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Abstract 

In this paper, by making use of Wanas operator, we derive some properties related to the 

strong differential subordinations of analytic functions defined in the open unit disk and 

closed unit disk of the complex plane. 

1. Introduction 

Indicate by ( )UU ×H  the family of all analytic functions in .UU ×  Let 

{ }1: <∈= zzU C  and { }1: ≤∈= zzU C  denote the open unit disk and the 

closed unit disk of the complex plane, respectively. For { }...,2,1=∈ Nn  and ,C∈a  

let  

[ ] { ( ) ( ) ( ) ( ) ,,:,, 1
1 L+ζ+ζ+=ζ×∈=ζ +

+
∗ n

n
n

n zazaazfUUfna HH  

 },, UUz ∈ζ∈   

where ( )ζka  are holomorphic functions in U  for .nk ≥  
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Also, let { ( ) ( ) ( ) },,,,: 1
1 UUzzazzfUUf

n
nn ∈ζ∈+ζ+=ζ×∈= +

+
∗

ζ LHA  

where ( )ζka  are holomorphic functions in U  for .1+≥ nk  

A function [ ]ζ∈ ∗ ,, naf H  is said to be starlike in UU ×  if  

( )
( )

,0
,

,
Re >









ζ
ζ′

zf

zfz z     ( )., UUz ∈ζ∈  

Denote the class of all starlike functions in UU ×  by .∗
ζS  

Similar, [ ]ζ∈ ∗ ,, naf H  is said to be convex in UU ×  if  

( )
( )

,01
,

,
Re

2
>













+
ζ′

ζ′′

zf

zfz

z

z       ( )., UUz ∈ζ∈  

Denote the class of all convex functions in UU ×  by .∗
ζK  

Definition 1.1 [9]. Let ( ) ( )ζζ ,,, zgzf  be analytic in .UU ×  The function ( )ζ,zf  

is said to be strongly subordinate to ( ),, ζzg  written ( ) ( ),,, ζζ zFzf pp  ,Uz ∈  

,U∈ζ  if there exists an analytic function w in U with ( ) 00 =w  and ( ) Uzzw ∈< ,1  

such that ( ) ( )( )ζ=ζ ,, zwgzf  for all .U∈ζ  

Remark 1.1 [9]. 

(1) Since ( )ζ,zf  is analytic in ,UU ×  for all U∈ζ  and univalent in U, for all 

,U∈ζ  Definition 1.1 is equivalent to ( ) ( )ζ=ζ ,0,0 gf  for all U∈ζ  and 

( ) ( ).UUgUUf ×⊂×  

(2) If ( ) ( )zfzf =ζ,  and ( ) ( ),, zgzg =ζ  then the strong subordination becomes 

the usual notion of subordination. 

Let ∗
ζA  denote the subclass of the functions ( ) ( )UUzf ×∈ζ H,  of the form:  

 ( ) ( )∑
∞

=
∈ζ∈ζ+=ζ

2

,,,

k

k
k UUzzazzf  (1.1) 

which are analytic and univalent in .UU ×  
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For ,R∈α  0≥β  with { }0,,,0 0 UNNN =∈λ∈>β+α ml  and ,A∈f  the 

Wanas operator ,:,
,

∗
ζ

∗
ζ

λ
βα → AA

l
W  (see [12]) is defined by 

 ( ) ( ) ( )∑ ∑
∞

=

λ

=

+λ
βα ζ
























β+α
β+α−







+=ζ
2 1

1,
, .1,

k

n
k

l

m
mm

mm
ml

za
n

m

l
zzfW  (1.2) 

It is easily verified from (1.2) that 

( ( )) ( ) ( )ζ

























+









β
α−







=′ζ +λ
βα

=

+λ
βα ∑ ,11, 1,

,
1

1,
, zfW

m

l
zfWz

l
l

m

m
ml  

( ) ( ).,1 ,
,

1

1 ζ




















β
α−







− λ
βα

=

+∑ zfW
m

l l
l

m

m
m  (1.3) 

Some of the special cases of the operator defined by (1.2) can be found in [1, 2, 4, 10, 

11]. 

