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Abstract 

In this article, we establish some interesting geometric properties for fuzzy differential 

subordination associated with Wanas operator which defined in the open unit disk. 

1. Introduction 

Let the notation ( )UH  stand for the family of holomorphic functions in the unit disk 

{ }.1: <∈= zz CU  For N∈n  and ,C∈a  we indicate by 

[ ] { ( ) ( ) }UUHH ∈+++=∈= +
+ zzazaazffna

n
n

n
n ,:, 1

1 L  

and  

{ ( ) ( ) },,:
2

2
1

1 UUHA ∈+++=∈= +
+

+
+ zzazazzff

n
n

n
nn L  

with .1 AA =  

Definition 1.1 [13]. Let X be a non-empty set. An application [ ]1,0: →XF  is 

called fuzzy subset. An alternate definition, more precise, would be the following: 
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A pair ( ),, SFS  where [ ]1,0: →XFS  and ( ) { ( ) }10:, ≤<∈= xFXxFSsupp SS  

is called fuzzy subset. The function SF  is called membership function of the fuzzy 

subset ( )., SFS  

Definition 1.2 [6]. Let two fuzzy subsets of X, ( )MFM ,  and ( )., NFN  We say that 

the fuzzy subsets M and N are equal if and only if ( ) ( ) XxxFxF NM ∈= ,  and we 

denote this by ( ) ( ).,, NM FNFM =  The fuzzy subset ( )MFM ,  is contained in the 

fuzzy subset ( )NFN ,  if and only if ( ) ( ) XxxFxF NM ∈≤ ,  and we denote the 

inclusion relation by ( ) ( ).,, NM FNFM ⊆  

Assume that D is a set in C  and gf ,  are holomorphic functions. We indicate by  

( ) ( ( ) ( ) ) { ( ) ( ) ( )( ) }DzzfFzfFDfsuppDf DfDf ∈≤<== ,10:,  

and  

( ) ( ( ) ( ) ) { ( ) ( ) ( )( ) }.,10:, DzzgFzgFDgsuppDg DgDg ∈≤<==  

Definition 1.3 [6]. Suppose that D is a set in ,C  Dz ∈0  is a fixed point and let the 

functions ( )., Dgf H∈  The function f is named a fuzzy subordinate to g and write 

gf Fp  or ( ) ( )zgzf Fp  if satisfies the following: 

(1) ( ) ( ),00 zgzf =   

(2) ( ) ( )( ) ( ) ( )( ) ., DzzgFzfF DgDf ∈≤   

Definition 1.4 [7]. Let h be univalent in U  and .: 3
CC →×ψ U  If P  is 

holomorphic in U  satisfies the fuzzy differential subordination:  

 ( )( ( ( ) ( ) ( ) )) ( ) ( )( ),;,, 2
3 zhFzzzzzzF h UU

PPP ≤′′′ψ
×ψ C

  (1.1) 

i.e., 

( ( ) ( ) ( ) ) ( ) ,,;,,
2

UPPP ∈′′′ψ zzhzzzzzz Fp  

then P  is called a fuzzy solution of the fuzzy differential subordination. The univalent 

function q is called a fuzzy dominant of the fuzzy solutions of the fuzzy differential 

subordination, or more simple a fuzzy dominant, if ( ) ( ) UP ∈zzqz F ,p  for all P  
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satisfying (1.1). A fuzzy dominant q~  that satisfies ( ) ( ) U∈zzqzq F ,~ p  for all fuzzy 

dominant q of (1.1) is said to be the fuzzy best dominant of (1.1). 

For 0, ≥β∈α R  with { }0,,0 0 UNN =∈λ>β+α m  and ,A∈f  we consider 

the differential operator ,:
,
, AA →λ
βα

k
W  introduced by Wanas [11], where  

 ( ) ( ) 
∞

=

λ

=

+λ
βα
























β+α
β+α−







+=
2 1

1,
,

.1

n

n
n

k

m
mm

mm
mk

za
n

m

k
zzfW   (1.2) 

By making use of (1.2), it is evident that 

( ( )) ( ) ( )zfW
m

k
zfWz

k
k

m

m
mk 1,

,

1

1,
, 11

+λ
βα

=

+λ
βα


























+









β
α−







=′   

( ) ( ).1
,
,

1

1
zfW

m

k k
k

m

m
m λ

βα
=

+





















β
α−







−   (1.3) 

We will need the following lemmas in investigating our main results. 

