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Abstract

The concept of coupled I"-semiring first appeared in [1]. In the present paper assuming M
is a [-semiring, we introduce concepts of anti-fuzzy prime ideal, anti-fuzzy semi prime
ideal, and anti-fuzzy ideal extension, respectively, of M X M. Some properties associated

with these new concepts are obtained. The work in this paper takes inspiration from [2].

1. Introduction and Preliminaries

Definition 1.1. [2] A fuzzy subset p of a -semiring M is called an anti-fuzzy left
ideal of M, if the following hold:

(@ u(x + y) < max{pu(x), u(y)}
(b) p(xay) < pu(y)
forall x, yOM,a OT.

Remark 1.2. [2] If we replace (b) in the above definition with p(xay) < p(x), then

we say the fuzzy subset p of the [-semiring M is an anti-fuzzy right ideal of M.

Remark 1.3. [2] If p is an anti-fuzzy left (right) ideal of a -semiring M, then
u(0) < p(x) forall x O M.
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Definition 1.4. [2] A fuzzy subset p of a I'-semiring M is called an anti fuzzy ideal of
M, if pis both an anti fuzzy left and anti-fuzzy right ideal of M.

Definition 1.5. [2] A subset A of a I'-semiring M is a left (right) ideal of M, if A is an
additive semigroup of M, and the set

MTA={xay [xOM,a 0T, yOdA} (ATM)
is contained in A. If A is both a left and right ideal of M, then A is an ideal of M.

Definition 1.6. [2] Let M be a I'-semiring, and p be an anti-fuzzy ideal of M. Then p
is an anti-fuzzy prime ideal of M, if p(x) < p(xax) forall xOM, and a OT.

Definition 1.7. [2] Let M be a -semiring, and p be a fuzzy subset of M. The fuzzy
subset (x, W) : M > [0, 1] defined by

(x, W) () = sup p(xay)
odr

for all y M is called an extension of p by x.

Definition 1.8. [2] Let M be a I-semiring, and p be a fuzzy subset of M. Then p is
called an anti fuzzy prime ideal of M if

p(xay) = min{p(x), u(y)}
forall x, yOM, and a OT.

Definition 1.9. [2] Let M be a I'-semiring, and p be an anti fuzzy ideal of M. For any
¢t O[0, 1], we define y, by the set

{xOM|u(x) < 1}
and call |, an anti level subset.

Definition 1.10. [2] Let M be a [-semiring, A 0 M, and x 0 M. We define (x, A)
by
{yOM |xay O A, forall a OT}.

Definition 1.11. [2] Let M be a -semiring, and p be an anti-fuzzy ideal of M. We

say L is an anti fuzzy semi prime ideal if
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H(x) < p(xox)
forall xO M.

Definition 1.12. [2] Let M be a I'-semiring. Then the fuzzy ideal pu of M is called an
anti fuzzy k-ideal of M if

H(x) < max{u(x + y), u(y)}

forall x, yOM.

2. Main Results

Definition 2.1. Let M be a I'-semiring. A fuzzy subset pof M x M is called an anti-
fuzzy left ideal of M x M, if the following hold:

(@) W(x + y, m+v) < max{p(x, m), u(y, v}}
(b) p(xay, mav) < p(y, v)
forall (x, m), (y,v)OM xM,a OT.

Remark 2.2. If we replace (b) in the above definition with p(xay, may) < p(x, m),
then we say the fuzzy subset L of M x M is an anti-fuzzy right ideal of M x M.

Remark 2.3. If p is an anti-fuzzy left (right) ideal of M x M, then u(0, 0) <
U(x, m) forall (x, m)OM x M.

Definition 2.4. A fuzzy subset p of M x M is called an anti fuzzy ideal of M x M,
if p is both an anti fuzzy left and anti-fuzzy right ideal of M x M.

Definition 2.5. Let M be a I'-semiring, and define M =M x M. A subset A of
MV is called a left (right) ideal of M 5 if A is an additive semigroup of M 5 and the set

MTA= {(xay, mav)|(x, m) O mSaOr, (v, v) O A} (AFMD)
is contained in A. If A is both a left and right ideal of M " then A is an ideal of M "

Theorem 2.6. Let M be a I -semiring, and define M =M x M. Suppose A is a

nonempty subset of M 5 and define fuzzy subset nin M - by
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0 if (x,m)OA,
1 if (x, m)0A.

(e, m) = {

Then  is an anti-fuzzy ideal of M- if and only if A is an ideal of ME
Proof. Suppose 1 is an anti-fuzzy ideal of M" Let (x, m), (y, v) 0 A. It follows
that p(x, m) = u(y, m) = 0. Now observe that
H(x + y, m+v) < max{p(x, m), u(y, v} = 0.

