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Abstract 

In this paper, we introduce and study some properties for strong differential 

subordinations of analytic functions associated with Ruscheweyh derivative operator 

defined in the open unit disk and closed unit disk of the complex plane. 

1. Introduction 

Let { }1: <∈= zzU C  and { }1: ≤∈= zzU C  denote the open unit disk and 

the closed unit disk of the complex plane, respectively. Let ( )UU ×H  the class of all 

analytic functions in .UU ×  For { }...,2,1=∈ Nn  and ,C∈a  let [ ] { ∈=ζ∗
fna ,,H  

( ) ( ) ( ) ( ) },,,,: 1
1 UUzzazaazfUU

n
n

n
n ∈ζ∈+ζ+ζ+=ζ× +

+ LH  where ( )ζka  

are holomorphic functions in U  for .nk ≥  

Also, let { ( ) ( ) ( ) },,,,: 1
1 UUzzazzfUUf

n
nn ∈ζ∈+ζ+=ζ×∈= +

+
∗

ζ LHA  

where ( )ζka  are holomorphic functions in U  for .1+≥ nk  

A function [ ]ζ∈ ∗
,, naf H  is said to be starlike in UU ×  if  
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and convex in UU ×  if 

( )
( )

,01
,

,
Re

2
>









+
ζ′
ζ′′

zf

zfz

z

z    ( )., UUz ∈ζ∈  

Denote the classes of starlike and convex functions in UU ×  by ∗
ζS  and ,∗

ζK  

respectively. 

Let ∗
ζA  denote the subclass of the functions ( ) ( )UUzf ×∈ζ H,  of the form: 

 ( ) ( )
∞

=
∈ζ∈ζ+=ζ

2

,,,

k

k
k UUzzazzf   (1.1)  

which are analytic and univalent in .UU ×  

The Ruscheweyh derivative operator ∗
ζ

∗
ζ

λ → AAR :  (see [7]) is defined by 

 ( ) ( )
( ) ( )

( ) { }( )
∞

=

λ =∈λζ
Γ+λΓ

+λΓ+=ζ
2

0 .0
1

,

k

k
k za

k

k
zzf UNNR   (1.2) 

It is easy to obtain from (1.2) that 

 ( ( )) ( ) ( ) ( ).,,1, 1 ζλ−ζ+λ=ζ λ+λ′λ
zfzfzfz z RRR   (1.3) 

In recent years, many authors obtained various interesting results associated with 

strong differential subordination and superordination for example (see [1, 2, 3, 8, 9, 10, 

11]). 

In order to derive our main results, we need the following definition and lemmas. 

Definition 1.1 [6]. Let ( ) ( )ζζ ,,, zgzf  be analytic in .UU ×  The function ( )ζ,zf  

is said to be strongly subordinate to ( ),, ζzg  written ( ) ( ) ,,,, UzzFzf ∈ζζ pp  

,U∈ζ  if there exists an analytic function w in U with ( ) 00 =w  and ( ) Uzzw ∈< ,1  

such that ( ) ( )( )ζ=ζ ,, zwgzf  for all .U∈ζ  
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Lemma 1.1 [5]. Let ( )ζ,zh  be a convex function with ( ) ,,0 ah =ζ  for every U∈ζ  

and let { }0\CC =∈γ ∗  with ( ) .0Re ≥γ  If [ ]ζ∈ ∗
,, nap H  and 

 ( ) ( ) ( ) ( ),,,,,
1

, UUzzhzpzzp z ∈ζ∈ζζ′
γ

+ζ pp   (1.4) 

then 

( ) ( ) ( ) ( ),,,,,, UUzzhzqzp ∈ζ∈ζζζ pppp  

where ( ) ( ) ζγ=ζ
−γ

γ
z

n

n

dttht

nz

zq
0

1
,,  is convex and it is the best dominant of (1.4). 

Lemma 1.2 [4]. Let ( )ζ,zq  be a convex function in UU ×  for all U∈ζ  and let 

( ) ( ) ( ),,,, ζ′δ+ζ=ζ zqznzqzh z  ,Uz ∈  ,U∈ζ  where 0>δ  and n is a positive 

integer. If 

( ) ( ) ( ) ( ) ,,0, 1
1 L+ζ+ζ+ζ=ζ +

+
n

n
n

n zpzpqzp  

is analytic in UU ×  and 

( ) ( ) ( ) ( ),,,,,, UUzzhzpzzp z ∈ζ∈ζζ′δ+ζ pp  

then 

( ) ( ) ( ),,,,, UUzzqzp ∈ζ∈ζζ pp  

and this result is sharp. 

