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Abstract

In this paper, by making use of Wanas operator, we derive some properties related to the
strong differential subordinations of analytic functions defined in the open unit disk and

closed unit disk of the complex plane.

1. Introduction

Indicate by H(U xU) the family of all analytic functions in U xU. Let
U={z:0C:|z|<1} and U ={z0C:|z|<1} denote the open unit disk and the
closed unit disk of the complex plane, respectively. For n ON ={1, 2, ..} and a OC,
let

HE[a, n, Z] :{f DH(U XU) : f(z, Z) =a +an(Z)zn +an+1(Z)Z"+1 +oen,
00U, 70U},

where a; ({) are holomorphic functions in U for k > n.
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Also, let Apy ={f OHU xU): f(z. Q) = 2+ a, Q)"+, 20U, 20U},

where a; () are holomorphic functions in U for k = n +1.

A function f 0Ha, n, {] is said to be starlike in U x U if

REHCEININ 7
R{f(z’z)} 0, (zOU,TOU).

Denote the class of all starlike functions in U x U by S ZD.

Similar, f O HYa, n, ] is said to be convexin U x U if

Re{—zf;,2(2’1)+1}>0 (zOU,700)
s Z . .
fi(z. Q)

Denote the class of all convex functions in U xU by K ZD

Definition 1.1 [9]. Let f(z, {), g(z, {) be analytic in U x U. The function f(z, )
is said to be strongly subordinate to g(z, {), written f(z, )<< F(z,2), zOU,
Z OU, if there exists an analytic function w in U with w(0) = 0 and | w(z)| <1, z OU
such that f(z, {) = g(w(z), {) forall ZOU.

Remark 1.1 [9].

(1) Since f(z, Q) is analytic in U xU, for all { DU and univalent in U, for all
{0OU, Definition 1.1 is equivalent to f(0,2)=g(0,Z) for all {0OU and
fUxU)0gUxU).

) If f(z, ) = f(z) and g(z, {) = g(z), then the strong subordination becomes

the usual notion of subordination.

Let A ZD denote the subclass of the functions f(z, ) O H(U xU) of the form:
f) =2+ ) @), 00,000 (1.1)
k=2

which are analytic and univalentin U x U .
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For a OR, B=0 with a +B>0,/0N, m, A\ONy =NU{0} and f OA, the

Wanas operator Wol(’)é : AZD - AZD , (see [12]) is defined by

A
l
( ]( 1)m+1(0 +nB J] k(Z)Zn- (1.2)
m a + B
It is easily verified from (1.2) that

Z(Wé’,%f(z’ 0) = [ZI:UJ (- 1)m+1{[%)m +1J] l)\+1f( 0

m=1
_ [Z:l[;] (- 1)m+1(%Jm:|Wol(”gf(z, 2). (1.3)

Some of the special cases of the operator defined by (1.2) can be found in [1, 2, 4, 10,
11].

In recent years, many authors obtained various interesting results associated with

strong differential subordination and superordination for example (see [3, 5, 6, 13, 14]).
In order to derive our main results, we need the following lemmas.
Lemma 1.1 [8]. Let h(z, {) be a convex function with h(0, {) = a, for every { OU
and let y O C” = C\{0} with Re(y) = 0. If p O HYa, n, 7] and

p(z, )+;zpz(z, )<< h(z, 0), (z0U,T0OU), (1.4)
then
Pz, Q) << q(z, 0) << h(z, 0), (00U, T0O0),
Y
Y z . .. .
where q(z, Q) = —yjot" h(z, Q) dt is convex and it is the best dominant of (1.4).

nz"

Lemma 1.2 [7]. Let g(z, {) be a convex function in U xU for all LOU and let
h(z, ) = q(z, {) + ndzq(z, ), zOU, O U, where & >0 and n is a positive integer.
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If
(2. Q) = 40, 1) + p, Q)" + prar Q"+,
is analyticin U xU and
p(z. {) +82py (2. ) << h(z. Q). (z0U,200),
then
Pz, 0) << q(z, ), (z0U,T0V),

and this result is sharp.

2. Main Results

Theorem 2.1. Let h(z, {) be a convex function such that h(0, ) =1. If f O AZD

satisfies the strong differential subordination:

We 5/ (2. ), << h(z, Q). Q.1
then
I,
Wopf (2 0)
OB 2 g2, ) <= bz Q).
where q(z, {) = —J )dt is convex and it is the best dominant.

Proof. Suppose that

p(z,0) = ), :0U,C0U. 2.2)

Then the function p(z, ) is analyticin U xU and p(0, {) = 1.

Simple computations from (2.2), we get

Pz )+ (2. Q) = WA (2. Q). - (2.3)
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Using (2.3), (2.1) becomes

p(z, Q) + 2p%(z, ) << h(z, Q).

An application of Lemma 1.1 with n =1, y =1 yields

Wi (. .
Wap/ (=0 oz, 0) = ljoh(z, {)dr <= h(z, C).

