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Abstract

In this paper, we introduce the notion of polynomial Chatterjea contraction mapping in metric spaces,
and obtain a fixed point theorem. Some consequences of the main result and a conjecture are stated.
The conjecture is illustrated with an example, and the conjecture is used to show existence and
uniqueness of solutions for a certain class of fractional differential equations.

1 Introduction and Preliminaries

Theorem 1.1. [1] Let (X, d) be a metric space and suppose T : X 7→ X is a mapping satisfying the
following contractive condition

d(Tx, Ty) ≤ kd(x, y)

for all x, y ∈ X and k ∈ [0, 1). If (X, d) is complete, then T has a unique fixed point.

Definition 1.2. [2] A mapping T : X 7→ X on a metric space (X, d) is termed a Kannan contraction if
there exists a constant λ with 0 ≤ λ < 1

2 such that for every pair (x, y) the inequality below is valid

d(Tx, Ty) ≤ λ(d(x, Tx) + d(y, Ty)).

Theorem 1.3. [3] A metric space (X, d) is complete precisely when every self-mapping T that satisfies
the Kannan-type contraction condition possesses fixed point.

Definition 1.4. [4] Let T be a self-mapping on X with starting point x0 ∈ X. The sequence {xn}
constructed by the recursive formula

xn+1 = Txn, n ∈ N

is called the Picard iteration sequence generated by T and x0.
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Definition 1.5. [5] A self-mapping T on a metric space (X, d) is termed a polynomial contraction if there
are a collection of functions a1, · · · , ak : X ×X 7→ R+ and λ ∈ [0, 1) such that for some natural number
k, the inequality

k∑
i=0

ai(Tx, Ty)d
i(Tx, Ty) ≤ λ

k∑
i=0

ai(x, y)d
i(x, y)

holds true.

Theorem 1.6. [5] Consider a complete metric space (X, d) endowed with T : X 7→ X, a polynomial
contraction with respect to a collection of functions a1, · · · , ak : X ×X 7→ R+. Assuming further that the
conditions below are in effect

(i) The mapping T is continuous.

(ii) There is an index j ∈ {1, 2, · · · , k} and Aj > 0 such that the corresponding coefficient function aj

satisfies the inequality aj(x, y) ≥ Aj for all x, y ∈ X.

Then T possesses exactly one fixed point x∗. Moreover, for any starting value x0 in X the Picard sequence
{xn} converges to x∗.

Definition 1.7. [4] A mapping T : X 7→ X on a metric space (X, d) is termed a polynomial Kannan
contraction if there exists λ with 0 ≤ λ < 1

2 , a natural number k, and a collection ai : X ×X 7→ R+ for
i = 1, 2, · · · , k satisfying the following

k∑
i=1

ai(Tx, Ty)d
i(Tx, Ty) ≤ λ

( k∑
i=1

ai(x, Tx)d
i(x, Tx) +

k∑
i=0

ai(y, Ty)d
i(y, Ty)

)
for all x, y ∈ X.

Theorem 1.8. [4] Consider a complete metric space (X, d) endowed with a mapping T : X 7→ X that
satisfies a polynomial Kannan contractive condition with respect to a collection of functions a1, · · · , ak :

X ×X 7→ R+. Assume further that the following condtions are in effect

(i) The coefficient function ai is symmetric in its arguments and continuous in its second argument for
each i = 1, 2, · · · , k.

(ii) There is an index j ∈ {1, 2, · · · , k} and Aj > 0 such that the corresponding coefficient function aj

satisfies the inequality aj(x, y) ≥ Aj, for all x, y ∈ X.

Then T posesses exactly one fixed point x∗. Moreover, for any starting value x0 in X, the Picard sequence
{xn} converges to x∗.