Lemma 1.1 [5]. Suppose that the convex function h satisfies ( ) ,0 ah =  let ∗∈µ C  

{ }0\C=  such that ( ) .0Re ≥µ  If [ ]na,HP ∈  with ( ) a=0P  and ,:
2

CC →×ψ U  

( ) ( )( ) ( ) ( )zzzzzz PPPP ′
µ

+=′ψ 1
,  is holomorphic in ,U  then  

( ) ( ) ( ) ( ) ( ),
1

2 zhFzzzF h UU
PP ≤







 ′
µ

+
×ψ C

 

implies  

( ) ( ) ( ) ( ) ( ) ( ) ,, UP UUUP ∈≤≤ zzhFzqFzF hq  

i.e.,  

( ) ( ) ( ),zhzqz FF ppP  

where  

( ) ( )
−µ

µ
µ=

z

n

n

dttth

nz

zq

0

1
 

is convex and is the fuzzy best dominant. 



Şahsene Altınkaya and Abbas Kareem Wanas 

http://www.earthlinepublishers.com 

54 

Lemma 1.2 [5]. Suppose that q is a convex function in ,U  let ( ) ( ) += zqzh  

( ),zqnvz ′  0>v  and .N∈n  If ( )[ ]nq ,0HP ∈  and ,:
2

CC →×ψ U  ( ) ( )( )zzz PP ′ψ ,  

( ) ( )zvzz PP ′+=  is holomorphic in ,U  then  

( ) ( ) ( )[ ] ( ) ( ),2 zhFzvzzF h UU
PP ≤′+

×ψ C
 

implies  

( ) ( ) ( ) ( ) ,, UP UUP ∈≤ zzqFzF q  

i.e.,  

( ) ( )zqz FpP  

and q is the fuzzy best dominant. 

Recently, Oros and Oros [7, 8], Lupaş [2-5], Haydar [1] and Wanas and Majeed [10, 

11, 12] have obtained fuzzy differential subordination results for certain classes of 

holomorphic functions. 

2. Main Results 

Theorem 2.1. Suppose that convex function h satisfies ( ) .10 =h  Let A∈f  and  

( ) ( ) ( ) ( )








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




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

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
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


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
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β
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


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 λ
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=

++λ
βα

=

+  zfW
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zfW

m

k

z

k
k

m

m
mk
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m

m
m ,

,

1

11,
,

1

1
111

1
 

( ( ))″+ λ
βα zfWz

k ,
,   

is holomorphic in .U  

If  

( ) ( ) ( )


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


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
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
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
+









β
α−







 +λ
βα

=

+
×ψ  zfW

m

k

z
F

k
k

m

m
m 1,

,

1

1
11

1
2
UC

  

( ) ( ) ( ( )) ( ) ( ),1
,
,

,
,

1

1
zhFzfWzzfW

m

k
h

kk
k

m

m
m

U≤




″+



















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





β
α−







− λ
βα

λ
βα

=

+  (2.1)  
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then 

( ) ( )(( ( )) ) ( ) ( ) ( ) ( ),
,
,,

,

zhFzqFzfWF hq
k

fW
k UU

U
≤≤′λ

βα′λ
βα

 

i.e.  

( ( )) ( ) ( ),
,
, zhzqzfW FF

k
pp

′λ
βα  

where ( ) ( )=
z

th
z

zq
0

1
 is convex and is the fuzzy best dominant. 

