Cubic B-spline Least-square Method Combine with a Quadratic Weight Function for Solving Integro-Differential Equations

Hameeda O. Al-Humedi¹ and Zahraa Adnan Jameel²

¹Department of Mathematics, College of Education for Pure Sciences, Basrah University, Basrah, Iraq
e-mail: ahameeda722@yahoo.com

²Department of Mathematics, College of Education for Pure Sciences, Basrah University, Basrah, Iraq
e-mail: zahraad788@yahoo.com

Abstract
In this article, a numerical scheme was implemented for solving the integro-differential equations (IDEs) with the weakly singular kernel by using a new scheme depend on the cubic B-spline least-square method and a quadratic B-spline as a weight function. The numerical results are in suitable agreement with the exact solutions via calculating L_2 and L_∞ norms errors. Theoretically, we discussed the stability evaluation of the current method using the Von-Neumann method, which explained that this technique is unconditionally stable.

1. Introduction
The integro-differential equations appear in a wide range of disciplines including physics, chemistry and engineering.

Consider the following IDE with a weakly singular kernel:
\[u_t(x, t) + m u_x(x, t) - b u_{xx}(x, t) = \int_0^t K(t - s) u(x, s)ds + f(x, t), \quad x \in [a, b], \quad t > 0 \]

where $K(t - s) = (t - s)^{-\alpha}$, $0 < \alpha < 1$
subject to the initial condition:

\[u(x, 0) = g_0(x), \quad a \leq x \leq b \]

(2)

and the boundary conditions:

\[u(a, t) = f_0(t), \quad u(b, t) = f_1(t), \quad t \geq 0 \]

(3)

where \(g_0(x), f_0(t), f_1(t) \) are known functions and \(f(x, t) \) is a smooth function.

The equations (1)-(3) are of fundamental importance in many physical systems, especially those involving fluid flow [4, 16].

In this research, we will present a new scheme depend on cubic B-spline and quadratic B-spline as a weight function to solve IDE (1); also, we will discuss the stability analysis for the present scheme.

2. Cubic B-spline Least Square with a Quadratic Weight Function

The least-square formulation in time and space is explained as

\[
\delta \int_a^b \int_0^t \left[u_t(x, t) + mu_x(x, t) - b u_{xx}(x, t) - \int_0^t (t - s)^{-\alpha} u(x, s) ds - f(x, t) \right]^2 dx dt = 0 \quad (4)
\]
Cubic B-spline Least-square Method Combine with a Quadratic Weight Function

The set of splines \(\{C_{-1}(x), C_0(x), \ldots, C_N(x), C_{N+1}(x)\} \) forms a basis for functions defined over \([a, b]\). Consider the approximate solution \(U_N(x, t) \) to the exact solution \(U(x, t) \) given by

\[
U_N(x, t) = \sum_{i=-1}^{N+1} C_i(x)\sigma_i(t),
\]

where \(\sigma_i \) are unknown time-dependent parameters to be determined from the boundary and weighted residual conditions. We will use the following local coordinate transformation

\[
h\eta = x - x_m, \quad 0 \leq \eta \leq 1,
\]

a cubic B-spline shape functions in terms of \(\eta \) over the element \([x_m, x_{m+1}]\) that can be defined as

\[
\begin{align*}
C_{-1} &= (1 - \eta)^3, \\
C_0 &= 1 + 3(1 - \eta) + 3(1 - \eta)^2 - 3(1 - \eta)^3, \\
C_{m+1} &= 1 + 3\eta + 3\eta^2 - 3\eta^3, \\
C_{m+2} &= \eta^3,
\end{align*}
\]

all splines apart from \(C_{-1}, C_0, C_{m+1} \) and \(C_{m+2} \) are zero over the element \([x_m, x_{m+1}]\) on each time interval \([t_n, t_{n+1}]\), \(\Delta t = t_{n+1} - t_n \) is a local coordinate \(\zeta \), where

\[
t = t^n + \zeta\Delta t, \quad 0 \leq \zeta \leq 1.
\]

