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Abstract

In this paper, we introduce the notion of polynomial Chatterjea contraction mapping in metric spaces,
and obtain a fixed point theorem. Some consequences of the main result and a conjecture are stated.
The conjecture is illustrated with an example, and the conjecture is used to show existence and

uniqueness of solutions for a certain class of fractional differential equations.

1 Introduction and Preliminaries

Theorem 1.1. [I/] Let (X,d) be a metric space and suppose T : X — X is a mapping satisfying the

following contractive condition

d(Tz,Ty) < kd(z,y)
for all z,y € X and k € [0,1). If (X,d) is complete, then T has a unique fized point.

Definition 1.2. [2] A mapping T : X — X on a metric space (X,d) is termed a Kannan contraction if
there exists a constant A with 0 < A < % such that for every pair (z,y) the inequality below is valid

d(Tz, Ty) < Ad(z,Tx) + d(y, Ty)).

Theorem 1.3. [3] A metric space (X,d) is complete precisely when every self-mapping T that satisfies

the Kannan-type contraction condition possesses fixed point.

Definition 1.4. [!| Let T be a self-mapping on X with starting point g € X. The sequence {z,}

constructed by the recursive formula

Tpy1 =Tzn, n €N

is called the Picard iteration sequence generated by T and xg.
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Definition 1.5. [5] A self-mapping T on a metric space (X, d) is termed a polynomial contraction if there
are a collection of functions ap,--- ,ar : X x X — Ry and X € [0,1) such that for some natural number

k, the inequality

k k
Z;al (Tz, Ty)d (Tx, Ty) < Z ,Y)
— —

holds true.

Theorem 1.6. [5] Consider a complete metric space (X,d) endowed with T : X — X, a polynomial
contraction with respect to a collection of functions a1, -+ ,ar : X X X — Ry. Assuming further that the

conditions below are in effect

(i) The mapping T is continuous.

(17) There is an index j € {1,2,--- ,k} and Aj > 0 such that the corresponding coefficient function a;
satisfies the inequality aj(x,y) > A; for all z,y € X.

Then T possesses exactly one fixzed point x*. Moreover, for any starting value xo in X the Picard sequence

{zn} converges to x*.

Definition 1.7. [!| A mapping T : X — X on a metric space (X,d) is termed a polynomial Kannan
contraction if there exists A with 0 < A\ < %, a natural number k, and a collection a; : X x X — R, for

1=1,2,---, k satisfying the following

k
Zaz (Tz, Ty)d (Tx, Ty) < <Zal z, Te)d (z,Tx) + Zai(y,Ty)di(y,Ty))
i=0

=1

for all z,y € X.

Theorem 1.8. [/] Consider a complete metric space (X,d) endowed with a mapping T : X — X that
satisfies a polynomial Kannan contractive condition with respect to a collection of functions a1, -+ ,ak :
X X X — Ry. Assume further that the following condtions are in effect

(i) The coefficient function a; is symmetric in its arguments and continuous in its second argument for
eacht1=1,2,--- k.
(13) There is an index j € {1,2,--- ,k} and A; > 0 such that the corresponding coefficient function a;
satisfies the inequality aj(x,y) > Aj, for all z,y € X.
Then T posesses exactly one fized point x*. Moreover, for any starting value xg in X, the Picard sequence
{zn} converges to z*.
Theorem 1.9. [0] Let (X,d) be a metric space. Suppose T : X — X is a mapping satisfying
d(Tz, Ty) < a(d(z,Ty) + d(y, Tx))

for all z,y € X and a € [0, %) If (X, d) is complete, then T has a unique fixed point.
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2 Main Result

Definition 2.1. A mapping T : X — X on a metric space (X,d) will be called a polynomial Chatterjea
contraction if there exists A with 0 < A\ < %, a natural number k, and a collection a; : X x X — R, for

1=1,---, k satisfying the following

k k k
Z ai(Tx, Ty)d (Tx, Ty) < A(Z ai(z, Ty)d' (z, Ty) + Z ai(y, Tx)d (y, T:E))

i=1 i=1 i=1

for all z,y € X.