Hence, (x + y, z + m) 0 A. Now let (x, m), (v, v)J A and o 0T, and observe that
u(xay, mov) < min{p(x, m), u(y, v)} = 0.

Hence, (xay, mav) O A. It now follows that A is an ideal of M " For the converse, let

(x, m), (v, v)O A, a OT, and A an ideal of M" We consider the following cases.

CaseL (x,m)0A and (y,v)O A

In this case we know p(x, m) =0 and p(y, v) = 0. Also since A is an ideal of M",
we know (x+y,z+m)OJA and (xay, mov)O A, thus, p(x+y, m+v) =0, and
H(xay, mav) = 0. Since max{p(x, m), u(y, v)} =0, and, min{u(x, m), u(y, v)} =0,
we have, 0 =p(x+y, m+v)=max{u(x, m), u(y, v)} =0, and 0 = p(xay, mav) =

min{p(x, m), U(y, v)} = 0, hence the conclusion.

Casell. (x, m) JA and (y,v)O A

In this case we know p(x, m) =1 and p(y, v) = 1. Also since A is an ideal of M",
we know (x+y,z+m)OA and (xay, mov)O A, thus, p(x+y, m+v) =0, and
U(xay, mav) = 0. Since max{p(x, m), u(y, v)} =1, and, min{p(x, m), u(y, v)} =1, we
have, 0 = p(x + y, m +v) < max{u(x, m), u(y, v)} =1, and

0 = p(xay, mav) < min{u(x, m), u(y, v)} =1
hence the conclusion.

CaseIIL (x, m)JA and (y,v)OA
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In this case we know p(x, m) = 0 and p(y, v) = 1. Also since A is an ideal of M",
we know (x+y,z+m)OA and (xay, mov)O A, thus, p(x+y, m+v) =0, and
U(xay, mav) = 0. Since max{u(x, m), u(y, v)} =1, and, min{p(x, m), u(y, v)} =0,
we have, 0 = u(x + y, m +v) < max{u(x, m), u(y, v)} =1, and

0 = p(xay, mav) = min{pu(x, m), p(y, v)} = 0
hence the conclusion.

CaseIV. (x, m)J A and (y,v) O A

In this case we know p(x, m) =1 and p(y, v) = 0. Also since A is an ideal of M",
we know (x+y,z+m)OA and (xay, mav)O A, thus, u(x+y, m+v) =0, and
U(xay, mav) = 0. Since max{u(x, m), u(y, v)} =1, and, min{pu(x, m), u(y, v)} =0,
we have, 0 = p(x + y, m +v) < max{u(x, m), u(y, v)} =1, and

0 = p(xay, mav) = min{u(x, m), u(y, v} =0
hence the conclusion.

Definition 2.7. Let M be a I'-semiring, and p be an anti-fuzzy ideal of M x M. We
say W is an anti-fuzzy prime ideal of M x M, if p(x, m) < p(xox, mom) for all
(x, mM)OM xM, and a OT.

Theorem 2.8. Let M be a I'-semiring, and | be an anti-fuzzy ideal of M x M. Then

the following are equivalent:
(a) W is an anti fuzzy semi prime ideal of M X M .

(b) u(x, m) = p(xox, mom) forall (x, m) OM xM, and a O T.

Proof. ((b) = (a)) If (b) holds, then we know two inequalities are satisfied, of which
one of them is, p(x, m) < p(xox, mam) for all (x, m) DM x M, and o OT, hence, p

is an anti fuzzy semi prime ideal of M x M.

((a) = (b)) If (a) holds, then we know the following inequality holds for all
(x,m)DMXM and a OT,

u(x, m) < u(xax, mO(m).
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Since W is an anti fuzzy ideal of M X M, we may assume L is an anti fuzzy right ideal of
M x M, then we know the following inequality holds for all (x, m), (x, m) O M x M
and a 0T,
u(xax, mO(m) < u(x, m)
Thus combining the two inequalities above gives the conclusion.
Definition 2.9. Let M be a -semiring, and p be a fuzzy subset of M x M. Then the
fuzzy subset ((x, m), W) : M x M > [0, 1] defined by

((x, m), ) (y, v) = sup p(xory, mav)
alr

forall (y, v)OM x M is called an extension of pby (x, m).

Theorem 2.10. Let M be a I -semiring, and |\ be an anti fuzzy right ideal of M x M.
Then ((x, m), W) is an anti fuzzy right ideal of M x M.

