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Abstract

The purpose of this paper is to establish some subordination and superordination results
involving Hadamard product for certain normalized analytic functions associated with
Wanas differential operator defined in the open unit disk and obtain sandwich results. Our

results extend corresponding previously known results.

1. Introduction and Preliminaries

Denote by H the class of analytic functions in the open unit disk
U ={z0OC:|z| <1}. For a positive integer n and a O C, assume that H[a, n] is the

subclass of H consisting of functions that have the form:

f2)=a+ay " +apz™ + (1.1)

Also, let A be the subclass of H consisting of functions of the form:
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(2) =2+ a,2". (1.2)
n=2

For the functions f 0 .A given by (1.2) and g 0 A defined by

g(z)=z+ anz",
n=2

we define the Hadamard product (or convolution) of f and g by
(f De)( Z = (¢ 01)(2).

With a view to recalling the principal of subordination between analytic functions,
let f, g OH. The function f is said to be subordinate to g, or g is said to be

superordinate to f, if there exists a Schwarz function w analytic in U with w(0) = 0 and
|w(z)| <1(zOU) such that f(z) = g(w(z)). In such a case we write f < g or

f(z) < g(z) (zOU). Furthermore, if g is univalent in U, then we have the following
equivalent (see [9]), f < g = f(0)=g(0) and f(U) O g(U).

Let p, hOH and Y(r, s, 1; 2): C3 xU - C. If pand Y(p(z), 2'(2), z2p"(2); 2)
are univalent functions in U and if p satisfies the second-order differential
superordination:

h(z) < Y(p(z). 2'(2). 22p"(2): 2), (1.3)

then p is called a solution of the differential superordination (1.3). (If fis subordinate to
g, then g is superordinate to f). An analytic function ¢ is called a subordinant of (1.3), if

g < p for all the functions p satisfying (1.3). A univalent subordinant ¢ that satisfies
q = ¢q for all the subordinants g of (1.3) is called the best subordinant.

For a OR,B=0 with a +B>0, m,nONy =NU{0} and f 0.4, the Wanas

differential operator W, B : A - A (see [16]) is defined by

n=2Lm=1 a +B

Wk,”f( = SRS _qym+1[ 97+ np” ! n
B Z)-Z’fzzm(l) ——— 1| a,2". (1.4)

http://www.earthlinepublishers.com



Some Subordination and Superordination Results ... 117

It is easily verified from (1.2) that

0= e (5 e

m=1

[Zk:l( j m+1(gjm]W§:gf(z), (1.5)

Special cases of this operator can be found in [1, 2, 4, 6, 7, 8, 11, 13, 14, 15]. For
more details see [19].

Z(W f [

Very recently, Rahrovi [10], Attiya and Yassen [3], Seoudy [12] and Wanas and
Lupas [18] have studied differential subordinations and superordinations for different

conditions of analytic functions.

The main object of the present paper is to find sufficient condition for certain
normalized analytic functions fin U such that (f OW)(z) # 0 and f to satisfy

q1(2) < — =< q2(2).
W B (r W) (2)
B
where ¢; and ¢, are given univalent functions in U and ®(z)=z+ Zt ",
W(z) = z+ ) 3,2" are analytic functions in U with 7, 2 0, 3, 20 and 1, = §,. Also,
n=2

we obtain the number of results as their special cases.
To establish our main results, we need the following definition and lemmas:

Definition 1.1 [9]. Denote by Q the set of all functions f that are analytic and
injective on U\E(f), where

E(f)={C00U : }arréf(z) = o}

and are such that £'(¢) # 0 for T O AU\E(f).
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Lemma 1.1 [9]. Let g be univalent in the unit disk U and let 8 and ¢ be analytic in
a domain D containing q(U) with @w) # 0 when w0 g(U). Set 0(z) = zq'(z) ®(q(z))
and h(z) = 8(q(z)) + O(z). Suppose that

(1) Q(z) is starlike univalent in U,

7h'(z)

0(z)

) Re{ }>0f0rzDU.

If
6(p(2)) + 2p'(z) @ p(2)) < 6(q(2)) + z4'(z) Plg(2)), (1.6)
then p < q and q is the best dominant of (1.6).

