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Abstract

In the present work, we establish some fuzzy differential subordination results for
A-pseudo starlike and A-pseudo convex functions with respect to symmetrical points in the

open unit disk.

1. Introduction and Preliminaries

Let T indicate the family of functions f and has the series form:
FR) =2+ a7, (1.1)
n=2

which are analytic and univalent in the open unitdisk U ={z O C : | z| < 1}.

For functions f; OT (j =1, 2) given by

FilD) =2+ a, ;2" (i=12),
n=2
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the Hadamard product of f; and f, is defined by

(A0fR)) =2+ Zan,lan,zzn = (f2 0A)(2).
n=2
A function f UOT is called starlike with respect to symmetrical points, if (see [8])

Jo AR
R {f(Z) Y= z)} 0 20U

The family of all such functions is denote by SSD.

The family of starlike functions with respect to symmetrical points obviously

includes the family of convex functions with respect to symmetrical points, C,,

satisfying the following condition:

Jo ey |,
R{(f(Z)—f(-Z))} 020

Recently, Babalola [1] defined the class L, of A-pseudo-starlike functions as

follows:
Let fOT and A 2 1. Then f U L) of A-pseudo-starlike functions in U if and only
if

JUM L
e

Definition 1.1 [9]. Let X be a non-empty set. An application F: X - [0, 1] is
called fuzzy subset. An alternate definition, more precise, would be the following:

A pair (A, Fy), where Fq:X - [0,1] and A={x0X:0< Fy(x)<1} =
supp(A, F) is called fuzzy subset. The function F, is called membership function of
the fuzzy subset (A, Fy).

Definition 1.2 [5]. Let two fuzzy subsets of X, (M, Fy;) and (N, Fy). We say that
the fuzzy subsets M and N are equal if and only if Fj;(x) = Fy(x), x 0 X and we
denote this by (M, Fy;) = (N, Fy). The fuzzy subset (M, Fj;) is contained in the
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fuzzy subset (N, Fy) if and only if Fy,(x) < Fy(x), xOX and we denote the
inclusion relation by (M, F);) O (N, Fy).

Let DO C and f, g analytic functions. We denote by
f(D) = supp(f (D), Fp(py) ={f(2): 0 < Fp(p)(f(2)) <1, z O D}
and
8(D) = supp(g(D), Fg(p)) ={g(2) : 0 < Fy(py(g(2)) <1, z O D}.

Definition 1.3 [5]. Let D 0 C, zy O D be a fixed point, and let the functions
f» g OH(D). The function f is said to be fuzzy subordinate to g and write f <p g or

f(z) <F g(z) if the following conditions are satisfied:
L. f(z0) = g(z0).
2. Fp(p)(f(2)) £ Fy(p)(8(2)), z O D.

Definition 1.4 [6]. Let  : C3>xU - C and let 4 be univalent in U. If p is analytic

in U and satisfies the (second-order) fuzzy differential subordination:

Fy 30y W(p(2). 20'(2), 22p"(2); 2)) < Fy(w)(h(2)), (12)

W(p(z), 2p'(z), 22p"(2): 2) <F h(z), zOU,

then p is called a fuzzy solution of the fuzzy differential subordination. The univalent
function is ¢ called a fuzzy dominant of the fuzzy solutions of the fuzzy differential

subordination, or more simple a fuzzy dominant, if p(z) <p ¢(z), zOU for all p
satisfying (1.2). A fuzzy dominant ¢ that satisfies g(z) <p ¢(z), z OU for all fuzzy
dominant g of (1.2) is said to be the fuzzy best dominant of (1.2).

Lemma 1.1 [2]. Let g be univalent in U and let © and ¢ be analytic in a domain D
containing q(U) with @w)#0 when wOq(U). Set O(z) = zq'(z)®q(z)) and
h(z) = 8(q(2)) + O(z). Suppose that

(1) O(z) is starlike in U,
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) Re{%(z))} >0 for zOU.
Z

If p is analytic in U, with p(0)=¢(0), pU)OD and Y: C’xU - C,
W(p(z), z0'(z)) = 8(p(2)) + zp'(z) B p(2)) is analytic in U, then

F 2 [8(P()) + 20'(2) B p(2))] < Fi)h(),

implies
Fow)p(2) £ Fyya(2),

i.e., p(z) <p q(z) and q is the fuzzy best dominant, where

l|J((C2 xU) = supp((C2 xU, F

p(c2x0)PP(): 2'(2))

={0C:0<F

()P (@) < 1,

and
h(U) = supp(U, Fh(U)h(Z)) ={0C:0< Fh(U)h(z) <1}.

Recently, Oros and Oros [6, 7], Lupas [3, 4] and Wanas and Majeed [10, 11] have
obtained fuzzy differential subordination results for certain classes of analytic functions.