Proof. Let (z,k), (y,v)OM xM, and o Ol. Now observe we have the

following:

sup p(xa(y + z), ma(v + k))
aldr

((x, m), ) (y + 2, v +k)

sup K(xay + xaz, mav, mok)
adr

IN

sup max{p(xay, mav), u(xoz, mak)}
or

max{sup p(xay, mav), sup y(xaz, mak)}
adr aldr

max{((x, m). W) (. v). {(x. m). W) (2. &)}

Also

((x, m), ) (yaz, vak) = sup p(xB(yaz), mB(vak))
pOr

= sup W((xBy)az, (mPv)ak)
pOr

< sup u(xBy, mPv)
Culy
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= ((x, m), ) (. v).

Definition 2.11. Let M be a I'-semiring, and p be a fuzzy subset of M x M. We say

W is an anti fuzzy prime ideal of M x M if
H(xay, mow) = min{p(x, m), u(y, v}}
for all (x, m), (y,vV)OM xM, and a OT.
Theorem 2.12. Let M be a I -semiring, and |\ be an anti fuzzy prime ideal of

M xM, and (x, m)OM xM. Then {(x, m), W) is an anti fuzzy prime ideal of
M x M.

Proof. Let (x, m), (v, v), (z, k) OM xM, and BOT. Now observe we have the

following:

((x, m), W) (yBz, vBk) = sup H(xa(yBz), ma(vBk))

= sup min{p(x, m), u(yBz, vBk)}
odr

= sup min{p(x, m), min{u(y, v), u(z, k)}}
adr

= sup min{min{p(x, m), P(y, v)}, min{u(x, m), u(z, &)}
adr

= sup min{p(xay, mav), p(xaz, mak)}
oar

= min{ sup p(xay, mav), sup p(xaz, mak)}
adr alr

= min{((x, m), W) (v, v), {(x, m), ) (z, k)}.
Hence the theorem.

Theorem 2.13. Let M be a commutative [ -semiring, and |\ be a fuzzy subset of
M x M. Suppose (x, m)OM x M such that the extension ((x, m), W) = | for every

(x, m) OM x M. Then pis a constant function.

Proof. Let M be a commutative [-semiring, and p be a fuzzy subset of M x M.

Suppose (x, m), (y, vV)OM x M, and o OT. Now observe we have the following:

Earthline J. Math. Sci. Vol. 4 No. 1 (2020), 39-50



46 Clement Boateng Ampadu

u(x, m) = ((y, v), W) (x, m)

= sup W(yox, vom)
laly

= sup p(xay, mav)
adr

=((x. m). ) (y. v)
= H(y. v).
Hence, p(x, m) = U(y, v), and the theorem follows. O

Definition 2.14. Let M be a [ -semiring, and p be an anti fuzzy ideal of M x M. For
any t [0, 1], we define 1, by the set

{(x, M) OM x M |u(x, m) < 1}

and call Y, an anti level subset.

Definition 2.15. Let M be a I-semiring, A O M x M, and (x, m) OM x M. We
define ((x, m), A) by

{(y,v)OM x M |(xay, mav) O A, forall a OT}.

Theorem 2.16. Let M be a commutative [ -semiring, and |\ be a fuzzy subset of
M xM. Then for every tOIm(u), ((x, m), u,) =((x, m), ), for every (x,m)D
M xM.

Proof. Observe we have the following

(v, v) O{(x, m), ),

<

((x, m), W) (y, v) <1

<

sup M(xay, mav)
alr

<
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u(xO(y, mO(v) <t

<

(xay, mav) Oy,

<

(v, v) O{(x, m), 1,) by Definition 2.15.
Hence the theorem. O

Note that Theorem 2.10 holds, if p is an anti fuzzy left ideal of M x M, thus the

following is immediate

Corollary 2.17. Let M be a commutative T -semiring and | be an anti fuzzy ideal of
M x M, and (x, m) O M x M. Then the extension

((x, m), W)

is an anti fuzzy ideal of M < M .

Definition 2.18. Let M be a I'-semiring, and . be an anti-fuzzy ideal of M x M. We

say W is an anti fuzzy semi prime ideal if

u(x, m) < p(xox, mam)
forall (x, m) OM x M.

Theorem 2.19. Let M be a commutative [ -semiring, | be an anti-fuzzy semi prime
ideal of M x M, and (x, m) DM x M. Then ((x, m), W) is an anti-fuzzy semi prime
ideal of M X M.