By using the transformations (7) and (9) in equation (4) we obtain

\[
\delta \int_0^1 \int_0^1 \left[u_\zeta(x, t) + \frac{m}{h} u_\eta(x, t) - \frac{b}{h^2} u_{\eta\eta}(x, t) - \int_0^1 (\zeta - s)^{-\alpha} u(\eta, s) ds - f(\eta, \zeta) \right]^2 d\eta d\zeta = 0.
\]

The integral equation takes its minimum value with the variation in \(u \) over each element \([x_m, x_{m+1}]\), then
\[
\int_0^1 \int_0^1 \left\{ \left[u_\zeta + \frac{m}{n} u_\eta - \frac{b}{n^2} u_\eta - \int_0^\zeta (\zeta - s)^{-\infty} u(\eta, s) ds - f(\eta, \zeta) \right] \delta \left[u_\zeta + \frac{m}{n} u_\eta - \frac{b}{n^2} u_\eta - \int_0^\zeta (\zeta - s)^{-\infty} u(\eta, s) ds - f(\eta, \zeta) \right] \right\} d\eta d\zeta = 0. \tag{11}
\]

The least square method turns into a Petrov-Galerkin method with then weight function,
\[
\delta \left[u_\zeta + \frac{m}{n} u_\eta - \frac{b}{n^2} u_\eta - \int_0^\zeta (\zeta - s)^{-\infty} u(\eta, s) ds - f(\eta, \zeta) \right],
\]
the variation of \(u \) over the element \([x_m, x_{m+1}]\) defined by
\[
U_N(\eta, \zeta) = \sum_{i=m-1}^{m+2} C_i(\eta)(\sigma_i^t + \xi \Delta \sigma_i^n), \tag{12}
\]
where \(\sigma_{m-1}(t), \sigma_m(t), \sigma_{m+1}(t) \) and \(\sigma_{m+2}(t) \) act as element parameters and B-splines \(C_{m-1}(\eta), C_m(\eta), C_{m+1}(\eta) \) and \(C_{m+2}(\eta) \) as element shape functions. The spline \(C_m(x) \) vanishes outside the interval \([x_{m-2}, x_{m+2}]\). So, the value of \(U \) with its first and second derivatives \(U', U'' \) respectively at the knots, \(x_m \) which is determined in terms of element parameters \(\sigma_m \) by
\[
\begin{align*}
U_m &= U(x_m) = \sigma_{m-1} + 4 \sigma_m + \sigma_{m+1} \\
U'_m &= U'(x_m) = \frac{3}{h}(\sigma_{m-1} - \sigma_{m+1}) \\
U''_m &= U''(x_m) = \frac{6}{h}(\sigma_{m-1} - 2 \sigma_m + \sigma_{m+1}) \end{align*}
\]
(13)
take the weight function, \(W \) quadratic B-spline that is defined as
\[
B_m(x) = \frac{1}{h^2} \begin{cases}
(x_m + x - x_m)^2 + 3(x_m + x - x_m)^2, & \text{if } x \in [x_{m-1}, x_m], \\
(x_m + x - x_m)^2 - 3(x_m + x - x_m)^2, & \text{if } x \in [x_m, x_{m+1}], \\
0, & \text{if } x \in [x_{m+1}, x_{m+2}], \text{ otherwise.}
\end{cases}
\]
(14)

Write the weight function as
\[
\delta W = \sum_{i=m-1}^{m+1} W \Delta y_i \delta \left(u_\zeta + \lambda u_\eta - \beta u_\eta - \int_0^\zeta (\zeta - s)^{-\infty} u(\eta, s) ds - f(\eta, \zeta) \right).
\]