Proof. Assume that  

 ( ) ( ( )) .
,
,

′= λ
βα zfWz

k
P  (2.2)  

Then [ ]1,1HP ∈  and ( ) .10 =P  Therefore, in view of (1.3) and (2.2), we have  

( ) ( ) ( ) 
∞

=

−
λ

=
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
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


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( ) ( )
































+









β
α−







= +λ
βα

=

+ zfW
m

k

z

k
k

m

m
m 1,

,

1

1
11

1
 

( ) ( ) ( ( )) .1
,
,

,
,

1

1 ″+



























β
α−







− λ
βα

λ
βα

=

+ zfWzzfW
m

k kk
k

m

m
m  (2.3) 

According to (2.1) and (2.3), we deduce that  

( ) ( ) ( )[ ] ( ) ( ).2 zhFzzzF h UU
PP ≤′+

×ψ C
 

Thus applying Lemma 1.1 with ,1=µ  we obtain  

( ) ( ) ( ) ( ) ( ) ( ).zhFzqFzF hq UUUP P ≤≤  

From (2.2), we find that  

( ) ( )(( ( )) ) ( ) ( ) ( ) ( ),
,
,,

,

zhFzqFzfWF hq
k

fW
k UU

U
≤≤′λ

βα′λ
βα

 

i.e., 

( ( )) ( ) ( ),
,
, zhzqzfW FF

k
pp

′λ
βα  

where ( ) ( )=
z

dtth
z

zq
0

1
 is convex and is the fuzzy best dominant. 

Putting 0=λ  and ( ) ( ) ( )10
1

121 <ρ≤
+

−ρ+=
z

z
zh  in Theorem 2.1, we obtain the 

following corollary: 

Corollary 2.1. Let A∈f  and ( ) ( )zfzfz ′+′′  is holomorphic in .U  If  

( ) ( ) ( )
,

1

121

z

z
zfzfz F +

−ρ+′+′′ p  

then  

( ) ( ) ( )
,

1

121

z

z
zqzf FF +

−ρ+′ pp  

where ( ) ( ) ( )z
z

zq +ρ−+−ρ= 1ln
12

12  is convex and is the fuzzy best dominant. 
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Theorem 2.2. Suppose that the convex function h satisfies ( ) .10 =h  Let A∈f  and 

( ( ))′λ
βα zfW

k ,
,  is holomorphic in .U  If  

 ( )[( ( )) ] ( ) ( ),
,
,2 zhFzfWF h

k
UU

≤′λ
βα×ψ C

 (2.4) 

then 

( ) ( )

( )
( ) ( ) ( ) ( ),

,
,

,
,

zhFzqF
z

zfW
F hq

k

fW
k UU

U
≤≤













 λ
βα

λ
βα

 

i.e., 

( )
( ) ( ),

,
,

zhzq
z

zfW

FF

k

pp

λ
βα

 

where ( ) ( )=
z

dtth
z

zq
0

1
 is convex and is the fuzzy best dominant. 

Proof. Assume that  

 ( )
( )

.

,
,

z

zfW
z

k λ
βα=P  (2.5)  

It is clear that [ ]1,1HP ∈  and ( ) .10 =P   

We find  

 ( ) ( ) ( ( )) .
,
,

′=′+ λ
βα zfWzzz

k
PP  (2.6)  

In view of (2.6), the fuzzy differential subordination (2.4) becomes  

( ) ( ) ( )[ ] ( ) ( ).2 zhFzzzF h UU
PP ≤′+

×ψ C
 

Thus applying Lemma 1.1 with ,1=µ  we obtain  

( ) ( ) ( ) ( ) ( ) ( ).zhFzqFzF hq UUUP P ≤≤  

From (2.5), we get  

( ) ( )

( )
( ) ( ) ( ) ( ),

,
,

,
,

zhFzqF
z

zfW
F hq

k

fW
k UU

U
≤≤













 λ
βα

λ
βα
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i.e.,  

( )
( ) ( ),

,
,

zhzq
z

zfW

FF

k

pp

λ
βα

 

where ( ) ( )=
z

dtth
z

zq
0

1
 is convex and is the fuzzy best dominant. 

Putting 0=λ  and ( ) 1, ≤= bezh
bz  in Theorem 2.2, we obtain the following 

corollary: 

Corollary 2.2. If ( )zff ′∈ ,A  is holomorphic in U  and ( ) ,bz
F ezf p′  then 

( ) ( ) ,
bz

FF ezq
z

zf
pp  

where ( )
bz

e
zq

bz 1−=  is convex and is the fuzzy best dominant. 

