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Abstract 

The concept of coupled Γ-semiring first appeared in [1]. In the present paper assuming M 

is a Γ-semiring, we introduce concepts of anti-fuzzy prime ideal, anti-fuzzy semi prime 

ideal, and anti-fuzzy ideal extension, respectively, of .MM ×  Some properties associated 

with these new concepts are obtained. The work in this paper takes inspiration from [2]. 

1. Introduction and Preliminaries 

Definition 1.1. [2] A fuzzy subset μ of a Γ-semiring M is called an anti-fuzzy left 

ideal of M, if the following hold: 

(a) ( ) ( ) ( ){ }yxyx µµ≤+µ ,max  

(b) ( ) ( )yyx µ≤αµ  

for all .,, Γ∈α∈ Myx  

Remark 1.2. [2] If we replace (b) in the above definition with ( ) ( ),xyx µ≤αµ  then 

we say the fuzzy subset μ of the Γ-semiring M is an anti-fuzzy right ideal of M. 

Remark 1.3. [2] If μ is an anti-fuzzy left (right) ideal of a Γ-semiring M, then 

( ) ( )xµ≤µ 0  for all .Mx ∈  
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Definition 1.4. [2] A fuzzy subset μ of a Γ-semiring M is called an anti fuzzy ideal of 

M, if μ is both an anti fuzzy left and anti-fuzzy right ideal of M. 

Definition 1.5. [2] A subset A of a Γ-semiring M is a left (right) ideal of M, if A is an 

additive semigroup of M, and the set 

{ } ( )MAAyMxyxAM Γ∈Γ∈α∈α=Γ ,,  

is contained in A. If A is both a left and right ideal of M, then A is an ideal of M. 

Definition 1.6. [2] Let M be a Γ-semiring, and μ be an anti-fuzzy ideal of M. Then μ 

is an anti-fuzzy prime ideal of M, if ( ) ( )xxx αµ≤µ  for all ,Mx ∈  and .Γ∈α  

Definition 1.7. [2] Let M be a Γ-semiring, and μ be a fuzzy subset of M. The fuzzy 

subset [ ]1,0:, aMx µ  defined by 

( ) ( )yxyx αµ=µ
Γ∈α

sup,  

for all My ∈  is called an extension of μ by x. 

Definition 1.8. [2] Let M be a Γ-semiring, and μ be a fuzzy subset of M. Then μ is 

called an anti fuzzy prime ideal of M if 

( ) ( ) ( ){ }yxyx µµ=αµ ,min  

for all ,, Myx ∈  and .Γ∈α  

Definition 1.9. [2] Let M be a Γ-semiring, and μ be an anti fuzzy ideal of M. For any 

[ ],1,0∈t  we define tµ  by the set 

( ){ }txMx ≤µ|∈  

and call tµ  an anti level subset. 

Definition 1.10. [2] Let M be a Γ-semiring, ,MA ⊆  and .Mx ∈  We define Ax,  

by 

{ }.allfor , Γ∈α∈α|∈ AyxMy  

Definition 1.11. [2] Let M be a Γ-semiring, and μ be an anti-fuzzy ideal of M. We 

say μ is an anti fuzzy semi prime ideal if 
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( ) ( )xxx αµ≤µ  

for all .Mx ∈  

Definition 1.12. [2] Let M be a Γ-semiring. Then the fuzzy ideal μ of M is called an 

anti fuzzy k-ideal of M if 

( ) ( ) ( ){ }yyxx µ+µ≤µ ,max  

for all ., Myx ∈  

2. Main Results 

Definition 2.1. Let M be a Γ-semiring. A fuzzy subset μ of MM ×  is called an anti-

fuzzy left ideal of ,MM ×  if the following hold: 