Z Z

):Z"'(ZP_Z)Z

By taking h(z,
y g hz ¢ e

,0<p<1 in Theorem 2.1, we obtain the

following corollary:

Corollary 2.1. If f O AE' satisfies the strong differential subordination:
1A ' {+(2p-0¢z
(WG,Bf(Za Z))Z == 1 + z s

then

LA
WU’Bf(Z’ ¢ <<ljzwdt =2p-1 +Mln(l + 7).
290 z

Z 1+1¢

Theorem 2.2. Let h(z, {) be a convex function such that h(0,{) =1. If 0 < 0 < p,
00C and f 0O AZD satisfies the strong differential subordination:
LA
1— e quBf(Z’ Z) 9

1-0 z 1-0

(Wehf (2 0), —0)<<h(z. Q). (24

then

1 Wol(’,)éf(z, {)
1-0 Z

- 0| ==<q(z ) =< h(z, 0),

1 1
1 5,z 371
where q(z, ) = R ejozte h(t, Q)dt is convex and it is the best dominant.
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Proof. Suppose that

1 Wol(’,)éf(z, Q)
1-0 Z

-o|, zOU,C0OU. (2.5)

Then the function p(z, ) is analyticin U xU and p(0, {) = 1.

Differentiating both sides of (2.5) with respect to z, we have

_o(Wepf(a Q) :
120 Zabl 22 o |+ 2 (Wb (2 Q) —0). 26)
l-o z -0 ’ .

p(z, Q) +6zp3(z, () =

From (2.4) and (2.6), we get

p(z, Q) + 82p; (2, {) << h(z, Q).

An application of Lemma 1.1 with n =1, y = % yields

1 (Wehf(e )
1-0 z

1
-0 |=<q(z,0) = %Z eJ’OZte lh(f’ {)dt << h(z, ).

Theorem 2.3. Let ¢(z, {) be a convex function such that q(0, {) =1 and let h be
the function h(z, {) = q(z, {) + z¢%(z. Q). If f O AZD satisfies the strong differential

subordination:
LA+ '
Wy [z Q)
—aB ST <<z ). @7
WaiBf(Z’ Z) z
then
LA+
Wyg f(z Q)
—p == CI(Z’ Z)

Wy pf (2 Q)

Proof. Suppose that

http://www.earthlinepublishers.com
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wep™r(z Q)

, zOU,COU. (2.8)
G,Bf(z’

p(z Q) =

Then the function p(z, ¢) is analyticin U xU and p(0, {) =

Differentiating both sides of (2.8) with respect to z and using (2.7), we have

p(z, Q) + (2, O)

Vg /(= 0)

G’Bf(z, )
Wb (e QW b £z z)) - W (@ QR (2 Q)
[ G,B Z’ ]2
B (2 )W (e z)); - WA (@ QW RS (2. Q).
[ Bf(Zy )]2
l A+l
= & << h(Z, Z)
Q,Bf(z’ Z) z
An application of Lemma 1.2, we obtain
l A+l
M << q(Z, Z)
G,Bf(z’ Z)

Theorem 2.4. Let g(z, {) be a convex function such that (0, {) =1 and let h be

the function

Y | (8]

l m
where Zin—l( ](— l)mH[(%] + IJ > 0. Suppose that
=\m

Mz, Q) = q(z. Q) +

qu'z(z, 2),
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: 1+ UJ (- 1)”'*1[(%)’% ¥ 1}
o i

ol (G )
x| t

0

£z, Qat. (2.9)

If f0O .AZD satisfies the strong differential subordination

1

Wopf (2 Q), == h(z. Q). (2.10)
then
(WehF(z. Q). =< 4(z. Q).
Proof. Suppose that

p(z.0) = WEhF(2 Q). . 200,200, 2.11)

Then the function p(z, ) is analyticin U xU and p(0, {) = 1.

From (2.9), we have

Zﬂﬂ(,ﬁ,] (—1)’"”[(%)m+1]F(Z, ’
(S {(a) ) 2 BT o

B 0

m=1

Differentiating both sides of (2.12) with respect to z, we get

(e e

_ zl:( ! ] & 1)m+1[[%jm + 1JF(Z, 0)+2F1(2. Q)

m=1
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and
[H ZZ:I( j ml[(%jm ”BWé:Ef(z, 9
] ;UJ - l)mﬂ[[%jm ' IJWé,EF(z, 0+ 2(Wq pF (2. ),
So

l,)\ "

Wepf (e Q). = W pF( Q) + IZ(W;”BF(Z’ Do
m+1| [ O

1+ Zm:l [l’)’l] (_ 1) 1[[E] + 1}

JZP% (z.0) = (Wé’,ﬁf (z, Z))'Z . (2.14)

(2.13)

From (2.11) and (2.13), we obtain
1

o) (5

Using (2.14), (2.10) becomes

p(z. Q) =

1

1 Zoa )6 ”‘”[(ﬂm .

1

e ()

An application of Lemma 1.2 yields p(z, {) << ¢(z, {). By using (2.10), we obtain

p(z, Q) =

J zp;(z, 0)

<q(z, Q)+ ]zq'z(z, 0).

Wy pF (2, 1), << 4z Q).
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