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Abstract

In this article, a numerical scheme was implemented for solving the integro-differential
equations (IDEs) with the weakly singular kernel by using a new scheme depend on the
cubic B-spline least-square method and a quadratic B-spline as a weight function. The
numerical results are in suitable agreement with the exact solutions via calculating L,
and L., norms errors. Theoretically, we discussed the stability evaluation of the current
method using the Von-Neumann method, which explained that this technique is
unconditionally stable.

1. Introduction

The integro-differential equations appear in a wide range of disciplines including

physics, chemistry and engineering.
Consider the following IDE with a weakly singular kernel:
u (o, t) + mu, (x, t) — b, (x, t) = fot K(t—s)u(x,s)ds+ f(x,t), x€[ab],t>0
ey

where K(t—s)=(t—s5)"% 0<a<1
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subject to the initial condition:
u(x,0) = go(x), a<x<b (2)
and the boundary conditions:

u(a, t) = fO(t)r u(bl t) = fl(t)l t=0 (3)
where go(x), fo(t), f1(t) are known functions and f (x, t) is a smooth function.

The equations (1)-(3) are of fundamental importance in many physical systems,
especially those involving fluid flow [4, 16].

Dag and Naci Ozer [3] solved the regularized long-wave equation (RLW)
numerically by giving a new algorithm based on a kind of space-time least-square finite
element method. Kutluay et al. [9] used a least-squares quadratic B-spline finite element
method for calculating the one-dimensional Burgers-like equations with appropriate
boundary and initial conditions. El Jid [8] utilized the least-squares and Gauss Legendre
to find a solution to the integral equations of the second kind. Dag [2] applied the least-
squares quadratic B-spline finite element method for solved regularized long wave
equation (RLW). Dhawan et al. [6] used Galerkin-least square B-spline to solve the
advection-diffusion equation. Dhawan et al. [5] presented a numerical method for solving
Burgers equation using B-spline finite element method. Shehab et al. [14] utilized least
squares method for solving integral equations with multiple time lags. Gardner et al. [7]
used the regularized long-wave equation (RLW) equation to solve by a least-squares
technique. Nguyen and Reynen [11] presented the space-time least-square finite element
scheme for the advection-diffusion problems at moderate to high Peclet numbers.
Chakrabarti and Martha [1] resolved of Fredholm integral equations of the second kind
by the least-squares method. Wang et al. [18] used approximation least squares method
for solved of Volterra-Fredholm integral equations.

In this research, we will present a new scheme depend on cubic B-spline and
quadratic B-spline as a weight function to solve IDE (1); also, we will discuss the
stability analysis for the present scheme.

2. Cubic B-spline Least Square with a Quadratic Weight Function

The least-square formulation in time and space is explained as

8y 7 [ueCo ) + muy G £) = b (e, £) = [ (6 = )™ u(x, s)ds — £ (x, t)]2 dxdt =0 (4)
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and the cubic B-spline Cp,(x), (m = —1(1)N + 1), at the knots x,, which form a basis
over the solution domain [a, b], is defined as [13]

(x— xm—Z)s’ ifx € [Xm_2 Xm_1],
R + 3h%(x — Xpnq) + 3h(x = Xpp_1)? = 3(x = xpp_1)°, if X € [Xp_y, x],
Cp(x) = s h3 + 3h% (%01 — X) + 3h(xpeq — )% — 3(xme1 — )3, ifx € [X Xmal)
0, otherwise.

(&)

The set of splines (C_;(x), Co(x), ..., Cy(x), Cy41(x)) forms a basis for functions
defined over [a, b]. Consider the approximate solution Uy(x,t) to the exact solution
U(x,t) given by

UN (x, t) = ?’=+—11 Ci (X)O'i (t)' (6)

where g; are unknown time-dependent parameters to be determined from the boundary
and weighted residual conditions. We will use the following local coordinate
transformation

hm=x-x,, 0<n<l, @)

a cubic B-spline shape functions in terms of 1 over the element [x,,, X;,+1] that can be
defined as

Cn—1 = (1 - 77)3'
Cn=1+31-n)+31—-n*-31-n)3
Cm+1 =1+ 30+ 312 — 315,

ka+2 = 7731

®)

all splines apart from Cp,_1, Gy, Cinyq and Cp,y o are zero over the element [x,,;, X;,41] On

each time interval [t,,, t,41], At = t™*1 — t™ is a local coordinate {, where
t=t"+ {At, 0<{<1. 9)

By using the transformations (7) and (9) in equation (4) we obtain
1,1 m b ¢ o 2
803 I [ Get) + 2y G ) — oty (6,6 = £ = )™ u(n, )ds — F(n, )] dndg = 0.