Using the expansion (12) so that
\[
\delta U_N(\eta, \zeta) = \sum_{i=m-1}^{m+1} \zeta B_i(\eta) \Delta y_i^n,
\]
(15)
we get
\[
W = \delta \left(u_\zeta + \lambda u_\eta - \beta u_\eta - \int_0^\zeta (\zeta - s)^{-\infty} u(\eta, s) ds - f(\eta, \zeta) \right) = B_i(\eta) +
\]
\begin{align*}
\lambda \zeta B_i(\eta) - \beta \zeta B_{i+1}(\eta) - \int_0^\xi s(\zeta - s)^{-\infty} B_i(\eta) \, ds - f(\eta, \zeta).
\end{align*}

Substitution (16) in equation (11) we get
\begin{align*}
&\int_0^1 \left[u_\xi + \frac{\lambda}{2} u_{\eta\eta} - \int_0^\xi (\zeta - s)^{-\infty} u(\eta, s) \, ds - f(\eta, \zeta) \right] \left[B_i(\eta) + \\
&\lambda \zeta B_i(\eta) - \beta \zeta B_{i+1}(\eta) - \int_0^\xi s(\zeta - s)^{-\infty} B_i(\eta) \, ds - f(\eta, \zeta) \right] \, d\eta \, d\zeta = 0.
\end{align*}

Substituting (11) in equation (17), integration with respect to \(\zeta \) and integration by parts as required leads to the following matrix system of equations for each individual element
\begin{align*}
\sum_{j=m-1}^{m+2} \left\{ \int_0^\xi \left[(B_i C_j + (\beta + \frac{\lambda^2}{3}) B_i' C_j' + \frac{1}{2} B_i' C_j' - \frac{\lambda}{3} B_i' B_j' C_j' - \frac{\lambda}{3} B_i' C_j' + \\
\frac{\lambda}{3} B_i' C_j') \right] + (-2 B_i C_j - \beta B_i C_j - \frac{1}{2} B_i C_j - \frac{1}{2} B_i C_j) \int_0^\xi s(\zeta - s)^{-\infty} \, ds + \\
(B_i C_j) \int_0^\xi s(\zeta - s)^{-\infty} \, ds + \int_0^\xi ((-C_j - \lambda \zeta C_j + \beta \zeta C_j') + C_j \int_0^\xi s(\zeta - s)^{-\infty} \, ds) f(\eta, \zeta) \, d\zeta \right\} \Delta \sigma_j
\end{align*}