In recent years, many authors obtained various interesting results associated with 

strong differential subordination and superordination for example (see [3, 5, 6, 13, 14]). 

In order to derive our main results, we need the following lemmas. 

Lemma 1.1 [8]. Let ( )ζ,zh  be a convex function with ( ) ,,0 ah =ζ  for every U∈ζ  

and let { }0\CC =∈γ ∗  with ( ) .0Re ≥γ  If [ ]ζ∈ ∗ ,, nap H  and 

 ( ) ( ) ( ) ( ),,,,,
1

, UUzzhzpzzp z ∈ζ∈ζζ′
γ

+ζ pp  (1.4) 

then 

( ) ( ) ( ) ( ),,,,,, UUzzhzqzp ∈ζ∈ζζζ pppp  

where ( ) ( )∫ ζγ=ζ
−γ

γ
z

n

n

dttht

nz

zq
0

1
,,  is convex and it is the best dominant of (1.4). 

Lemma 1.2 [7]. Let ( )ζ,zq  be a convex function in UU ×  for all U∈ζ  and let 

( ) ( ) ( ) ,,,,,, UUzzqznzqzh z ∈ζ∈ζ′δ+ζ=ζ  where 0>δ  and n is a positive integer. 
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If 

( ) ( ) ( ) ( ) ,,0, 1
1 L+ζ+ζ+ζ=ζ +

+
n

n
n

n zpzpqzp  

is analytic in UU ×  and  

( ) ( ) ( ) ( ),,,,,, UUzzhzpzzp z ∈ζ∈ζζ′δ+ζ pp  

then 

( ) ( ) ( ),,,,, UUzzqzp ∈ζ∈ζζ pp  

and this result is sharp. 

2. Main Results 

Theorem 2.1. Let ( )ζ,zh  be a convex function such that ( ) .1,0 =ζh  If 
∗
ζ∈ Af  

satisfies the strong differential subordination:  

 ( ( )) ( ),,,,
, ζ′ζλ
βα zhzfW

z
l

pp   (2.1) 

then 

( )
( ) ( ),,,

,,
, ζζ

ζλ
βα

zhzq
z

zfW
l

pppp  

where ( ) ( )∫ ζ=ζ
z

dtth
z

zq
0

,
1

,  is convex and it is the best dominant. 

Proof. Suppose that 

 ( )
( )

.,,
,

,

,
,

UUz
z

zfW
zp

l

∈ζ∈
ζ

=ζ
λ
βα

 (2.2) 

Then the function ( )ζ,zp  is analytic in UU ×  and ( ) .1,0 =ζp  

Simple computations from (2.2), we get  

 ( ) ( ) ( ( )) .,,, ,
, z

l
z zfWzpzzp

′ζ=ζ′+ζ λ
βα   (2.3) 
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Using (2.3), (2.1) becomes 

( ) ( ) ( ).,,, ζζ′+ζ zhzpzzp z pp  

An application of Lemma 1.1 with 1,1 =γ=n  yields  

( )
( ) ( ) ( )∫ ζζ=ζ

ζλ
βα z

l

zhdtth
z

zq
z

zfW

0

,
,

.,,
1

,
,

pppp  

By taking ( ) ( )
10,

1

2
, <ρ≤

+
ζ−ρ+ζ=ζ

z

z
zh  in Theorem 2.1, we obtain the 

following corollary: 

Corollary 2.1. If ∗
ζ∈Af  satisfies the strong differential subordination:  

( ( )) ( )
,

1

2
,,

, z

z
zfW

z
l

+
ζ−ρ+ζ′ζλ

βα pp  

then 

( ) ( ) ( ) ( )∫ +ρ−ζ+ζ−ρ=
+

ζ−ρ+ζζλ
βα z

l

z
z

dt
t

t

zz

zfW

0

,
,

.1ln
2

2
1

21,
pp  

Theorem 2.2. Let ( )ζ,zh  be a convex function such that ( ) .1,0 =ζh  If ,0 p<σ≤  

C∈θ  and 
∗
ζ∈ Af  satisfies the strong differential subordination:  

 
( )