(10)

The integral equation takes its minimum value with the variation in u over each element
[%m Xma1], then
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ff {[ue + 3wy = 2w = [5C = 9)=utns)ds = F0.9)] & [ug + T, -
N (S u(n.s)ds—f(n,o]}dndc =0. (11)

The least square method turns into a Petrov-Galerkin method with then weight function,

8 [ug + Bty — Bty — [~ 5)uCn,)ds = f(n,0)],
the variation of u over the element [x,y,, X,,+1] defined by

Uv(,¢) = 2571 G (o] + {Aa]), (12)

where g,,_1(t), 0, (t), Oma1(t) and 0,4, (t) act as element parameters and B-splines
Cr—1(M), Co(M), Ciup1(m) and C,p,42(n) as element shape functions. The spline C,,(x)
vanishes outside the interval [X,,_», X, 4+2]- So, the value of U with its first and second
derivatives U',U" respectively at the knots, x,,, which is determined in terms of element
parameters g,, by
Un=U(xm) = 0m-1 +40m + Omy1
’ ! 3
Uy =U (X)) = E(O-m—l — Om+1) (13)
n n 6
Ul = U"(xp) = ﬁ(o'm—l — 20, + Omyi1)

take the weight function, W quadratic B-spline that is defined as

((xm+2 - x)Z - 3(xm+1 - x)Z + 3(xm - x)Z: ifx € [xm—1: xm],

(x) = i (xm+2 - x)z - 3(xm+1 - x)Z' ifx e [xmrxm+1]'
2 _ 2 if
(xm+2 x) ’ IIx € [xm+1rxm+2]'
k 0, otherwise.
(14)

Write the weight function as
t _
oW = Zg:}n_l WAy, =6 (ug +Auy — B uy, — fo (¢ —s)*um,s)ds — f(n, ()).
Using the expansion (12) so that

SUN(M, ) = X1 SBi(mAY], (15)

we get

W=5¢6 ('U.gv + Aun - ﬁ u7777 - foz(( - S)_“u(n' S)dS - f(77' 5)) = Bl(n) +
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ASBi(n) — BEBL () — [ s(C — $)™By()ds — £ (1, 9. (16)

Substitution (16) in equation (11) we get
I dg AJug + Ay = By =[5 = $)un,s)ds — F(n, )] [Bin) +
ATB(n) — BTB; () = [ s(C = ) By(mds — £(1,0)|}dn dg = 0. (17)

Substituting (11) in equation (17), integration with respect to { and integration by parts as
required leads to the following matrix system of equations for each individual element

BA

1 A2 I A1 A ! A . AB Al 17
me2 {0 |(BiG+(B+%)Bic +3 B G +3 BiC, — 2B ¢/ -5 Bi¢) +

2 . . | , A _
EB/c) +(~2B: - BBiC) — 2B/ — 2B/ ) [ s(C—5) ™ ds +
(BiG) [ fi s*(C =)™ dsds + [J[(=C; = A3 G+ G + G [ s(C -
$)"*ds )f ()] d¢ | dn +

’ ’ , , { _
[(-EBiciis —Emici 15 ) + (E Bic) 15 +£B; ¢; 13 ) [ s =) ds]} g
BZ

1 22 o fBA oy AB
+ym2 {1 |(8+5)Bic + aBic - & Bic; - LB ¢/ + £

= = B/ C; +

(=ABiC/ — BB{C)) [; s(C — )™ ds + (=B, C;-2B] C;-2 BC)) [ (¢ —5)™ ds +
(B:G)) [F JE s(C —5)™ dsds +

(=26 + B¢ + ¢ [F@—s)=ds ) f@,0)]dg| dn+[(— pB.C; 1 )+

(B BiC/ 15 ) [§s@—s)<as+(EB; ¢; 13) [f@ =) =ds |}y + [} f, (~Bi -
ACB;+ BB, + By [} s(§—s)™ds + f(n,)) f(n,) dn dS = 0. (18)
The equation (18) can be written in a matrix form as follows:

BZ

A? A A B AB B
(45 + (B +5Bg +5-ce+ SDE+ ST -2 B L EDT-L(FOT -

Ere)+ (245 - pBg 5D -2 (09" + LR +EEOT) [ s —5) ™ ds +
(Ai foz fO{sz({ —5)72 dsds) +
Iy =€ =36 + B¢+ B 6 F, ) dn dg + [ fy (=6 = 246 +BL G+

J§ @ =) Gyds ) F(1,¢) dn d¢ | Ac®
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+|(a0g +2 8z - 2L@pr -pre +pBg - LEg+ —Ck)+( AD§ +

BFE = BBE) [3 s — )™ ds + (—Af =3 (D) +5FL, —2BG) [F(¢ —s)™ds +
(A; FELE 5§ —s)2 dsds) + [ (-AG +B G+

J§@=9)7¢; ds) f(n,n d¢|a® + [y fy (=B = A+ BSB; + [ s(¢ —
$)"*Bds ) f(n,0) dn dg + f [ £1,0) f(n,0) dndl = 0, (19)

where ¢ = (0,—1, Om, Om+1, Om+2) €lement parameters and matrices are given by the
following

) L 10 71 38 1
e = fo B; Cjdn = P 19 221 221 19|,
1 38 71 10

1.7 . 1

6 -6 —6 6]

3 5 -7 —1]

12 12 12 -12{,

6 -6 —6 6
-6 -7 12 1

f BCdn —-13 —-41 41 13|,
-1 -12 7 6

1 v
Ce = J, BideU=[—

L -4 6 0 =2
Eg = [, BiCidn= ; —06 66 —42,

] 1 0 -1 0
F¢= BiCilg =3|1 -1 -1 1f,
0 -1 0 1

where i and j take the valuem — 1, m, m + 1, m + 2 from element [x,,, X, 41]-
Assembling all contribution from all element yields the global system of equations
[(4c + 2DF 2R + 8B+ 2D, + 2B L5l - LR - 2B + L)+
(—2A —2p. +EF, - B, —2DT +EF )ﬁs((—s)—“ ds + (A fifisz(( -
k 27k 2k k 27k 2k 0 kJg Jo

_ 1 1 , rr rr, 1 1
$)72% dsds) + [ [o'(— C; = A3C, + BT ¢+ B ) Fa. O dndd + fy [ (—¢ -
A5G +BLC + [F s@ - ) G ds ) f(n.¢) dn d¢| Ao
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+[(2Dx +28, ~ 2] —pF +8B — LE + %ch)+(—ADk+ﬁFk—
BBy) [ s(§ — $)% ds + (—Ak — 2L+ R LB ) [f((—5)™as +

(Ak FELE 5§ —s)2 dsds) + L (-AG + B+

J§@=9)7C; ds) fn.Odn d¢|o + [y fy (=B = ACB; + BB + [ s(¢ -
$)"*Bids ) f(n,0) dn dg + J [ £(1,0) f@,0)dn dg =0, (20)
where & = (0g, 04, ..., o) is a global element.

Recognize o = o™, Ag = 6™*! — ¢" in the system of equation (20), we obtain
(N +3) x (N + 3).

Septa-diagonal matrix the equation (20) is written as follows:
[(4c +(B+2) B+ 2D+ 20] ~ 25 - 2gl - Lp —LrT +£¢)+
(—24 = BB — 5D — 2DF +§Fk +EFD) [ (@ =) ds + (A [§ J§ 520 -
s)"%* dsds + fol f01 (—Cj -2 {ij + B¢ CJ + ¢ fO{ s({ —s) %ds )f(n, {)dn d(] o™tl

BA B

2
= [(Ak _%Bk_ %Dk-l_ %Dk + _Ek+ B

Bpl+ R —Lrl - %ch)—

(24 =5 Di +2DF + 8 F = EFT) (£ 50 = )™ ds + (A + 5B +5DF -

BRD) [5@—9)™ds — (A [ J s — )2 dsds + (4i) [} [ 2@ -

)72 dsds + [y J; (G +AC +A¢C = B¢ —BIC) = G [{({—s)"ds -

G If 5 = 5)™ds ) FG1.9) dn g | o™ + [} i (B + 2B; = B3B; = [ 5 -
$Bids — f(1,0)) f(n,¢) dnds. e