The equation (18) can be written in a matrix form as follows:
\begin{align*}
\begin{bmatrix}
(A_k^{e_x} + (\beta + \frac{\lambda^2}{3}) B_k^{e_x} + \frac{\beta}{2} C_k^{e_x} + \frac{1}{2} D_k^{e_x} + \frac{1}{2} (D_k^{e_x})^T - \frac{\lambda}{3} (E_k^{e_x})^T - \frac{\lambda}{3} (F_k^{e_x})^T - \\
\frac{\beta}{2} E_k^{e_x}) + (-2 A_k^{e_x} - \beta B_k^{e_x} - \frac{1}{2} D_k^{e_x} - \frac{1}{2} (D_k^{e_x})^T + \frac{\lambda}{3} (E_k^{e_x})^T + \frac{\beta}{2} (F_k^{e_x})^T) \int_0^\xi s(\zeta - s)^{-\infty} \, ds + \\
\int_0^1 \int_0^\xi s(\zeta - s)^{-\infty} \, dsds \end{bmatrix} \begin{bmatrix}
\Delta \sigma \end{bmatrix} + \\
\begin{bmatrix}
\int_0^1 \int_0^\xi (-C_j - \lambda \zeta C_j + \beta \zeta C_j') f(\eta, \zeta) \, d\eta \, d\zeta + \int_0^1 \int_0^\xi ((-C_j - \lambda \zeta C_j + \beta \zeta C_j') + C_j \int_0^\xi s(\zeta - s)^{-\infty} \, ds) f(\eta, \zeta) \, d\eta \, d\zeta \end{bmatrix} \begin{bmatrix}
\Delta \sigma \end{bmatrix}
\end{align*}
\[+\left[\left(\frac{1}{2} D_k^e + \frac{\lambda^2}{2} B_k^e - \frac{\lambda \beta}{2} (E_k^e)^T - \beta F_k^e + \beta B_k^e - \frac{\lambda \beta}{2} E_k^e + \frac{\beta^2}{2} C_k^e\right) + (- \lambda D_k^e +\beta F_k^e - \beta B_k^e) \int_0^1 s(\zeta - s)^{-\infty} ds + \left(- A_k^e - \frac{1}{2} (D_k^e)^T + \frac{\beta}{2} F_k^e + \frac{\beta}{2} B_k^e\right) \int_0^1 (\zeta - s)^{-\infty} ds + \right.
\]
\[\left.\left(A_k^e \int_0^1 \int_0^1 s(\zeta - s)^{-\infty} ds ds\right) + \int_0^1 \int_0^1 (-\lambda C_j + \beta C_j^e + \int_0^1 s(\zeta - s)^{-\infty} C_j ds) f(\eta, \zeta) d\eta \frac{d\zeta}{d\zeta} \sigma^e + \int_0^1 \int_0^1 \left(-B_i - \lambda \zeta B_i^e + \beta \zeta B_i^e + \int_0^1 s(\zeta - s)^{-\infty} B_i ds\right) f(\eta, \zeta) d\eta \frac{d\zeta}{d\zeta} + \int_0^1 \int_0^1 f(\eta, \zeta) f(\eta, \zeta) d\eta d\zeta = 0, \right)_{(19)}\]

where \(\sigma^e = (\sigma_{m-1}, \sigma_m, \sigma_{m+1}, \sigma_{m+2})\) element parameters and matrices are given by the following

\[
A_k^e = \int_0^1 B_i C_j d\eta = \frac{1}{60} \begin{bmatrix} 10 & 71 & 38 & 1 \\ 19 & 221 & 221 & 19 \end{bmatrix},
\]

\[
B_k^e = \int_0^1 B_i C_j d\eta = \frac{1}{2} \begin{bmatrix} 3 & 5 & -7 & -1 \\ -2 & 2 & 2 & -2 \end{bmatrix},
\]

\[
C_k^e = \int_0^1 B_i C_j d\eta = \begin{bmatrix} 6 & -6 & -6 & 6 \\ -12 & 12 & 12 & -12 \end{bmatrix},
\]

\[
D_k^e = \int_0^1 B_i C_j d\eta = \frac{1}{10} \begin{bmatrix} -6 & -7 & 12 & 1 \\ -13 & -41 & 41 & 13 \end{bmatrix},
\]

\[
E_k^e = \int_0^1 B_i C_j d\eta = \begin{bmatrix} -4 & 6 & 0 & -2 \\ 2 & -6 & 6 & -2 \end{bmatrix},
\]

\[
F_k^e = B_i C_j \mid_{\eta = 0} = 3 \begin{bmatrix} 1 & 0 & -1 & 0 \\ 1 & -1 & -1 & 1 \end{bmatrix},
\]

where \(i\) and \(j\) take the value \(m - 1, m, m + 1, m + 2\) from element \([x_m, x_{m+1}]\).

Assembling all contribution from all element yields the global system of equations

\[
\left[\left(\frac{1}{2} D_k^T - \frac{\beta}{2} F_k^T + \beta B_k^T + \frac{\lambda^2}{3} B_k - \frac{\lambda \beta}{3} E_k^T - \frac{\beta}{2} F_k - \frac{\beta}{3} C_k\right) + \right.
\]
\[\left.\left(-2 A_k - \frac{1}{2} D_k + \frac{\beta}{2} F_k - \beta B_k - \frac{1}{2} D_k^T + \frac{\beta}{2} F_k^T\right) \int_0^1 s(\zeta - s)^{-\infty} ds + \right)
\[
\left(A_k \int_0^1 \int_0^1 s(\zeta - s)^{-\infty} ds ds\right) + \int_0^1 \int_0^1 (-C_j - \lambda \zeta C_j^e + \beta \zeta C_j^e + \beta C_j^e) f(\eta, \zeta) d\eta d\zeta + \int_0^1 \int_0^1 (-C_j - \lambda \zeta C_j^e + \beta \zeta C_j^e + \int_0^1 s(\zeta - s)^{-\infty} C_j ds) f(\eta, \zeta) d\eta d\zeta \right] \Delta \sigma
\]