(a) ( ) ( ) ( ){ }vymxvmyx ,,,max, µµ≤++µ  

(b) ( ) ( )vyvmyx ,, µ≤ααµ  

for all ( ) ( ) .,,,, Γ∈α×∈ MMvymx  

Remark 2.2. If we replace (b) in the above definition with ( ) ( ),,, mxymyx µ≤ααµ  

then we say the fuzzy subset μ of MM ×  is an anti-fuzzy right ideal of .MM ×  

Remark 2.3. If μ is an anti-fuzzy left (right) ideal of ,MM ×  then ( ) ≤µ 0,0  

( )mx,µ  for all ( ) ., MMmx ×∈  

Definition 2.4. A fuzzy subset μ of MM ×  is called an anti fuzzy ideal of ,MM ×  

if μ is both an anti fuzzy left and anti-fuzzy right ideal of .MM ×  

Definition 2.5. Let M be a Γ-semiring, and define .: MMM ×=∗  A subset A of 

∗
M  is called a left (right) ideal of ,∗

M  if A is an additive semigroup of ,∗
M  and the set 

{( ) ( ) ( ) } ( )∗∗∗ Γ∈Γ∈α∈|αα=Γ MAAvyMmxvmyxAM ,,,,,  

is contained in A. If A is both a left and right ideal of ,∗
M  then A is an ideal of .∗

M  

Theorem 2.6. Let M be a Γ-semiring, and define .: MMM ×=∗  Suppose A is a 

nonempty subset of ,∗
M  and define fuzzy subset μ in ∗

M  by 
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Then μ is an anti-fuzzy ideal of ∗
M  if and only if A is an ideal of .

∗
M  

Proof. Suppose μ is an anti-fuzzy ideal of .∗M  Let ( ) ( ) .,,, Avymx ∈  It follows 

that ( ) ( ) .0,, =µ=µ mymx  Now observe that 

( ) ( ) ( ){ } .0,,,max, =µµ≤++µ vymxvmyx  

Hence, ( ) ., Amzyx ∈++  Now let ( ) ( ) Avymx ∈,,,  and ,Γ∈α  and observe that 

( ) ( ) ( ){ } .0,,,min, =µµ≤ααµ vymxvmyx  

Hence, ( ) ., Avmyx ∈αα  It now follows that A is an ideal of .∗M  For the converse, let 

( ) ( ) ,,,,, Γ∈α∈ Avymx  and A an ideal of .
∗

M  We consider the following cases. 

Case I. ( ) Amx ∈,  and ( ) Avy ∈,  

In this case we know ( ) 0, =µ mx  and ( ) .0, =µ vy  Also since A is an ideal of ,∗M  

we know ( ) Amzyx ∈++ ,  and ( ) ,, Avmyx ∈αα  thus, ( ) ,0, =++µ vmyx  and 

( ) .0, =ααµ vmyx  Since ( ) ( ){ } ,0,,,max =µµ vymx  and, ( ) ( ){ } ,0,,,min =µµ vymx  

we have, ( ) ( ) ( ){ } ,0,,,max,0 =µµ=++µ= vymxvmyx  and ( ) =ααµ= vmyx ,0  

( ) ( ){ } ,0,,,min =µµ vymx  hence the conclusion. 

Case II. ( ) Amx ∉,  and ( ) Avy ∉,  

In this case we know ( ) 1, =µ mx  and ( ) .1, =µ vy  Also since A is an ideal of ,∗M  

we know ( ) Amzyx ∈++ ,  and ( ) ,, Avmyx ∈αα  thus, ( ) ,0, =++µ vmyx  and 

( ) .0, =ααµ vmyx  Since ( ) ( ){ } ,1,,,max =µµ vymx  and, ( ) ( ){ } ,1,,,min =µµ vymx  we 

have, ( ) ( ) ( ){ } ,1,,,max,0 =µµ<++µ= vymxvmyx  and 

( ) ( ) ( ){ } 1,,,min,0 =µµ<ααµ= vymxvmyx  

hence the conclusion. 

