

In [23] they introduced a new method of generating continuous distributions based 

on the alpha power transformation family of [24] by inverting the equation 

( )
( )xG

xF

=
−α

−α
1

1
 

that is, by solving for ( )xF  in the above equation. In a similar way, we can add to the 

class of within quantile distributions. As a further development , we propose a so called 

generalized Ampadu-F within the quantile distribution. This distribution is obtained by 
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solving for ( )ξ;xG  in Definition 2.1, thus, obtaining 

( ) ( )
,

;11

1
ln

1

1

β
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

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
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
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
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

ξ−−λ xFe
 

where ( ) ( ) ξ∈∞∞−∈λ ,,,00, Rx∪  is a vector of parameters in the baseline 

distribution with CDF F, and  .0>β  

In particular, we ask the reader to investigate some properties and applications of this 

new class of within quantile distributions.  
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Appendix A 

Table 3. Result of simulation study I. 
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Appendix B 

Table 4. Result of simulation study II 
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Appendix C 

 

Table 5. Decreasing RMSE for increasing sample size. 
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Appendix D 

 

Table 6. Decreasing MSE for increasing sample size. 
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Appendix E 

 

Table 7. Fitted PDFs and CDFs of GAW(red), MOW(blue), and EW(green) to the 

empirical distribution (right panel) and histogram (left panel) of the guinea pigs data. 

Appendix F 

Table 8. Some values of the quantile of the generalized Ampadu-Standard Uniform 

distribution for some values of ( )1,0∈p  and choice parameter λ, β.  
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Appendix G 

Table 9. The first ten moments of the generalized Ampadu-Standard Uniform 

distribution for choice parameter λ, β.  

 

Appendix H 

 

Table 10. The hazard function (left panel) and the survival function(right panel) of the 

GA-W distribution. 