2. Main Results 

Theorem 2.1. Let ( )ζ,zh  be a convex function such that ( ) .1,0 =ζh  If 
∗
ζ∈ Af  

satisfies the strong differential subordination: 

 ( ( )) ( ),,, ζ′ζλ
zhzf

z
ppR   (2.1) 

then 

( ) ( ) ( ),,,
, ζζζλ

zhzq
z

zf
pppp

R
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where ( ) ( ) ζ=ζ
z

dtth
z

zq
0

,
1

,  is convex and it is the best dominant. 

Proof. Suppose that 

 ( ) ( )
.,,

,
, UUz

z

zf
zp ∈ζ∈ζ=ζ

λ
R

  (2.2) 

Then the function ( )ζ,zp  is analytic in UU ×  and ( ) .1,0 =ζp  

Simple computations from (2.2), we get  

 ( ) ( ) ( ( )) .,,,
zz zfzpzzp
′ζ=ζ′+ζ λ

R   (2.3) 

Using (2.3), (2.1) becomes 

( ) ( ) ( ).,,, ζζ′+ζ zhzpzzp z pp  

An application of Lemma 1.1 with 1,1 =γ=n  yields 

( ) ( ) ( ) ( ) ζζ=ζζλ z
zhdtth

z
zq

z

zf

0
.,,

1
,

,
pppp

R
 

By taking ( ) ( )
10,

1

2
, <ρ≤

+
ζ−ρ+ζ=ζ

z

z
zh  in Theorem 2.1, we obtain the 

following corollary: 

Corollary 2.1. If ∗
ζ∈ Af  satisfies the strong differential subordination: 

( ( )) ( )
,

1

2
,

z

z
zf

z +
ζ−ρ+ζ′ζλ

ppR  

then 

( ) ( ) ( ) ( ) +ρ−ζ+ζ−ρ=
+

ζ−ρ+ζζλ z
z

z
dt

t

t

zz

zf

0
.1ln

2
2

1

21,
pp

R
 

Theorem 2.2. Let ( )ζ,zq  be a convex function such that ( ) 1,0 =ζq  and let h be 

the function ( ) ( ) ( ).,,, ζ′+ζ=ζ zqzzqzh z  If 
∗
ζ∈ Af  satisfies the strong differential 

subordination:  
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( )

( )
( ),,

,

,1

ζ
′












ζ
ζ

λ

+λ
zh

zf

zfz

z

pp
R

R
   (2.4) 

then 

( )
( )

( ).,
,

,1

ζ
ζ
ζ

λ

+λ
zq

zf

zf
pp

R

R
 

Proof. Suppose that 

 ( ) ( )
( )

.,,
,

,
,

1

UUz
zf

zf
zp ∈ζ∈

ζ
ζ=ζ λ

+λ

R

R
 (2.5) 

Then the function ( )ζ,zp  is analytic in UU ×  and ( ) .1,0 =ζp  

Differentiating both sides of (2.5) with respect to z and using (2.4), we have 

( ) ( )ζ′+ζ ,, zpzzp z  

( )
( )

( ) ( ( )) ( ) ( ( ))
[ ( )]2

111

,

,,,,

,

,

ζ

′ζζ−′ζζ+
ζ
ζ= λ

λ+λ+λλ

λ

+λ

zf

zfzfzfzf

zf

zf zz

R

RRRR

R

R
 

( ) ( ( )) ( ) ( ( ))
[ ( )]2

11

,

,,,,

ζ

′ζζ−′ζζ= λ

λ+λ+λλ

zf

zfzfzzfzzf zz

R

RRRR
 

( )
( )

( ).,
,

,1

ζ
′












ζ
ζ= λ

+λ
zh

zf

zfz

z

pp
R

R
 (2.6) 

An application of Lemma 1.2, we obtain 

( )
( )