The integral equation has a value

Q-9 =ds =5, [fs¢—5)ds =

o2 +30¢+2

{4——20( { { _2x {3—20(
403 +1202—110c+ 3 fO fO s({ —s)"" dsds = 4% —60ct2"

fo{ fO{sz(( —5)7?%dsds =

The equation (21) can be written as follows:

Earthline J. Math. Sci. Vol. 4 No. 1 (2020), 99-113
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_ (2—0( (4 2 ﬁ _ B_Z

[<(1 2 xZ-3x+2 + —4oc3+120<2—110<+3) Ak + (3 t ﬁ ﬁ o2 — 3oc+2) Kt 3 Ck t
A_A_g A_ A T_ﬂ _ﬁ _B_ B_T*

(2 2 o<2—30c+2) Dy + (2 2 o<2—3<x+2) Di Er Ei + ( 2t )Fk +

2 x2—3x+2
Y T) _
( + 2 oc2— 3oc+2) Fk

(G +aig-pi6 ———c¢ )f(n.odndc] e

Zl < (2—0( (3—20( Z4—20( AZ
(1 + -2 2302 4oP—60c+2 + —4oc3+120<2—110<+3) Ak + (_? +

B o p? AL A S Y e L8
?1—0()31‘_ ?Ck+(_5+50<2 3oc+2)Dk+( +51 - 50(2—3oc+2)D Ek
AB B B % B B3, B ™
Ek (__Em2—3oc+2)Fk+(_E_51 oc+20<2 30<+2)Fk>+f f (C +AC +
1-x

, ’” ¢ G 1 -1 .
26— C -pC = G- G =) D an dc]a"+f0 ly (Bl-HcBi—

BEB] ~ By = f(1,0)) (0, dnd. 22)

From the equation (22), we get system of (N + 1) linear equation with (N +
3) unknowns. We apply the initial condition u(x,0) = go(x) to the equation (14) makes
the matrix equation square, computing the initial vector 0% = [08, 010, 020, e a,g]T from
the initial condition u(x,0) = go(x) given, (N + 1) equation in (N + 3) unknowns, to
determine these unknown function, the following relations at the knots are used

Ux(0,0) = uy(x0,0)
U(x;,0) = go(xy), i=1(1WN-1)
U,(L,0) = u,(xy,0).

We have the tridiagonal system of equation that can be solved by: Ro® = E, where

(4 2 0
1 4 1
1 4 1
R = )
1 4 1
0 2 4

which can be solved by using Thomas algorithm [12].

http:/fwww.earthlinepublishers.com
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3. The Stability

To learn the stability of the proposed method, we will rewrite the equation (21) in

terms of the nodal parameters o, and f(n,t) = 0 [17] so get
{’10'n+1 + ‘Ezo'n+1 + ‘€3 n+1 + #30#’,_111

Csom_o +€eom + €70m1 + €g0mis + €903,

where

hm () Er D) =) () epn
B () (e = (@) (D)
e () (24 28 - (),

o= () (24 ) g (22),

= () (0 5 ape 4 (),

53

5= () ~ (- 55+ ) -5+ ()

+420mi2 + 010pi3 = €40 5 +

174

200

)

(23)

By applying the Von-Neumann method [10], of equation (22) for any, 0 <7 < 1 and

O.Trrll = Y"e LBmh’

where Y represents the time dependence of the solution, and the exponential function

shows that the spatial dependence such that Sh represents the position along the grid and

i is V—1. By substituting, g, into (22), we get:

€1Yn+1eiﬁ(m—2)h +{)2Yn+1eiﬁ(m—1)h +€3Yn+1eiﬁmh+{)3Yn+1eiﬁ(m+1)h +

€2Yn+1eiﬁ(m+2)h +€1Yn+1eiﬁ(m+3)h — {)4Y-neiﬁ(m—2)h+{)5Y-neiﬁ(m—1)h+

€6Ynei,8mh +€7Ynei,8(m+1)h +{)8Ynei,8(m+2)h +{)9Ynei,8(m+3)h.

By dividing equation (23) by Y"e?#™" we have

_ (Lye7 21BNy p e Bhyp +q,eBM1pge2iByp e3iBR)
- (316_2i3h+€2e_iBh+£’3+€3eiBh+{’2eZiﬁh+€1e3iﬁh)'

(24)

(25)
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After some simplifications, get |Y| < 1, so cubic B-spline least square method with

quadratic weight function for PIDE is unconditionally stable.

