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Abstract 

In the present work, we establish some fuzzy differential subordination results for 

λ-pseudo starlike and λ-pseudo convex functions with respect to symmetrical points in the 

open unit disk. 

1. Introduction and Preliminaries 

Let T indicate the family of functions f and has the series form:  
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which are analytic and univalent in the open unit disk { }.1: <∈= zzU C  

For functions ( )2,1=∈ jTf j  given by  
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the Hadamard product of 1f  and 2f  is defined by 
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A function Tf ∈  is called starlike with respect to symmetrical points, if (see [8])  
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The family of all such functions is denote by .
∗
SS  

The family of starlike functions with respect to symmetrical points obviously 

includes the family of convex functions with respect to symmetrical points, ,sC  

satisfying the following condition:  
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Recently, Babalola [1] defined the class λL  of λ-pseudo-starlike functions as 

follows: 

Let Tf ∈  and .1≥λ  Then λ∈ Lf  of λ-pseudo-starlike functions in U if and only 

if  
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Definition 1.1 [9]. Let X be a non-empty set. An application [ ]1,0: →XF  is 

called fuzzy subset. An alternate definition, more precise, would be the following: 

A pair ( ),, AFA  where [ ]1,0: →XFA  and ( ){ } =≤<∈= 10: xFXxA A  

( )AFAsupp ,  is called fuzzy subset. The function AF  is called membership function of 

the fuzzy subset ( )., AFA  

Definition 1.2 [5]. Let two fuzzy subsets of X, ( )MFM ,  and ( )., NFN   We say that 

the fuzzy subsets M and N are equal if and only if ( ) ( ) XxxFxF NM ∈= ,  and we 

denote this by ( ) ( ).,, NM FNFM =  The fuzzy subset ( )MFM ,  is contained in the 



Fuzzy Differential Subordinations Results for λ-pseudo Starlike … 

Earthline J. Math. Sci. Vol. 4 No. 1 (2020), 129-137 

131 

fuzzy subset ( )NFN ,  if and only if ( ) ( ) XxxFxF NM ∈≤ ,  and we denote the 

inclusion relation by ( ) ( ).,, NM FNFM ⊆   

Let C⊆D  and gf ,  analytic functions. We denote by  

( ) ( ( ) ( ) ) { ( ) ( ) ( )( ) }DzzfFzfFDfsuppDf DfDf ∈≤<== ,10:,  

and  

( ) ( ( ) ( ) ) { ( ) ( ) ( )( ) }.,10:, DzzgFzgFDgsuppDg DgDg ∈≤<==  

Definition 1.3 [5]. Let DzD ∈⊆ 0,C  be a fixed point, and let the functions 

( )., Dgf H∈  The function f is said to be fuzzy subordinate to g and write gf Fp  or 

( ) ( )zgzf Fp  if the following conditions are satisfied: 

1. ( ) ( ),00 zgzf =  

2. ( ) ( )( ) ( ) ( )( ) ., DzzgFzfF DgDf ∈≤   

Definition 1.4 [6]. Let CC →×ψ U
3

:  and let h be univalent in U. If p is analytic 

in U and satisfies the (second-order) fuzzy differential subordination:  

 ( )( ( ( ) ( ) ( ) )) ( ) ( )( ),;,, 2
3 zhFzzpzzpzzpF UhU

≤′′′ψ
×ψ C

  (1.2)  

i.e.,  

( ( ) ( ) ( ) ) ( ) ,,;,, 2
Uzzhzzpzzpzzp F ∈′′′ψ p  

then p is called a fuzzy solution of the fuzzy differential subordination. The univalent 

function is q called a fuzzy dominant of the fuzzy solutions of the fuzzy differential 

subordination, or more simple a fuzzy dominant, if ( ) ( ) Uzzqzp F ∈,p  for all p 

satisfying (1.2). A fuzzy dominant q~  that satisfies ( ) ( ) Uzzqzq F ∈,~
p  for all fuzzy 

dominant q of (1.2) is said to be the fuzzy best dominant of (1.2). 