Remark 2.2. The generalized Chatterjea type condition introduced above encompasses various new classes

of contractive mappings as particular instances:

(i) Setting k = 1 and a3 = 1 yields the classical Chatterjea contraction originally introduced by
Chatterjea |6], which satisfies

d(Tz, Ty) < Md(z, Ty) + d(y, Tz))
for all z,y € X.

(ii) Choosing k = 2, a; = 0 and az = 1 leads to the pure quadratic Chatterjea contraction, that is, a

self- mapping T on a metric (X, d) for which there exist a constant A € [0, 1) such that
d*(Tz, Ty) < N[d*(z, Ty) + d*(y, Tx)]
for all z,y € X.

(747) Similarly, setting k = 3, a1 = a2 = 0 and az = 1 gives rise to the pure cubic Chatterjea contraction,

where a self-mapping 7" on (X, d) satisfies
&*(Tx, Ty) < Nd*(z, Ty) + d*(y, Tx)]
for all z,y € X and for a certain A € [0, %)

(tv) More generally, setting k = m, with a; =0, for 1 < j <m — 1 and a,, = 1 yields a pure Chatterjea

contraction of m-power, defined by the condition
d"(Tw, Ty) < A[d™ (x, Ty) + d"(y, Tx)]
for all z,y € X and a certain A € [0, 3).

Theorem 2.3. Consider a complete metric space (X, d) endowed with a mapping T : X — X that satisfies
a polynomial Chatterjea contractive condition with respect to a collection of functions ay,--- ,ar : X X X —

R.. Assume further the conditions below are in effect
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(i) The coefficient function a; is symmetric in its arguments and continuous in its second argument for

eachi=1,2,--- k.
(73) There is an index j € {1,2,--- ,k} and A; > 0 such that the corresponding coefficient function a;

satisfies the inequality aj(x,y) > Aj for all x,y € X.

Then T possesses exactly one fixed point x*. Moreover, for any starting value xg in X, the Picard sequence

{zn} converges to x*.

Proof. Let g € X be chosen arbitrarily. Define the sequence {x,}52 recursively by 41 = T, for all

n and also define

k
Pn = Z ai(xnv xn—l—l)dl(xna xn+1)-
i=1
Letting x = x,, and y = xp,4+1 in Definition 2.1 yields

k k k
Z @i (Tp41, Tnt2)d' (Tng1, Tny2) <A < Z i (T, Tnt2)d (Tn, Tnia) + Z ai(Tn41, Tn1)d' (Tnt1, fb‘n+1)>
i=1 i=1 i=1

k
<A < Z{al ('xm xn—&-l)di (.Cljn, wn—i—l) +a; (xn—O—la xn+2)dl (xn—i-l, xn—&-?)})
that is, P11 < A(P, + P,4+1) which implies that
A
Pn+1 < ﬁp = VPn
where v = 125 < 1, since A < . It follows by induction that
Pn é ’VnPO

for all n > 0. Now from (ii), there is an index j such that a;(xy, zn41) > A; > 0. Then we have

Ajdj o $n+1 xrm xn—f—l (:L’n7 xn-{—l) = Pn < ’YnPO

||M?v

which implies that

1
V" P\
d(xp, Tny1) <
(@n, Tnt1) <Aj>

Applying the triangle inequality for m > n > 0, it follows that

Py\7 & R\’ 47
d(Tp, Tm,) Z d(xy, x141) _ Zw =3 ) — =
J j

l=n 1- v
Given that v < 1, the right-hand side approaches to zero. Thus {z,} is a Cauchy sequence in the
complete metric space X, ensuring its convergence to a point * € X. To confirm that z* is a fixed point,

we substitute x = * and y = x,, in Definition 2.1, then we have

k k k
Z ai(Tx*, 2py1)d(Tx*, 1) < A ( Z ai(x*, xny1)d (2%, 2pin) + Z ai(zn, T2*)d" (2, Tx*))
i=1 i=1 i=1
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Passing to the limit as n — oo and applying the continuity of a; in its second argument, we deduce that

k k k
Z ai(Tz*, *)d (Tx*, z*) < X ( Z ai(z*, z*)d (z*, %) + Z ai(z*, Tx*)d' (z*, Tx*))
i=1 i=1 i=1
that is,