Proof. Let M be a commutative [-semiring, p be an anti-fuzzy semi prime ideal of
M xM, (x,m),(y,v)OMxM and BOTl. By Corollary 2.17, the extension

((x, m), ) is an anti-fuzzy ideal of M x M. Now observe we have the following:

((x. m), 1) (y. v) = sup p(xay, mow)
alr

< sup p(xayBxay, mavBmav)
adr

= sup M(xayByox, mavBvam)
or
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< sup H(xayBy, mavBv)
adr

= {(x, m), W) (yBy, vBv).

Hence the theorem. O

Definition 2.20. Let M be a I-semiring. We say the fuzzy ideal p of M x M is an
anti fuzzy k-ideal of M x M if

M(x, m) < max{p(x +y, m +v), u(y, v}
for all (x, m), (y, v)OM x M.

Theorem 2.21. Let M be a commutative [ -semiring, |\ be an anti fuzzy k-ideal of
M xM, and (z, k) OM x M. Then ((z, k), W) is an anti fuzzy k-ideal of M x M.

Proof. Let M be a commutative [-semiring, p be an anti fuzzy k-ideal of M x M,
and (x, m), (v, v), (z, k) OM xM, and o OI. Based on the assumption, it follows
from Corollary 2.17 that the extension ((z, k), W) is an anti fuzzy ideal of M x M. Now
we know the following for all (x, m), (y, v)O M x M

H(x, m) < max{u(x +y, m +v), u(y, v)}.
Thus for all (x, m), (v, v)OM x M, and a OT, we deduce the following:
H(zox, kam) < max{p(zox + zay, kam + kav), p(zay + kav)}.

Now taking sup on both sides of the above inequality over all o OJI", we deduce the

following:

sup H(zox, kam) < max{sup p(zax + zay, kam + kav), sup Y(zoy + kav)}.
odr oar odr

By Definition 2.9, the above inequality translates as
((z, k). w) (x, m) < max{{(z, k), ) (x + y, m +v), ((z, k), W) (v, v)}-
Hence the theorem. O

Theorem 2.22. Let M be a commutative [ -semiring, and |\ be an anti fuzzy ideal of
M xM. If for (y,v)OM xM, Wy, v) is not minimal in W(M x M), and {(x, m), W)
=W, then pis an anti-fuzzy prime ideal of M < M.
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Proof. Let (a, a'), (b, ') OM x M, and o O T. We know

sup u(aob, a'ab’) =((a, a'), p) (b, ') = W(a, a')
aldr

and

sup W(baa, b'aa’) = {(b, b'), W) (a, a') = u(b, b').
alr

We also know p(a0b, a'ab’) < W(a, a') and p(aab, a'ab’) < u(b, b').
Case L. U(a, a') or p(b, b') is not minimal in u(M x M)

If Y(a, a') is not minimal, then since

sup W(baa, b'aa’) =((b, b'), W) (a, a') = u(b, b)
odr

and M is a commutative [ -semiring, then

U(aab, a'ab') = pu(baa, b'aa’) = sup u(baa, b'aa’)
laly

=((b. '), W) (a, a') = u(b, b')
and since we know p(aab, a'ab’) < u(b, b'), hence,
W(aab, a'ab') = u(b, b') = min{u(b, b'), w(a, a')}.
If p(b, b') is not minimal, then in a similar way we can conclude
H(aab, a'ab’) = y(a, a') = min{p(b, b"), W(a, a')}.
Hence the theorem.
Case IL Neither Y(a, a') nor p(b, b') is minimal in W(M x M)

Since we know W(a0b, a'ab') < U(a, a') and p(aob, a'ab’) < u(b, b'), it follows
that
U(aab, d'ab') < min{u(a, '), u(b, b')}.
Now from

sup U(aab, a'ab') = sup p(baa, b'aa’) = (b, b'), W) (a, a') = u(b, b")
alr alr
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and

sup p(aob, a'ab') =((a, a'), p) (b, ') = W(a, a')
aldr

we deduce that
H(aab, a'ab') = y(a, a') and p(aab, a'ab’) = pu(b, b')
hence
U(aab, d'ab') = min{u(a, a'), u(b, b')}.
Consequently, we have
W(aab, a'ab’) = min{u(d, b'), u(a, a')}

hence the theorem
3. Concluding Remark and Further Direction

Given M is a [-semiring, we have introduced concepts of anti-fuzzy prime ideal,
anti-fuzzy semi prime ideal, and anti-fuzzy ideal extension, respectively, of M X M;

some properties associated with these new concepts have been obtained.

A future interesting problem is introduce some concepts of triple [-semiring

(M x M x M), and study some of their properties.
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