Lemma 1.2 [5]. Let g be convex univalent in the unit disk U and let 6 and ¢ be

analytic in a domain D containing q(U). Suppose that

SO S o for
<1>R{¢(q(z»} 0 Jor 20U,

(2) 0(z) = 2q'(z2)¥q(z)) is starlike univalent in U.
If p OH[q(0), 11N Q, with p(U) O D, 8(p(z)) + zp'(2) ¥ p(z)) is univalent in U and

8(q(z)) + z¢'(z) ®q(2)) < 8(p(z)) + ' (2) A p(2)), (1.7)

then q < p and q is the best subordinant of (1.7).
2. Main Results

Theorem 2.1. Let ®, W O A and q be univalent in U with q(z) # 0, g(0) =1 and

assume that

JMaly-0) Ay oy (Y N24(2) | 2d"(2)]
Re{l Ao M50 ) (0 2j q(z) Q’(Z)} > @D
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Y_
where A, Ao, YOC, A3, 0 DCY0}. Suppose that z(q(z))o 2q'(z) is starlike

Wag ™ (f O9)(2)
univalent in U. If fOA, £ 0, zOU, satisfies the differential

a,[?(f 0v)(2)

subordination

Yi(f, ®, W, Al Aay A3, Y, O, 0L B, K, N Z)<(q(z))y(7\1 s D2 +; Zq'(Z)ZJ ,(2.2)
q(2) (4())

where

Yl(f7 qu LP, )\19 )\29 }\37 V, 07 a’ By k’ ny Z)

wla (s oe) (o))"
o’;g(f 0w)(z)

[Wap U 00)E) _ ward" i D9) () o
Wod ™ (F 00)(2)  Waog (F DW)(2)
then
W g (f 00)(2)
Weg (f OW)(2)
and q is the best dominant.
Proof. Define the function p by
Woag ™ (f D0)(2)
p(z) = , z0OU. (2.4)

;ig(f 0w)(:)
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Differentiating (2.4) with respect to z and using (1.5), we obtain

Vi . 2y () °
(r(2)) (7\1 Q) A3 (p(z))zj

_ Wj};é‘“(f 00)(2) ) . Wed (f 0W)(2)
Wy g (f OW)(2)

In view of (2.2) and (2.5), we have

v 2@ LAy @)
(p(Z))y[M pé) A3 (p(z))zj <(61(Z))V{7\1 q(i) A3 zJ-

This equivalently to

(p(z)%[xl S BRE (pp(()))zJ - (q(z))%[M w2, ZQ'(Z)ZJ.

By setting

Y Y

B(w) = (\w+A,)w9  and @(w) = AswC

it can be easily observed that 8(w) and @(w) are analytic in C\{0} and that
@(w) # 0, wOCY0}. Also, we get

0(2) = 2¢'(2)9a(2)) = Az(a())o 24'(2)

and

y A '
= dalal et = (Q(Z»‘{M o (Zéz()z))z}
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It is clear that Q(z) is starlike univalent in U,
Re{—zh (Z)} = Re{l GMaly=0) MYy (1 - 2) 4(2) , 24 (Z)}, 2.6)
0(2) A0 A0 o Jalz) ()

From (2.1) and (2.6), we have
Re{L(Z)} > 0.
0(2)

Therefore by an application of Lemma 1.1, we get p(z) < g(z). By using (2.4), we

obtain the desired result.

Remark 2.1. By taking £ =1 in Theorem 2.1, we obtain the results for the operator

1 Q B which was obtained recently by Wanas and Joudah [17, Theorem 3.1].

By fixing ®(z) = W(z) =

N in Theorem 2.1, we obtain the following corollary:
-2

Corollary 2.1. Let g be univalent in U with g(z) # 0, g(0) =1 and assume that (2.1)

Y
holds true. Suppose that z(q(z))o 2q'(z) is starlike univalent in U. If £ O A,
Wy ””f( )
a7I3 f(Z)

#z 0, z O U, satisfies the differential subordination

A zq'(z)
Yo(f, M. Aas A3, ¥, 0, 0, Bk, s YIA 2+ :
2(fs M A2 Az v, 0,0, B HZ)<(Q(Z))(1+q(Z)+ 3(q(z))2]

where

Yz(fa )\19 )\27 )\37 Ya 07 aa By ka ny Z)

wkn+l Y wkn k m
(BB, 0 M S (o]
Wyg f(2) Worg f(2) oo\ B

W @) (Wad ) wad ™)
W™ () W, k””f(f) Wog £ (2)
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then

k r]+1f( )
W) q(z)

and q is the best dominant.

Theorem 2.2. Let ®, WO A and q be convex univalent in U with q(z) # 0

q(0) =1 and assume that

Aa(y-0) Ay
R + >0, 2.8
e{ )\30 )\30' q(Z) ( )

where Ny, Ny, YOG, A3, c DCY0}. Suppose that z(q(z )) ( ) is starlike
Wag (f 09)(c)

WET( 02

univalent in U. Let fOA, OH[q(0),1]NQ  with

Wy r]H(f O®)(z)
WEB( Tw)()
univalent in U, where Y1(f, ®, W, A, Ay, A3, Y, O, Q, B, k, n; z) is given by (2.3). If
o
A 24'(2)
(CI(Z))V(M + =2+ s
q(2) (4())?
< Yl(f, CD, qJ, )\1, )\2, )\3, Y, O, A, B, k, n; Z), (29)

£0, zOU and Y{(f, ®, W, A\, A2, A3, Y,0,0,B, k,n; z) be

then
Wy r]”(f 00)(z)

TS

and q is the best subordinant.