http://www.earthlinepublishers.com
The equation (21) can be written as follows:

\[
\sum \left(\frac{\lambda^2}{2} B_k + \frac{\lambda^2}{2} D_k + \frac{\lambda^2}{2} D_k^T - \frac{\lambda^2}{2} E_k^T - \beta F_k + \beta B_k - \frac{\lambda^2}{2} E_k + \frac{\beta^2}{2} C_k \right) + (-\lambda D_k + \beta F_k - \beta B_k) \int_0^\xi s(\zeta - s)^{-\infty} ds + \left(-A_k - \frac{\lambda}{2} D_k + \frac{\beta}{2} F_k \right) \int_0^\xi (\zeta - s)^{-\infty} ds + \left(A_k \int_0^\xi s(\zeta - s)^{-\infty} ds \right) f(\eta, \zeta) d\eta d\zeta + \int_0^\xi f(\eta, \zeta) f(\eta, \zeta) d\eta d\zeta = 0,
\]

where \(\sigma = (\sigma_0, \sigma_1, ..., \sigma_N)^T \) is a global element.

Recognize \(\sigma = \sigma^N \), \(\Delta \sigma = \sigma^{N+1} - \sigma^N \) in the system of equation (20), we obtain \((N + 3) \times (N + 3)\).

Septa-diagonal matrix the equation (20) is written as follows:

\[
\begin{bmatrix}
(A_k + (\beta + \frac{\lambda^2}{3}) B_k + \frac{\lambda^2}{2} D_k + \frac{\lambda^2}{2} D_k^T - \frac{\lambda^2}{2} E_k^T - \frac{\beta^2}{2} E_k^T - \frac{\lambda^2}{2} E_k + \frac{\beta^2}{2} C_k) + \left(-2A_k - \beta B_k - \frac{\lambda^2}{2} D_k - \frac{\lambda^2}{2} D_k^T + \frac{\beta^2}{2} F_k + \frac{\beta^2}{2} F_k^T \right) \int_0^\xi s(\zeta - s)^{-\infty} ds + \left(A_k \int_0^\xi s(\zeta - s)^{-\infty} ds \right) f(\eta, \zeta) d\eta d\zeta \\
\end{bmatrix}^{n+1}
\]

The integral equation has a value

\[
\int_0^\xi (\zeta - s)^{-\infty} ds = \sum 11^{-\infty} \int_0^\xi s(\zeta - s)^{-\infty} ds = \frac{\xi^{2-\lambda}}{\lambda^{\alpha^2+3\alpha+2}}
\]

\[
\int_0^\xi s^2(\zeta - s)^{-2\infty} ds = \frac{\lambda^{4-2\lambda}}{\lambda^4+3\lambda^2-11\alpha+3} \int_0^\xi s(\zeta - s)^{-2\infty} ds = \frac{\lambda^{3-2\lambda}}{\lambda^4+3\lambda^2-11\alpha+3}
\]

The equation (21) can be written as follows:
From the equation (22), we get system of \((N+1)\) linear equation with \((N+3)\) unknowns. We apply the initial condition \(u(x,0) = g_0(x)\) to the equation (14) makes the matrix equation square, computing the initial vector \(\sigma_0 = [\sigma_0^0, \sigma_1^0, \sigma_2^0, \ldots, \sigma_N^0]^T\) from the initial condition \(u(x,0) = g_0(x)\) given, \((N+1)\) equation in \((N+3)\) unknowns, to determine these unknown function, the following relations at the knots are used

\[
U_x(0,0) = u_x(x_0,0) \quad U(x_i,0) = g_0(x_i), \quad i = 1(1)(N-1) \quad U_x(L,0) = u_x(x_N,0).
\]