( ).,
,

,1

ζ
ζ
ζ

λ

+λ
zq

zf

zf
pp

R

R
 

Theorem 2.3. Let ( )ζ,zq  be a convex function such that ( ) 1,0 =ζq  and let h be 

the function ( ) ( ) ( ),,
2

1
,, ζ′

+λ
+ζ=ζ zqzzqzh z  where .01 >+λ  Suppose that 

 ( ) ( ) ∈ζ∈ζ+λ=ζ λ
+λ

z
UUzdttft

z
zF

01
.,,,

2
,  (2.7) 
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If ( )pf
∗
ζ∈A  satisfies the strong differential subordination 

 ( ( )) ( ),,, ζ′ζλ
zhzf z ppR  (2.8) 

then 

( ( )) ( ).,, ζ′ζλ
zqzF z ppR  

Proof. Suppose that 

 ( ) ( ( )) .,,,, UUzzFzp z ∈ζ∈′ζ=ζ λ
R  (2.9) 

Then the function ( )ζ,zp  is analytic in UU ×  and ( ) .1,0 =ζp  

From (2.7), we have 

 ( ) ( ) ( ) ζ+λ=ζ λ+λ z
dttftzFz

0

1 .,2,  (2.10) 

Differentiating both sides of (2.10) with respect to z, we get 

( ) ( ) ( ) ( ) ( )ζ′+ζ+λ=ζ+λ ,,1,2 zFzzFzf z  

and  

( ) ( ) ( ) ( ) ( ( )) .,,1,2 zzFzzFzf
′ζ+ζ+λ=ζ+λ λλλ

RRR  

So 

 ( ( )) ( ( )) ( ( ))
.

2

,
,,

2

+λ

″ζ+′ζ=′ζ
λ

λλ z
zz

zFz
zFzf

R
RR  (2.11) 

From (2.9) and (2.11), we obtain 

 ( ) ( ) ( ( )) .,,
2

1
, zz zfzpzzp

′ζ=ζ′
+λ

+ζ λ
R   (2.12) 

Using (2.12), (2.8) becomes 

( ) ( ) ( ) ( ).,
2

1
,,

2

1
, ζ′

+λ
+ζζ′

+λ
+ζ zpzzqzpzzp zz pp  

An application of Lemma 1.2 yields ( ) ( ).,, ζζ zqzp pp  By using (2.8), we obtain 
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( ( )) ( ).,, ζ′ζλ
zqzF z ppR  

Theorem 2.4. Let ( )ζ,zh  be a convex function such that ( ) .1,0 =ζh  If ,0 p<σ≤  

C∈θ  and 
∗
ζ∈ Af  satisfies the strong differential subordination: 

 
( ) (( ( )) ) ( ),,,

1

,

1

1 ζσ−′ζ
σ−

θ+








σ−ζ

σ−
θ− λ

λ
zhzf

z

zf
z ppR

R
  (2.13) 

then 

( ) ( ) ( ),,,
,

1

1 ζζ









σ−ζ

σ−

λ
zhzq

z

zfR
pppp  

where ( ) ( ) ζ
θ

=ζ
−

θθ
− z

dtthtzzq
0

1
11

,
1

,  is convex and it is the best dominant. 

Proof. Suppose that 

 ( ) ( )
.,,

,

1

1
, UUz

z

zf
zp ∈ζ∈










σ−ζ

σ−
=ζ

λ
R

  (2.14) 

Then the function ( )ζ,zp  is analytic in UU ×  and ( ) .1,0 =ζp  

Differentiating both sides of (2.14) with respect to z, we have 

 ( ) ( ) ( ) (( ( )) ).,
1

,

1

1
,, σ−′ζ

σ−
θ+









σ−ζ

σ−
θ−=ζ′θ+ζ λ

λ

zz zf
z

zf
zpzzp R

R
 (2.15) 

From (2.13) and (2.15), we get 

( ) ( ) ( ).,,, ζζ′θ+ζ zhzpzzp z pp  

An application of Lemma 1.1 with 
θ

=γ= 1
,1n  yields 

( ) ( ) ( ) ( ) ζζ
θ

=ζ









σ−ζ

σ−

−
θθ

−λ z
zhdtthtzzq

z

zf

0

1
11

.,,
1

,
,

1

1
pppp

R
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