Theorem 2.3. Suppose that q is a convex function in U  such that ( ) ,10 =q   

( ) ( ) ( ) ( ).1
1

1
zqz

m

k
zqzh

k

m mm

m
m ′























β+α
β−







+=  =
+

 Let A∈f  and ( ( ))′+λ
βα zfW

k 1,
,  

is holomorphic in .U  If  

 ( )[( ( )) ] ( ) ( ),
1,

,2 zhFzfWF h
k

UU
≤′+λ

βα×ψ C
 (2.7)  

then  

( ) ( )(( ( )) ) ( ) ( ),
,
,,

,

zqFzfWF q
k

fW
k U

U
≤′λ

βα′λ
βα

 

i.e.,  

( ( )) ( )zqzfW F
k

p
′λ

βα
,
,  

and q is fuzzy best dominant. 

Proof. Assume that  

 ( ) ( ( )) .
,
,

′= λ
βα zfWz

k
P  (2.8)  

It is clear that [ ].1,1H∈p  
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By simple computations of (2.8), we find that  
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In the light of (2.9) and (2.10), (2.7) becomes  

( ) ( ) ( ) ( ) ( ) ( ).1

1

1
2 zhFzz

m

k
zF h

k

m
mm

m
m

UU
PP ≤












′
























β+α
β−







+ 
=

+
×ψ C

 

Thus applying Lemma 1.2 with ( ) ,1
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

β+α
β−







=  =
+k

m mm

m
m

m

k
v  we obtain  

( ) ( )(( ( )) ) ( ) ( ),
,
,,

,

zqFzfWF q
k

fW
k U

U
≤′λ

βα′λ
βα

 

i.e., 

( ( )) ( )zqzfW F
k

p
′λ

βα
,
,  

and q is fuzzy best dominant. 

Theorem 2.4. Suppose that q is a convex function in U  such that ( ) ,10 =q  

( ) ( ) ( ).zqzzqzh ′+=  Let A∈f  and 
( )

( )

′















λ
βα

+λ
βα

zfW

zfzW

k

k

,
,

1,
,

 is holomorphic in .U  If  

 ( )
( )

( )
( ) ( ),

,
,

1,
,

2 zhF
zfW

zfzW
F hk

k

UU
≤















 ′















λ
βα

+λ
βα

×ψ C
 (2.11)  
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then  
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( )

( )
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,
,

1,
,

,
,

1,
,

zqF
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F qk
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k U

U

≤






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





λ
βα

+λ
βα

















λ
βα

+λ
βα

 

i.e.,  

( )

( )
( )zq

zfW

zfW

Fk

k

pλ
βα

+λ
βα
,
,

1,
,

 

and q is fuzzy best dominant. 

Proof. Assume that  

 ( )
( )

( )
.

,
,

1,
,

zfW

zfW
z

k

k

λ
βα

+λ
βα=P  (2.12)  

Therefore, we note that [ ].1,1HP ∈  

Differentiating both sides of (2.12) with respect to z, it yields  

( )
( ( ))

( )
( )

( ( ))
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.

,
,

,
,

,
,

1,
,
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zfW
z

zfW

zfW
z

k

k

k

k

λ
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λ
βα

λ
βα

+λ
βα

′
−

′
=′ PP  

Then  

( ) ( )
( ) ( ( ( )) ( )) ( ) ( ( ))

( ( ))2,
,

,
,

1,
,

1,
,

1,
,

,
,

zfW

zfWzfzWzfWzfWzzfW
zzz

k

kkkkk

λ
βα

λ
βα

+λ
βα

+λ
βα

+λ
βα

λ
βα

′−+′
=′+ PP  

( )

( )
.

,
,

1,
,

′














= λ

βα

+λ
βα

zfW

zfzW

k

k

  (2.13) 

Utilizing (2.13) in (2.11), we can get  

( ) ( ) ( )[ ] ( ) ( ).2 zhFzzzF h UU
PP ≤′+

×ψ C
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Thus applying Lemma 1.2 with ,1=v  we obtain  

( )

( )

( )
( ) ( ),

,
,

1,
,

,
,

1,
,

zqF
zfW

zfW
F qk

k

fW

fW

k

k U

U

≤














λ
βα

+λ
βα

















λ
βα

+λ
βα

 

i.e.,  

( )

( )
( )zq

zfW

zfW

Fk

k
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βα

+λ
βα
,
,

1,
,

 

and q is fuzzy best dominant. 
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