We have the tridiagonal system of equation that can be solved by: \(R\sigma^0 = E\), where

\[
R = \begin{bmatrix}
4 & 2 & 0 \\
1 & 4 & 1 \\
1 & 4 & 1 \\
& & \ddots & \ddots & \ddots \\
& & & 1 & 4 & 1 \\
& & & 0 & 2 & 4
\end{bmatrix},
\]

which can be solved by using Thomas algorithm [12].
3. The Stability

To learn the stability of the proposed method, we will rewrite the equation (21) in terms of the nodal parameters σ^n_m and $f(\eta, t) = 0$ [17] so get

$$\ell_1 \sigma^n_{m-2} + \ell_2 \sigma^n_{m-1} + \ell_3 \sigma^n_m + \ell_4 \sigma^n_{m+1} + \ell_5 \sigma^n_{m+2} + \ell_6 \sigma^n_{m+3} = \ell_7 \sigma^n_{m-1} + \ell_8 \sigma^n_{m+1} + \ell_9 \sigma^n_{m+3},$$

(23)

where

$$\ell_1 = \left(\frac{79}{4200}\right) - \left(\frac{\lambda_i^2}{6} + \frac{\beta}{20}\right) + 2\beta^2,$$

$$\ell_2 = \left(\frac{1501}{1400}\right) - \left(\frac{3\lambda_i^2}{2} + \frac{9\beta}{20}\right) - 6\beta^2,$$

$$\ell_3 = \left(\frac{11929}{2100}\right) + \left(\frac{5\lambda_i^2}{3} + \frac{\beta}{2}\right) + 4\beta^2,$$

$$\ell_4 = \left(\frac{53}{8400}\right) - \left(-\frac{\lambda_i^2}{12} + \frac{3\beta}{8}\right) - \beta^2 - \left(\frac{17\lambda_i}{200}\right),$$

$$\ell_5 = \left(\frac{100\lambda_i}{2800}\right) - \left(-\frac{3\lambda_i^2}{4} + 2\beta^2\right) + 3\beta^2 - \left(\frac{17\lambda_i}{8}\right),$$

$$\ell_6 = \left(\frac{800\lambda_i}{4200}\right) + \left(-\frac{5\lambda_i^2}{6} + \frac{15\beta}{4}\right) - 2\beta^2 - \left(\frac{17\lambda_i}{5}\right),$$

$$\ell_7 = \left(\frac{800\lambda_i}{4200}\right) + \left(-\frac{5\lambda_i^2}{6} + \frac{15\beta}{4}\right) - 2\beta^2 + \left(\frac{17\lambda_i}{5}\right),$$

$$\ell_8 = \left(\frac{100\lambda_i}{2800}\right) - \left(-\frac{3\lambda_i^2}{4} + 2\beta^2\right) + 3\beta^2 + \left(\frac{17\lambda_i}{8}\right),$$

$$\ell_9 = \left(\frac{53}{8400}\right) - \left(-\frac{\lambda_i^2}{12} + \frac{3\beta}{8}\right) - \beta^2 - \left(\frac{17\lambda_i}{200}\right).$$