Case III. ( ) Amx ∈,  and ( ) Avy ∉,  
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In this case we know ( ) 0, =µ mx  and ( ) .1, =µ vy  Also since A is an ideal of ,∗M  

we know ( ) Amzyx ∈++ ,  and ( ) ,, Avmyx ∈αα  thus, ( ) ,0, =++µ vmyx  and 

( ) .0, =ααµ vmyx  Since ( ) ( ){ } ,1,,,max =µµ vymx  and, ( ) ( ){ } ,0,,,min =µµ vymx  

we have, ( ) ( ) ( ){ } ,1,,,max,0 =µµ<++µ= vymxvmyx  and 

( ) ( ) ( ){ } 0,,,min,0 =µµ=ααµ= vymxvmyx  

hence the conclusion. 

Case IV. ( ) Amx ∉,  and ( ) Avy ∈,  

In this case we know ( ) 1, =µ mx  and ( ) .0, =µ vy  Also since A is an ideal of ,∗M  

we know ( ) Amzyx ∈++ ,  and ( ) ,, Avmyx ∈αα  thus, ( ) ,0, =++µ vmyx  and 

( ) .0, =ααµ vmyx  Since ( ) ( ){ } ,1,,,max =µµ vymx  and, ( ) ( ){ } ,0,,,min =µµ vymx  

we have, ( ) ( ) ( ){ } ,1,,,max,0 =µµ<++µ= vymxvmyx  and 

( ) ( ) ( ){ } 0,,,min,0 =µµ=ααµ= vymxvmyx  

hence the conclusion. 

Definition 2.7. Let M be a Γ-semiring, and μ be an anti-fuzzy ideal of .MM ×  We 

say μ is an anti-fuzzy prime ideal of ,MM ×  if ( ) ( )mmxxmx ααµ≤µ ,,  for all 

( ) ,, MMmx ×∈  and .Γ∈α  

Theorem 2.8. Let M be a Γ-semiring, and μ be an anti-fuzzy ideal of .MM ×  Then 

the following are equivalent: 

(a) μ is an anti fuzzy semi prime ideal of .MM ×  

(b) ( ) ( )mmxxmx ααµ=µ ,,  for all ( ) ,, MMmx ×∈  and .Γ∈α  

Proof. ((b)  (a)) If (b) holds, then we know two inequalities are satisfied, of which 

one of them is, ( ) ( )mmxxmx ααµ≤µ ,,  for all ( ) ,, MMmx ×∈  and ,Γ∈α  hence, μ 

is an anti fuzzy semi prime ideal of .MM ×  

((a)  (b)) If (a) holds, then we know the following inequality holds for all 

( ) MMmx ×∈,  and ,Γ∈α  

( ) ( ).,, mmxxmx ααµ≤µ  
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Since μ is an anti fuzzy ideal of ,MM ×  we may assume μ is an anti fuzzy right ideal of 

,MM ×  then we know the following inequality holds for all ( ) ( ) MMmxmx ×∈,,,  

and ,Γ∈α  

( ) ( ).,, mxmmxx µ≤ααµ  

Thus combining the two inequalities above gives the conclusion. 

Definition 2.9. Let M be a Γ-semiring, and μ be a fuzzy subset of .MM ×  Then the 

fuzzy subset ( ) [ ]1,0:,, aMMmx ×µ  defined by 

( ) ( ) ( )vmyxvymx ααµ=µ
Γ∈α

,sup,,,  

for all ( ) MMvy ×∈,  is called an extension of μ by ( )., mx  

Theorem 2.10. Let M be a Γ-semiring, and μ be an anti fuzzy right ideal of .MM ×  

Then ( ) µ,, mx  is an anti fuzzy right ideal of .MM ×  

Proof. Let ( ) ( ) ,,,, MMvykz ×∈  and .Γ∈α  Now observe we have the 

following: 