2. Main Results

Theorem 2.1. Suppose that o, B, yOC, >0, A =1, t 0 C0} and q be univalent
function in U such that q(0) =1, q(z) # 0 and

Bl Yy 24 R) | 2]
Refi+Biy-n+ Do+ -2 20 e

Assume that 7(q(2))Y2q'(z) is starlike in U. If f OT and ®(at, B, Y, N, 8, £; 2) is

analytic in U, where

[ 2O VL (@Y
oo G| {2EGH)
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22(f"(2))*

|14 Af'(z)  2(f(2) - f(= z))'
[l f'(z) f(z) - f(-2) H’ (2.2)

then
Fy @0 B v\ 8.5 )] < 7 {(q(z)) [ v B 2) H
we a(z)  (q(2))?
= Fy)h(z) (2.3)
implies
o)
2:(/'(2) J
F <F
[ ) T[f(Z) () = Fawr
fw)-r(-v)
ie.,
)
2:(f'() J . -
) e cow
and q is the fuzzy best dominant.
Proof. For given f T, define p by
o)
(227 J -
) [f(Z) 1) .
It is clear that the function p is analytic in U and p(0) = 1. Simple calculations show that
Yo+ B +th’(Z J o, B, Vv, A, 1 (2.5)
(7() [ oo | = el B A8 ),
where ®(a, B, Yy, A, &, #; z) is given by (2.2).
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In the light of (2.3) and (2.5), we conclude that

LB @)
Fw((csz)|:(p(Z))y(a p(Z) t (p(z))2 J_

< s By, 2dR) () |
- FqJ((C2xu)[(Q(Z))y[a q(2) t(qczz))z ]_'

Define the functions 8 and ¢ by
o(w) = (aw +B)wY™! and @w) = mV 2.

Evidently, the functions © and ¢ are analytic in D = C\{0} and @w) # 0, wO D.
Also, we find that

0(z) = 2¢'(z)q(2)) = 12(q(2)) 7 ¢'(2)

and

2 = 8ol + 0(2) = (W] @ + P+, 2@ |
He) = 00t + 00) = ) B )

Since z(g(z))Y"?¢'(z) is starlike univalent in U, we observe that Q is starlike univalent

in U.

Re{ Zh'(z)} - Re{l By o) (-2l Z""(Z)}. 2.6)

0(z) t t q(z)  4'(z)
Now from (2.1) and (2.6), it is evident that
Re{zh,(z)} > 0.
0(z)
On the application of Lemma 1.1, yields FP(U)p(z) < Fq(U)q(z). By using (2.4), we
obtain
)
2:(/'(2) ]
F <F ),
[ () T[f(Z) rq) =
fw)-r(-v)
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2 Y
ie. (fLZ)] <r q(z) and g is the fuzzy best dominant.

(z) - f(-

1+z

By putting the fuzzy dominant ¢(z) = 1
-z

,Yy=t=1and a =3 =0 in Theorem

2.1, we obtain the following results:

+Z2

Corollary 2.1. Let Re{1

}>O.IffDT and
1-z

2

5[1 RYACIEGORNIG z))’}
'@ fl@-rf(=2)

is analytic in U, then

LAf(2) _Af(2) - f(= 2) . 27
O IS R Y

implies
PRV
2 1+
AGAC) N IR . ST
f(2) = f(=2) -z
1+z . .
and ¢(z) = is the fuzzy best dominant.

-z
Theorem 2.2. Suppose that o, B, yOC, d>0, A =1, t 0 CY0} and q is univalent
function in U such that q(0) =1, q(z) # 0 and let q satisfy (2.1). Assume that
2q(2))Y72¢'(2) is starlike in U. If f OT and W(a, B, Y, N, &, #; z) is analytic in U,

where

2 ]yé [(f(Z)—f(—Z))’T
Y, B, v, A St = - + .
(@ Bwen 8t [(f(Z)—f(—Z)) T @)

. [5[ (1) - 7= 2) ]"’
25 ()
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x[)\z(zf”'(z)+2f'(2)) o(f(z) - f(= Z)) H 2.7)
SO E (f@)-r) )

then
Flanl W@ B VA8 6 2] < F o {(q(z))V[a , B, @) ﬂ
W(CxU) W(CxU) q(z) (q(z))z
= Fiu)h() 2.8)
implies
(')} T )
[ (o))’ J {(f(z)—f(— ) q(2)
(f(U)-f(-0))

' A o
[(fz((z()zji(;?—)z))'] <r 4q(z), (:0U)

and q is the fuzzy best dominant.

Proof. For given f T, define p by

! { (') ,T' 2.9)
(F(9) - £(=2)

It is obvious that the function p is analytic in U and p(0) = 1. After some computations,

we deduce that

(p(Z))y[G + pf’z) i (Z’z,()Z)ZJ =W, B v, A, 8 15 2), (2.10)

where W(a, B, v, A, , t; z) is given by (2.7).

By making use of (2.8) and (2.10), it follows that

LB (@)
Fw(csz)[(p(Z))y(a ])(Z) t (p(Z))2 ]:|
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< v B, W)
_F"’(szU){(q(Z))y[a 9(z) t(f](Z))ZH'

The remaining part of Theorem 2.2 is similar to that of Theorem 2.1 and thus we omit it.
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