By dividing equation (23) by σ^n_m, we have:

$$\bar{\gamma} = \frac{\ell_1 \gamma^{n+1} e^{i\beta(m-2)h} + \ell_2 \gamma^{n+1} e^{i\beta(m-1)h} + \ell_3 \gamma^{n+1} e^{i\beta m h} + \ell_4 \gamma^{n+1} e^{i\beta(m+1)h} + \ell_5 \gamma^{n+1} e^{i\beta(m+2)h} + \ell_6 \gamma^{n+1} e^{i\beta(m+3)h} + \ell_7 \gamma^{n+1} e^{i\beta m h} + \ell_8 \gamma^{n+1} e^{i\beta(m+2)h} + \ell_9 \gamma^{n+1} e^{i\beta(m+3)h}}{(\ell_1 e^{-2i\beta h} + \ell_2 e^{-3i\beta h} + \ell_3 e^{-4i\beta h} + \ell_4 e^{-5i\beta h} + \ell_5 e^{-6i\beta h} + \ell_6 e^{-7i\beta h} + \ell_7 e^{-8i\beta h} + \ell_8 e^{-9i\beta h} + \ell_9 e^{-10i\beta h})},$$

(24)

By substituting, σ^n_m, into (22), we get:

$$\ell_1 \gamma^{n+1} e^{i\beta(m-2)h} + \ell_2 \gamma^{n+1} e^{i\beta(m-1)h} + \ell_3 \gamma^{n+1} e^{i\beta m h} + \ell_4 \gamma^{n+1} e^{i\beta(m+1)h} + \ell_5 \gamma^{n+1} e^{i\beta(m+2)h} + \ell_6 \gamma^{n+1} e^{i\beta(m+3)h} = \ell_7 \gamma^{n+1} e^{i\beta m h} + \ell_8 \gamma^{n+1} e^{i\beta(m+2)h} + \ell_9 \gamma^{n+1} e^{i\beta(m+3)h}. $$

(25)
After some simplifications, get $|\bar{\gamma}| < 1$, so cubic B-spline least square method with quadratic weight function for PIDE is unconditionally stable.

4. Numerical Examples

In this section, we will apply the scheme described in Section 3 to test two examples to demonstrate the efficiency, accuracy, and applicability of the present scheme. Results obtained by this scheme are compared with the analytical solution of each example by computing the maximum norm error L_{∞} and norm error L_2.

Let, $t_n = nk, n = 0(1)M$, where M denoted the final time level t_M and $N + 1$ is the number of the nodes to check the accuracy of the proposed method, where

$$L_{\infty} = \max_{0 \leq i \leq N} |u(x_i, t_M) - U_i^M|,$$

$$L_2 = \frac{1}{N} \left(\sum_{i=0}^{N} |u(x_i, t_M) - U_i^M|^2 \right)^{\frac{1}{2}}.$$

Example 1. [15]

$$u_t(x, t) + m u_x(x, t) - b u_{xx}(x, t) = \int_{0}^{t} (t - s)^{-\alpha} u(x, s)ds + f(x, t)$$

$x \in [0,1]$, $\alpha = \frac{1}{4}$, $t > 0$, $m = 0.5$, $b = 0.001$.

The initial and boundary conditions are

$$u(x, 0) = 2\sin ^2 \pi x, \quad 0 \leq x \leq 1$$

$$u(0, t) = u(1, t) = 0, \quad 0 \leq t \leq T.$$

The exact solution is:

$$u(x, t) = 2(t^2 + t + 1)\sin ^2 \pi x.$$

Example 2. [15]

$$u_t(x, t) + m u_x(x, t) - b u_{xx}(x, t) = \int_{0}^{t} (t - s)^{-\alpha} u(x, s)ds + f(x, t)$$

$x \in [0,1]$, $\alpha = \frac{1}{3}$, $t > 0$, $m = 0.005$, $b = 0.5$.

The initial and boundary conditions are

$$u(x, 0) = 1 - \cos 2\pi x + 2\pi^2 x(1 - x), \quad 0 \leq x \leq 1$$

$$u(0, t) = (t + 1), \quad u(1, t) = -(t + 1), \quad t \geq 0.$$
The exact solution is:

\[u(x, t) = (t + 1)^2 \left(1 - \cos 2\pi x + 2\pi^2 x(1 - x) \right). \]

Table 1. \(L_{\infty} \) and \(L_2 \) at \(\Delta t = 0.00001 \) of Example 1.