 ( ) ( ) ( ) ( )( )kvmzyxkvzymx +α+αµ=++µ
Γ∈α

,sup,,,  

( )kmvmzxyx ααα+αµ=
Γ∈α

,,sup  

( ) ( ){ }kmzxvmyx ααµααµ≤
Γ∈α

,,,maxsup  

{ ( ) ( )}kmzxvmyx ααµααµ=
Γ∈αΓ∈α

,sup,,supmax  

( ) ( ) ( ) ( ){ }kzmxvymx ,,,,,,,max µµ=   

Also 

( ) ( ) ( ) ( )( )kvmzyxkvzymx αβαβµ=ααµ
Γ∈β

,sup,,,  

( ) ( )( )kvmzyx αβαβµ=
Γ∈β

,sup  

( )vmyx ββµ≤
Γ∈β

,sup  
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( ) ( ).,,, vymx µ=  

Definition 2.11. Let M be a Γ-semiring, and μ be a fuzzy subset of .MM ×  We say 

μ is an anti fuzzy prime ideal of MM ×  if 

( ) ( ) ( ){ }vymxvmyx ,,,min, µµ=ααµ  

for all ( ) ( ) ,,,, MMvymx ×∈  and .Γ∈α  

Theorem 2.12. Let M be a Γ-semiring, and μ be an anti fuzzy prime ideal of 

,MM ×  and ( ) ., MMmx ×∈  Then ( ) µ,, mx  is an anti fuzzy prime ideal of 

.MM ×  

Proof. Let ( ) ( ) ( ) ,,,,,, MMkzvymx ×∈  and .Γ∈β  Now observe we have the 

following: 

( ) ( ) ( ) ( )( )kvmzyxkvzymx βαβαµ=ββµ
Γ∈α

,sup,,,  

( ) ( ){ }kvzymx ββµµ=
Γ∈α

,,,minsup  

( ) ( ) ( ){ }{ }kzvymx ,,,min,,minsup µµµ=
Γ∈α

 

( ) ( ){ } ( ) ( ){ }{ }kzmxvymx ,,,min,,,,minminsup µµµµ=
Γ∈α

 

( ) ( ){ }kmzxvmyx ααµααµ=
Γ∈α

,,,minsup  

{ ( ) ( )}kmzxvmyx ααµααµ=
Γ∈αΓ∈α

,sup,,supmin  

( ) ( ) ( ) ( ){ }.,,,,,,,min kzmxvymx µµ=  

Hence the theorem. 

Theorem 2.13. Let M be a commutative Γ-semiring, and μ be a fuzzy subset of 

.MM ×  Suppose ( ) MMmx ×∈,  such that the extension ( ) µ=µ,, mx  for every 

( ) ., MMmx ×∈  Then μ is a constant function. 

Proof. Let M be a commutative Γ-semiring, and μ be a fuzzy subset of .MM ×  

Suppose ( ) ( ) ,,,, MMvymx ×∈  and .Γ∈α  Now observe we have the following: 
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( ) ( ) ( )mxvymx ,,,, µ=µ  

( )mvxy ααµ=
Γ∈α

,sup  

( )vmyx ααµ=
Γ∈α

,sup  

( ) ( )vymx ,,, µ=  

( )., vyµ=  

Hence, ( ) ( ),,, vymx µ=µ  and the theorem follows. � 

Definition 2.14. Let M be a Γ-semiring, and μ be an anti fuzzy ideal of .MM ×  For 

any [ ],1,0∈t  we define tµ  by the set 

( ) ( ){ }tmxMMmx ≤µ|×∈ ,,  

and call tµ  an anti level subset. 