P(Tx*, z*) < AP(a™,Tx™)

where P(u,v) = Zle a;(u,v)d*(u,v). Owing to A < 1 and a; is symmetric in its arguments, it follows
that Tx* = x*. Assume, for the purposes of proving uniqueness that z* and y* are both fixed points of

T, then using Definition 2.1, we conclude that

P(a®,y") < AP(z%y") + Py, 27))

Since 1 — 2\ # 0, then P(x*,y*) = 0, which in view of (ii), leads to x* = y*, and this completes the
proof. O
Now using Remark 2.2 and Theorem 2.3, we have the following

Corollary 2.4. Let (X,d) be a metric space. If (X,d) is complete and T : X — X is a Chatterjea
contraction, then there is a unique element x* with Tx* = x*. For every starting value zog in X, the

sequence {x,}5° defined by the recurrence relation
Tpt1 =TTy, n € Zzo
converges to x* with respect to the metric d.

Corollary 2.5. Let (X,d) be a metric space. If (X,d) is complete and T : X — X is a pure quadratic
Chatterjea contraction, then there is a unique element x* with Tx* = x*. For every starting value xq in

X, the sequence {x,}>2 defined by the recurrence relation
Tpt1 = Txp, n € Z>p
converges to x* with respect to the metric d.

Corollary 2.6. Let (X,d) be a metric space. If (X,d) is complete and T : X — X is a pure cubic
Chattterjea contraction, then there is a unique element x* with Tx* = x*. For every starting value xg in

X, the sequence {x,}>2 defined by the recurrence relation
Tnt1 =TTy, n € Z>p

converges to x* with respect to the metric d.
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Corollary 2.7. Let (X,d) be a metric space. If (X,d) is complete and T : X — X is a pure Chatterjea
contraction of m power, then there is a unique element x* with Tx* = x*. For every starting value xg in

X, the sequence {x,}22, defined by the recurrence relation
Tntl = Tx,, n € ZZO

converges to x* with respect to the metric d.

Now to conclude this section, we state an open problem and illustrate it.

Conjecture 2.8. Consider a complete metric space (X,d) endowed with a mapping T : X — X that
satisfies a polynomial Chatterjea contractive condition with respect to a collection of functions ai,--- ,ay :

X X X — Ry. Assume further that the conditions below are in effect
(1) For every 1 <i <k, there exists M; > 0 such that the coefficient function a; satisfies a;(x,y) < M;
across all (xz,y) in X x X.

(23) There is an index j € {1,2,--- ,k} and Aj > 0 such that the corresponding coefficient function a;
satisfies the inequality aj(x,y) > Aj, for all x,y € X.

(7i1) Each coefficient function a; is lower semi-continuous in its first argument.
Then T possesses exactly one fized point x*. Moreover, for any starting value xy in X, the Picard sequence
{zn} converges to x*.

Example 2.9. We consider (X,d) a metric space with X = [0,1] and the standard Euclidean metric
d(xz,y) = |z —y|. Define T': X — X by

T fails to be a classical Chatterjea contraction. For instance, taking x = 0, y = 1, we observe that

d(T0,T1) = + < §A — A[d(0,T1) + d(1,T0)]

W=

which implies that A\ > %, a contradiction to the fact that A € [0, %) We show T is a polynomial Chatterjea
contraction with k = 1 and weight function a;(z,y) = 1 + 22 + y2. To verify the contraction condition,

we must establish that for some \ € [0, %), the inequality below holds for every pair x,y € X:

$4 y4 5 y4 :U4 .752
1+=—+= < —|(1422+= L+y? 4+ |ly—=||.
(5 5) 5 -5l wl e )l (o) 5]

9 3
Figure 1 shows that the “BlueGreenYellow” surface (RHS of the contraction inequality) dominates the

y2
xr — —

3

.562 y2

3 3

“RustTones” surface (LHS of the contraction inequality). This demonstrates that the inequality is satisfied

for all z,y € [0,1] with A = %. Since 1% < %, T satisfies the polynomial Chatterjea contraction condition

with the given parameters. Moreover the function a;(x,y) is bounded above by 3, that is, a1 (z,y) < 3. It
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also satisfies the lower bound a;(z,y) > 1 = A; > 0. Therefore the requirements of the above conjecutre

hold, ensuring that T" has exactly one fixed point, which is x = 0.