(( ( )) ) ( ),,,
1

,

1

1 ,
,

,
, ζσ−′ζ

σ−
θ+














σ−

ζ

σ−
θ− λ

βα

λ
βα

zhzfW
z

zfW

z

l

l

pp   (2.4) 

then 

( )
( ) ( ),,,

,

1

1
,
, ζζ














σ−

ζ

σ−

λ
βα

zhzq
z

zfW
l

pppp  

where ( ) ( )∫ ζ
θ

=ζ
−

θθ
− z

dtthtzzq
0

1
11

,
1

,  is convex and it is the best dominant. 
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Proof. Suppose that  

 ( )
( )

.,,
,

1

1
,

,
,

UUz
z

zfW
zp

l

∈ζ∈













σ−

ζ

σ−
=ζ

λ
βα

 (2.5) 

Then the function ( )ζ,zp  is analytic in UU ×  and ( ) .1,0 =ζp  

Differentiating both sides of (2.5) with respect to z, we have  

 ( ) ( )
( )

(( ( )) ).,
1

,

1

1
,, ,

,

,
, σ−′ζ

σ−
θ+














σ−

ζ

σ−
θ−=ζ′θ+ζ λ

βα

λ
βα

z

l

l

z zfW
z

zfW
zpzzp   (2.6) 

From (2.4) and (2.6), we get 

( ) ( ) ( ).,,, ζζ′θ+ζ zhzpzzp z pp  

An application of Lemma 1.1 with 
θ

=γ= 1
,1n  yields 

( )
( ) ( ) ( )∫ ζζ

θ
=ζ














σ−

ζ

σ−

−
θθ

−λ
βα z

l

zhdtthtzzq
z

zfW

0

1
11,

,
.,,

1
,

,

1

1
pppp  

Theorem 2.3. Let ( )ζ,zq  be a convex function such that ( ) 1,0 =ζq  and let h be 

the function ( ) ( ) ( ).,,, ζ′+ζ=ζ zqzzqzh z  If 
∗
ζ∈ Af  satisfies the strong differential 

subordination:  

 
( )

( )
( ),,

,

,

,
,

1,
, ζ

′















ζ

ζ
λ
βα

+λ
βα

zh
zfW

zfzW

z
l

l

pp   (2.7) 

then 

( )

( )
( ).,

,

,

,
,

1,
, ζ

ζ

ζ
λ
βα

+λ
βα

zq
zfW

zfW

l

l

pp  

Proof. Suppose that 
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 ( )
( )

( )
.,,

,

,
,

,
,

1,
,

UUz
zfW

zfW
zp

l

l

∈ζ∈
ζ

ζ
=ζ λ

βα

+λ
βα

 (2.8) 

Then the function ( )ζ,zp  is analytic in UU ×  and ( ) .1,0 =ζp  

Differentiating both sides of (2.8) with respect to z and using (2.7), we have  

( ) ( )ζ′+ζ ,, zpzzp z  
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An application of Lemma 1.2, we obtain 

( )
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( ).,
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,
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1,
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Theorem 2.4. Let ( )ζ,zq  be a convex function such that ( ) 1,0 =ζq  and let h be 

the function  

( ) ( )
( )
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1
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+
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 (2.9) 

If 
∗
ζ∈ Af  satisfies the strong differential subordination  

 ( ( )) ( ),,,,
, ζ′ζλ
βα zhzfW

z

l
pp    (2.10) 

then  

( ( )) ( ).,,,
, ζ′ζλ
βα zqzFW

z

l
pp  

Proof. Suppose that  

 ( ) ( ( )) .,,,, ,
, UUzzFWzp

z
l ∈ζ∈′ζ=ζ λ

βα   (2.11) 

Then the function ( )ζ,zp  is analytic in UU ×  and ( ) .1,0 =ζp  

From (2.9), we have  
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Differentiating both sides of (2.12) with respect to z, we get  
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and  
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From (2.11) and (2.13), we obtain  
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Using (2.14), (2.10) becomes  
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An application of Lemma 1.2 yields ( ) ( ).,, ζζ zqzp pp  By using (2.10), we obtain  

( ( )) ( ).,,,
, ζ′ζλ
βα zqzFW

z
l

pp  
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