Definition 2.15. Let M be a Γ-semiring, ,MMA ×⊆  and ( ) ., MMmx ×∈  We 

define ( ) Amx ,,  by 

( ) ( ){ }.allfor ,,, Γ∈α∈αα|×∈ AvmyxMMvy  

Theorem 2.16. Let M be a commutative Γ-semiring, and μ be a fuzzy subset of 

.MM ×  Then for every ( ),Im µ∈t  ( ) ( )
tt mxmx µ=µ ,,,,  for every ( ) ∈mx,  

.MM ×  

Proof. Observe we have the following 

( ) ( )
t

mxvy µ∈ ,,,  

⇔  

( ) ( ) tvymx ≤µ ,,,  

⇔  

( )vmyx ααµ
Γ∈α

,sup  

⇔  
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( ) tvmyx ≤ααµ ,  

⇔  

( ) tvmyx µ∈αα ,  

⇔  

( ) ( ) tmxvy µ∈ ,,,  by Definition 2.15. 

Hence the theorem.  � 

Note that Theorem 2.10 holds, if μ is an anti fuzzy left ideal of ,MM ×  thus the 

following is immediate 

Corollary 2.17. Let M be a commutative Γ-semiring and μ be an anti fuzzy ideal of 

,MM ×  and ( ) ., MMmx ×∈  Then the extension 

( ) µ,, mx  

is an anti fuzzy ideal of .MM ×  

Definition 2.18. Let M be a Γ-semiring, and μ be an anti-fuzzy ideal of .MM ×  We 

say μ is an anti fuzzy semi prime ideal if 

( ) ( )mmxxmx ααµ≤µ ,,  

for all ( ) ., MMmx ×∈  

Theorem 2.19. Let M be a commutative Γ-semiring, μ be an anti-fuzzy semi prime 

ideal of ,MM ×  and ( ) ., MMmx ×∈  Then ( ) µ,, mx  is an anti-fuzzy semi prime 

ideal of .MM ×  

Proof. Let M be a commutative Γ-semiring, μ be an anti-fuzzy semi prime ideal of 

,MM ×  ( ) ( ) MMvymx ×∈,,,  and .Γ∈β  By Corollary 2.17, the extension 

( ) µ,, mx  is an anti-fuzzy ideal of .MM ×  Now observe we have the following: 

( ) ( ) ( )vmyxvymx ααµ=µ
Γ∈α

,sup,,,  

( )vmvmyxyx αβααβαµ≤
Γ∈α

,sup  

( )mvvmxyyx αβααβαµ=
Γ∈α

,sup  
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( )vvmyyx βαβαµ≤
Γ∈α

,sup  

( ) ( ).,,, vvyymx ββµ=  

Hence the theorem. � 

Definition 2.20. Let M be a Γ-semiring. We say the fuzzy ideal μ of MM ×  is an 

anti fuzzy k-ideal of MM ×  if 

( ) ( ) ( ){ }vyvmyxmx ,,,max, µ++µ≤µ  

for all ( ) ( ) .,,, MMvymx ×∈  

Theorem 2.21. Let M be a commutative Γ-semiring, μ be an anti fuzzy k-ideal of 

,MM ×  and ( ) ., MMkz ×∈  Then ( ) µ,, kz  is an anti fuzzy k-ideal of .MM ×  

Proof. Let M be a commutative Γ-semiring, μ be an anti fuzzy k-ideal of ,MM ×  

and ( ) ( ) ( ) ,,,,,, MMkzvymx ×∈  and .Γ∈α  Based on the assumption, it follows 

from Corollary 2.17 that the extension ( ) µ,, kz  is an anti fuzzy ideal of .MM ×  Now 

we know the following for all ( ) ( ) MMvymx ×∈,,,  

( ) ( ) ( ){ }.,,,max, vyvmyxmx µ++µ≤µ  

Thus for all ( ) ( ) ,,,, MMvymx ×∈  and ,Γ∈α  we deduce the following: 

( ) { ( ) ( )}.,,max, vkyzvkmkyzxzmkxz α+αµα+αα+αµ≤ααµ  

Now taking sup on both sides of the above inequality over all ,Γ∈α  we deduce the 

following: 

( ) { ( ) ( )}.sup,,supmax,sup vkyzvkmkyzxzmkxz α+αµα+αα+αµ≤ααµ
Γ∈αΓ∈αΓ∈α

 