~_ |/

-
a0
1.0

Figure 1: Comparison of both sides of the polynomial Chatterjea inequality in the above example over
[0, 1].

3 Application

This section is devoted to applying the conjecture to prove the existence and uniqueness of solutions for
a certain class of nonlinear PDEs involving the Caputo derivative. Let us focus on the following initial

value problem (IVP) involving a Caputo fractional derivative

Day<t) = f(tay(t))7 te [07 L]
y(0) = yo

In this context, f : [0, L] x R — R denotes a specified nonlinear function and the operator D is defined
as the Caputo derivative of fractional order o € (0,1). It is well established that the above IVP problem

can be reformulated as the following integral equation of the Volterra type:

y(t) =yo + ﬁ /O (t — 5)* 1 f(s,y(s))ds.

We aim to demonstrate that a continuous solution to the IVP problem exists and is unique. We consider the

space C([0, L]) of continuou functions y : [0, L] — R, which when equipped with the following supremum
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norm | - ||, forms a complete metric space:

d(y,z) = [ly = zllec = sup [y(t) — z(t)].
te[0,L]

Define T": C(]0, L]) — C([0, L]) by

(Ty)(t) = yo + F(la) /0 (t — s)* L f(s,y(s))ds.

We proceed to establish the following theorem, which guarantees the unique existence of a solution to the
above IVP problem.

Theorem 3.1. Let o € (0,1), L > 0, and suppose the nonlinear function f : [0, L] x R+— R satisfies

(A1) f is continuous on [0, L] x R.

(A2) There exists a constant p > 0 such that for all t € [0, L] and all u,v € R,
[f(t,w) = f(t,0)] < pllu = To| + |v = Tul)

where T is defined as above and 2uL® < T'(a+ 1).
Then the Capuro fractional IVP problem possesses a unique solution in C([0, L]).

Proof. Let y,z € C([0,L]). Given any t € [0, L], we estimate

Ty(t) — Ta()] = ]F(la) [ = 56D = £

1 t —8)* 7 f(s,y(s)) = f(s,2(s))|ds
o [ = st = s )

<

By assumption (A2), we have

[f(s,9(s)) = f(s,2(s))] < pully(s) = Tz(s)| + [2(s) = Ty(s)]).
Substituting into the integral above we have

Ty(t) — T=(t)| < Ffa) /O (t =) (Jy(s) = Tz(s)| + |2(s) — Ty(s)|)ds

t

K a—1

< ——(ly = T2||cc + z—Tyoo/t—s ds

g 1y = Tello 11z = Tyl [ (0 =5)
pt

S -T -T .
Fa 1) 0 = T2lloe 112 = Tyle)

Evaluating the supremum for each t € [0, L], we conclude that

1Ty = Tzlloo < Allly = T2lloo + [12 = Tylloc)
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where A = % Now set k = 1 and define the coefficeint function a; : C(]0, L]) x C([0, L]) — R4 by

a1 (z,y) = C, where C is a positive real number. Thus the above inequality becomes
a1(Ty, T2)d(Ty,Tz) < Ma1(y, Tz)d(y, Tz) + a1(z, Ty)d(z, Ty)]

which shows that T satisfies the condition of a polynomial Chatterjea contraction with a bounded coefficient
function a; and k = 1. Since the metric space (C([0, L]),d) is complete and all the assumptions of the
conjecture are fulfilled, it follows that T possesses a fixed point y* € C([0, L]) uniquely. Moreover, the

sequence {y,} generated by the Picard iteration

Ynt+1 = Tyn

converges to y*. Hence the fractional IVP problem possesses a unique solution in C([0, L]). Ul
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