4. Numerical Examples

In this section, we will apply the scheme described in Section 3 to test two examples
to demonstrate the efficiency, accuracy, and applicability of the present scheme. Results
obtained by this scheme are compared with the analytical solution of each example by

computing the maximum norm error L, and norm error L.

Let, t, = nk,n = 0(1)M, where M denoted the final time level t); and N + 1 is the
number of the nodes to check the accuracy of the proposed method, where

Lo = max05i5N|u(xi, ty) — UiM|.

1
L, = %(Z?Lolu(xi, ty) — UiM|2)E-
Example 1. [15]
ur(x,t) + mu,(x,t) — b uy, (x,t) = fot(t — )" u(x,s)ds + f(x,t)
x €[01], «= % t>0, m=0J5 b=0.001.
The initial and boundary conditions are
u(x,0) = 2sin %nx, 0<x<1
u(0,t) =u(1,t) =0, 0<t<T.
The exact solution is:
u(x, t) = 2(t? + t + 1)sin *nx.
Example 2. [15]

U (6, t) + mu,(x,t) — b uy, (x, t) = fot(t — ) % u(x, s)ds + f(x,t)

1
x€[01], ®=3, t>0, m=0005 b=05

The initial and boundary conditions are
u(x,0) =1—cos2mx +2m%x(1—x), 0< x<1

u(0,t) =(t+ 1), u(l,t) =—-(t+1), t>0.

http:/fwww.earthlinepublishers.com
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The exact solution is:

u(x, t) = (t + D?(1 — cos2mx + 2m2x(1 — x)).

Table 1. L, and L, at Ar = 0.00001 of Example 1.

h M Ly, (At =0.00001) L, (At = 0.00001)

0.01 10 2.4908e-10 6.8233e-09
50 2.8120e-10 6.8264e-09

100 3.2734e-10 6.8304e-09

0.0066 10 1.8637e-11 5.9803e-10
50 2.7995e-11 5.9844e-10

100 4.1542e-11 7.4737e-10

0.005 10 3.2603e-12 1.0624e-10
50 7.1431e-12 1.5080e-10

100 1.2427e-11 2.7452e-10

0.004 10 9.4854e-13 2.7797e-11
50 2.8404e-12 7.0082e-11

100 5.3032e-12 1.3399¢-10

0.0033 10 3.8475e-13 9.5847e-12
50 1.4113e-12 3.8918e-11

100 2.7190e-12 7.5974e-11

Earthline J. Math. Sci. Vol. 4 No. 1 (2020), 99-113
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The Exact and Approximate Solutions of Example 1 at N=100 and M=10

Numerical Sol
;
%
£
:
Table 2. L, and L, at Ar = 0.00001 of Example 2.
h M Ly, (Ar = 0.00001) Lo, (A = 0.00001)
0.01 10 2.2113e-09 5.6587e-08
50 2.5080e-09 5.6903e-08
100 2.9080e-09 5.7298e-08
0.0066 10 1.6652¢-10 5.1153e-09
50 2.4548e-10 5.1777e-09
100 3.5394e-10 5.7728e-09
0.005 10 2.9026e-11 9.1667e-10
50 6.0316e-11 1.1463e-09
100 1.0189¢-10 1.9974e-09
0.004 10 8.3402e-12 2.4111e-10
50 2.3318e-11 5.1065e-10
100 4.2636e-11 9.5255e-10
0.0033 10 3.3180e-12 8.0990e-11
50 1.1394e-11 2.7797e-10
100 2.1646e-11 5.3456e-10
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The Exact and Approximate Solutions of Example 2 at N=150 and M=50

T mmm— mmmmmm e mm — - - — — == = — = ==~ — == — — .
Exact Sol.

Numerical Sol.

Approximate Solutions

5. Conclusions

In this paper, we introduced a new numerical scheme to solving the integro-
differential equations with the weakly singular kernel by using the cubic B-spline least-
square method with quadratic B-spline as a weight function. The method was performed
when taking values N = 100, 150, 200, 250 and 300 with At = 0.00001 with a
different M, which presented in Tables 1-2. From Figures 1-2, the numerical and the
exact solutions are very harmonic which signalizes the numerical solutions effectively.
We calculated L, and L, norms errors varied to test the accuracy of the proposed
method, also, the numerical results are in good agreement with the exact solutions. The
proposed method is an effective and unconditionally stable method.
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