By Definition 2.9, the above inequality translates as 

( ) ( ) ( ) ( ) ( ) ( ){ }.,,,,,,,max,,, vykzvmyxkzmxkz µ++µ≤µ  

Hence the theorem. � 

Theorem 2.22. Let M be a commutative Γ-semiring, and μ be an anti fuzzy ideal of 

.MM ×  If for ( ) ( )vyMMvy ,,, µ×∈  is not minimal in ( ),MM ×µ  and ( ) µ,, mx  

,µ=  then μ is an anti-fuzzy prime ideal of .MM ×  



Fuzzy Extension of Coupled Γ-semiring: Some Properties 

Earthline J. Math. Sci. Vol. 4 No. 1 (2020), 39-50 

49 

Proof. Let ( ) ( ) ,,,, MMbbaa ×∈′′  and .Γ∈α  We know 

( ) ( ) ( ) ( )aabbaababa ′µ=′µ′=′α′αµ
Γ∈α

,,,,,sup  

and 

( ) ( ) ( ) ( ).,,,,,sup bbaabbabab ′µ=′µ′=′α′αµ
Γ∈α

 

We also know ( ) ( )aababa ′µ≤′α′αµ ,,  and ( ) ( ).,, bbbaba ′µ≤′α′αµ  

Case I. ( )aa ′µ ,  or ( )bb ′µ ,  is not minimal in ( )MM ×µ  

If ( )aa ′µ ,  is not minimal, then since 

( ) ( ) ( ) ( )bbaabbabab ′µ=′µ′=′α′αµ
Γ∈α

,,,,,sup  

and M is a commutative Γ-semiring, then 

( ) ( ) ( )ababababbaba ′α′αµ≥′α′αµ=′α′αµ
Γ∈α

,sup,,  

( ) ( ) ( )bbaabb ′µ=′µ′= ,,,,  

and since we know ( ) ( ),,, bbbaba ′µ≤′α′αµ  hence, 

( ) ( ) ( ) ( ){ }.,,,min,, aabbbbbaba ′µ′µ=′µ=′α′αµ  

If ( )bb ′µ ,  is not minimal, then in a similar way we can conclude 

( ) ( ) ( ) ( ){ }.,,,min,, aabbaababa ′µ′µ=′µ=′α′αµ  

Hence the theorem. 

Case II. Neither ( )aa ′µ ,  nor ( )bb ′µ ,  is minimal in ( )MM ×µ  

Since we know ( ) ( )aababa ′µ≤′α′αµ ,,  and ( ) ( ),,, bbbaba ′µ≤′α′αµ  it follows 

that 

( ) ( ) ( ){ }.,,,min, bbaababa ′µ′µ≤′α′αµ  

Now from 

( ) ( ) ( ) ( ) ( )bbaabbababbaba ′µ=′µ′=′α′αµ=′α′αµ
Γ∈αΓ∈α

,,,,,sup,sup  
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and 

( ) ( ) ( ) ( )aabbaababa ′µ=′µ′=′α′αµ
Γ∈α

,,,,,sup  

we deduce that 

( ) ( )aababa ′µ≥′α′αµ ,,  and ( ) ( )bbbaba ′µ≥′α′αµ ,,  

hence 

( ) ( ) ( ){ }.,,,min, bbaababa ′µ′µ≥′α′αµ  

Consequently, we have 

( ) ( ) ( ){ }aabbbaba ′µ′µ=′α′αµ ,,,min,  

hence the theorem 

3. Concluding Remark and Further Direction 

Given M is a Γ-semiring, we have introduced concepts of anti-fuzzy prime ideal, 

anti-fuzzy semi prime ideal, and anti-fuzzy ideal extension, respectively, of ;MM ×  

some properties associated with these new concepts have been obtained. 

A future interesting problem is introduce some concepts of triple Γ-semiring 

( ),MMM ××  and study some of their properties. 
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