Proof. Let the function p be defined by (2.4). After simple computation and making

use of (1.5), the superordination (2.9) becomes

Vi o+ A2y 24(2) ° vy 4 A2 o, (@)
(ate) [Al ER (q(z»zJ <) [Al 70 L) ]
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This equivalently to

Yy L 7q'(z) y VI zp'(z)
(Q(Z))o[)\l o) A3 (q(z))2}<(p(1))o(?\1 ) A3 (p(z))z}

By setting

Y Y

B(w) =(A\w+Ay)w9  and @w) =Azw%

it is easily observed that O(w) and @w) are analytic in C\0} and that
@(w) # 0, w0 CY0}. Also, we get

0(2) = 10/ (2)oa(2)) = Msela())e 24 (2).

It is clear that Q(z) is starlike univalent in U,

SO - g ra(y=0) | Ay
RelG) ) = ) 210
From (2.8) and (2.10), we have

J O]

: {qq(z))} ’

Therefore by an application of Lemma 1.2, we get ¢g(z) < p(z). By using (2.4), we

obtain the desired result.

Remark 2.2. By taking £ =1 in Theorem 2.2, we obtain the results for the operator

1 Q B which was obtained recently by Wanas and Joudah [17, Theorem 4.1].

By fixing ®(z) = W(z) = in Theorem 4.1, we obtain the following corollary:

1-z2

Corollary 2.2. Let g be convex univalent in U with ¢(z) # 0, g(0) =1 and assume

Y
that (2.8) holds true. Suppose that z(q(z))__zq'(z) is starlike univalent in U. Let

WD (2) CWET ()
—DH[q(O), 11N Q with k—i 0, 20U, and Y,(f, Ay,
G’Bf(z)

6/ (2)
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Ay, A3, ¥, 0,0, Bk, N z) be univalent in U, where Yz(f, A, Ag, A3,y 0,0, B,
k, n; z) is given by (2.7). If

(q(z))V[Al + ;é) 23 (q‘é()))zj <Ya(f A g AL Yo 0L L Bk : ),

then

and q is the best subordinant.

Concluding the results of differential subordination and superordination, we arrive at
the following “sandwich results”.

Theorem 2.3. Let ®, WO A. Let gy and q, be convex univalent in U with
q1(0) = g5(0) = 1. Suppose q, satisfies (2.1) and q, satisfies (2.8). Let f O A,

Weed ™ (F 00)(2) L Wed T (f 00) ()

Py OH[L1]NQ with o
W d(f OW)(z) Wy g (f O¥)(2)
W, A, Ao, A3, Y, O, O, B, k, N; 2) be univalent in U, where Y{(f, ®, W, A{, Ay, A3,

Y, 0, Q, B, k, n; z) is given by (2.3). If

20, zOU and Yl(f, (OR

[0)

A I

(QI(Z))V[Al + g (ZZ) + )\3 (Zq(l()z))z] = Yl(f’ D, ¥, )\l’ )\2’ )\3’ Y, 0, Q, B? k, n; Z)
1 q1\2

<(612(Z))y()\1 + 2 +A3 zq’z(z)] ,

q2(z) (92(2))?

then

WES(f 00) (2)

s

=<
Wed (f W) (2)

q1(z) <

and q, and q, are, respectively, the best subordinant and the best dominant.
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Remark 2.3. By taking & =1 in Theorem 2.3, we obtain the results for the operator

1 Q B which was obtained recently by Wanas and Joudah [17, Theorem 5.1].

By making use of Corollaries 2.1 and 2.2, we obtain the following corollary:

Corollary 2.3. Let q; and q, be convex univalent in U with ¢,(0) = q,(0) = 1.

k,n+1
Wg B (Z)
Suppose q, satisfies (2.1) and q, satisfies (2.8). Let f U A, ———

OH[L1]NQ
Wy g f(2)

£0, zOU and Y5(f, M\, A2, A3, Y, O, O, B, k, n; z) be univalent

in U, where Y,

—~

fsAL A A5, Y, O, 4, B, k, 0 2) is given by (2.7). If

(0}
(Q1(Z))y[)\1 + 22 * A3 Z%(Z)z] < Ya(f. A Az, Az, v, 0. Bk, 2)
q1(2) (41(2))

< (qz(z))V[Al + qjgz) s (Z%S))zj ,

then
k
Wa,’gﬂf(z)

<=
() W)

< q2(2)

and q; and q, are, respectively, the best subordinant and the best dominant.
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