Lemma 1.1 [2]. Let q be univalent in U and let θ  and φ  be analytic in a domain D 

containing ( )Uq  with ( ) 0≠φ w  when ( ).Uqw ∈  Set ( ) ( ) ( )( )zqzqzzQ φ′=  and 

( ) ( )( ) ( ).zQzqzh +θ=  Suppose that 

(1) ( )zQ  is starlike in U, 
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(2) 
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If p is analytic in U, with ( ) ( ) ( ) DUpqp ⊂= ,00  and ,:
2

CC →×ψ U  

( ( ) ( )) ( ( )) ( ) ( )( )zpzpzzpzpzzp φ⋅′+θ=′ψ ,  is analytic in U, then  

( )[ ( ( )) ( ) ( )( )] ( ) ( ),2 zhFzpzpzzpF UhU
≤φ⋅′+θ

×ψ C
 

implies  

( ) ( ) ( ) ( ),zqFzpF UqUp ≤  

i.e., ( ) ( )zqzp Fp  and q is the fuzzy best dominant, where  

( ) ( ( ) ( ( ) ( )))zpzzpFUsuppU
U

′ψ×=×ψ
×ψ

,, 2
22

C
CC  

{ ( ) ( ( ) ( )) },1,0: 2 ≤′ψ<∈=
×ψ

zpzzpFz
UC

C   

and  

( ) ( ( ) ( ))zhFUsuppUh Uh,= { ( ) ( ) }.10: ≤<∈= zhFz UhC  

Recently, Oros and Oros [6, 7], Lupaş [3, 4] and Wanas and Majeed [10, 11] have 

obtained fuzzy differential subordination results for certain classes of analytic functions. 

2. Main Results 

Theorem 2.1. Suppose that { }0\,1,0,,, CC ∈≥λ>δ∈γβα t  and q be univalent 

function in U such that ( ) ( ) 0,10 ≠= zqq  and  
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Assume that ( )( ) ( )zqzqz ′−γ 2
 is starlike in U. If Tf ∈  and ( )zt;,,,,, δλγβαΦ  is 

analytic in U, where  
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i.e.,  
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and q is the fuzzy best dominant. 

Proof. For given ,Tf ∈  define p by  
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It is clear that the function p is analytic in U and ( ) .10 =p  Simple calculations show that  
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where ( )zt;,,,,, δλγβαΦ  is given by (2.2). 
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In the light of (2.3) and (2.5), we conclude that  
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Define the functions θ  and φ  by  

( ) ( ) 1−γβ+α=θ www    and   ( ) .
2−γ=φ tww  

Evidently, the functions θ  and φ  are analytic in { }0\C=D  and ( ) .,0 Dww ∈≠φ  

Also, we find that 

( ) ( ) ( )( ) ( )( ) ( )zqzqtzzqzqzzQ ′=φ′= −γ 2
 

and  
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Since ( )( ) ( )zqzqz ′−γ 2  is starlike univalent in U, we observe that Q is starlike univalent 

in U.  
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Now from (2.1) and (2.6), it is evident that  
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On the application of Lemma 1.1, yields ( ) ( ) ( ) ( ).zqFzpF UqUp ≤  By using (2.4), we 

obtain  
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i.e. 
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By putting the fuzzy dominant ( ) 1,
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2.1, we obtain the following results: 
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 is the fuzzy best dominant. 

Theorem 2.2. Suppose that { }0\,1,0,,, CC ∈≥λ>δ∈γβα t  and q is univalent 

function in U such that ( ) ( ) 0,10 ≠= zqq  and let q satisfy (2.1). Assume that 

( )( ) ( )zqzqz ′−γ 2
 is starlike in U. If Tf ∈  and ( )zt;,,,,, δλγβαΨ  is analytic in U, 
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and q is the fuzzy best dominant. 

Proof. For given ,Tf ∈  define p by  
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It is obvious that the function p is analytic in U and ( ) .10 =p  After some computations, 

we deduce that  
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where ( )zt;,,,,, δλγβαΨ  is given by (2.7). 

By making use of (2.8) and (2.10), it follows that  
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The remaining part of Theorem 2.2 is similar to that of Theorem 2.1 and thus we omit it. 
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