<table>
<thead>
<tr>
<th>(h)</th>
<th>(M)</th>
<th>(L_2, (\Delta t = 0.00001))</th>
<th>(L_{\infty}, (\Delta t = 0.00001))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01</td>
<td>10</td>
<td>2.4908e-10</td>
<td>6.8233e-09</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>2.8120e-10</td>
<td>6.8264e-09</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>3.2734e-10</td>
<td>6.8304e-09</td>
</tr>
<tr>
<td>0.0066</td>
<td>10</td>
<td>1.8637e-11</td>
<td>5.9803e-10</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>2.7995e-11</td>
<td>5.9844e-10</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>4.1542e-11</td>
<td>7.4737e-10</td>
</tr>
<tr>
<td>0.005</td>
<td>10</td>
<td>3.2603e-12</td>
<td>1.0624e-10</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>7.1431e-12</td>
<td>1.5080e-10</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>1.2427e-11</td>
<td>2.7452e-10</td>
</tr>
<tr>
<td>0.004</td>
<td>10</td>
<td>9.4854e-13</td>
<td>2.7797e-11</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>2.8404e-12</td>
<td>7.0082e-11</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>5.3032e-12</td>
<td>1.3399e-10</td>
</tr>
<tr>
<td>0.0033</td>
<td>10</td>
<td>3.8475e-13</td>
<td>9.5847e-12</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>1.4113e-12</td>
<td>3.8918e-11</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>2.7190e-12</td>
<td>7.5974e-11</td>
</tr>
</tbody>
</table>
Table 2. L_{∞} and L_2 at $\Delta t = 0.00001$ of Example 2.

<table>
<thead>
<tr>
<th>h</th>
<th>M</th>
<th>L_2, ($\Delta t = 0.00001$)</th>
<th>L_{∞}, ($\Delta t = 0.00001$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01</td>
<td>10</td>
<td>2.2113e-09</td>
<td>5.6587e-08</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>2.5080e-09</td>
<td>5.6903e-08</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>2.9080e-09</td>
<td>5.7298e-08</td>
</tr>
<tr>
<td>0.0066</td>
<td>10</td>
<td>1.6652e-10</td>
<td>5.1153e-09</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>2.4548e-10</td>
<td>5.1777e-09</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>3.5394e-10</td>
<td>5.7728e-09</td>
</tr>
<tr>
<td>0.005</td>
<td>10</td>
<td>2.9026e-11</td>
<td>9.1667e-10</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>6.0316e-11</td>
<td>1.1463e-09</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>1.0189e-10</td>
<td>1.9974e-09</td>
</tr>
<tr>
<td>0.004</td>
<td>10</td>
<td>8.3402e-12</td>
<td>2.4111e-10</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>2.3318e-11</td>
<td>5.1065e-10</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>4.2636e-11</td>
<td>9.5255e-10</td>
</tr>
<tr>
<td>0.0033</td>
<td>10</td>
<td>3.3180e-12</td>
<td>8.0990e-11</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>1.1394e-11</td>
<td>2.7797e-10</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>2.1646e-11</td>
<td>5.3456e-10</td>
</tr>
</tbody>
</table>
5. Conclusions

In this paper, we introduced a new numerical scheme to solving the integro-differential equations with the weakly singular kernel by using the cubic B-spline least-square method with quadratic B-spline as a weight function. The method was performed when taking values $N = 100, 150, 200, 250$ and 300 with $\Delta t = 0.00001$ with a different M, which presented in Tables 1-2. From Figures 1-2, the numerical and the exact solutions are very harmonic which signalizes the numerical solutions effectively. We calculated L_2 and L_{∞} norms errors varied to test the accuracy of the proposed method, also, the numerical results are in good agreement with the exact solutions. The proposed method is an effective and unconditionally stable method.

References

http://www.earthlinepublishers.com