Theorem 1.9. [6] Let (X, d) be a metric space. Suppose T : X 7→ X is a mapping satisfying

d(Tx, Ty) ≤ α(d(x, Ty) + d(y, Tx))

for all x, y ∈ X and α ∈ [0, 12). If (X, d) is complete, then T has a unique fixed point.
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2 Main Result

Definition 2.1. A mapping T : X 7→ X on a metric space (X, d) will be called a polynomial Chatterjea
contraction if there exists λ with 0 ≤ λ < 1

2 , a natural number k, and a collection ai : X ×X 7→ R+ for
i = 1, · · · , k satisfying the following

k∑
i=1

ai(Tx, Ty)d
i(Tx, Ty) ≤ λ

( k∑
i=1

ai(x, Ty)d
i(x, Ty) +

k∑
i=1

ai(y, Tx)d
i(y, Tx)

)
for all x, y ∈ X.

Remark 2.2. The generalized Chatterjea type condition introduced above encompasses various new classes
of contractive mappings as particular instances:

(i) Setting k = 1 and a1 ≡ 1 yields the classical Chatterjea contraction originally introduced by
Chatterjea [6], which satisfies

d(Tx, Ty) ≤ λ(d(x, Ty) + d(y, Tx))

for all x, y ∈ X.

(ii) Choosing k = 2, a1 ≡ 0 and a2 ≡ 1 leads to the pure quadratic Chatterjea contraction, that is, a
self-mapping T on a metric (X, d) for which there exist a constant λ ∈ [0, 12) such that

d2(Tx, Ty) ≤ λ[d2(x, Ty) + d2(y, Tx)]

for all x, y ∈ X.

(iii) Similarly, setting k = 3, a1 ≡ a2 ≡ 0 and a3 ≡ 1 gives rise to the pure cubic Chatterjea contraction,
where a self-mapping T on (X, d) satisfies

d3(Tx, Ty) ≤ λ[d3(x, Ty) + d3(y, Tx)]

for all x, y ∈ X and for a certain λ ∈ [0, 12).

(iv) More generally, setting k = m, with aj ≡ 0, for 1 ≤ j ≤ m− 1 and am ≡ 1 yields a pure Chatterjea
contraction of m-power, defined by the condition

dm(Tx, Ty) ≤ λ[dm(x, Ty) + dm(y, Tx)]

for all x, y ∈ X and a certain λ ∈ [0, 12).

Theorem 2.3. Consider a complete metric space (X, d) endowed with a mapping T : X 7→ X that satisfies
a polynomial Chatterjea contractive condition with respect to a collection of functions a1, · · · , ak : X×X 7→
R+. Assume further the conditions below are in effect
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(i) The coefficient function ai is symmetric in its arguments and continuous in its second argument for
each i = 1, 2, · · · , k.

(ii) There is an index j ∈ {1, 2, · · · , k} and Aj > 0 such that the corresponding coefficient function aj

satisfies the inequality aj(x, y) ≥ Aj for all x, y ∈ X.

Then T possesses exactly one fixed point x∗. Moreover, for any starting value x0 in X, the Picard sequence
{xn} converges to x∗.

Proof. Let x0 ∈ X be chosen arbitrarily. Define the sequence {xn}∞n=0 recursively by xn+1 = Txn for all
n and also define

Pn =
k∑

i=1

ai(xn, xn+1)d
i(xn, xn+1).

Letting x = xn and y = xn+1 in Definition 2.1 yields
k∑

i=1

ai(xn+1, xn+2)d
i(xn+1, xn+2) ≤ λ

( k∑
i=1

ai(xn, xn+2)d
i(xn, xn+2) +

k∑
i=1

ai(xn+1, xn+1)d
i(xn+1, xn+1)

)

≤ λ

( k∑
i=1

{ai(xn, xn+1)d
i(xn, xn+1) + ai(xn+1, xn+2)d

i(xn+1, xn+2)}
)

that is, Pn+1 ≤ λ(Pn + Pn+1) which implies that

Pn+1 ≤
λ

1− λ
Pn = γPn

where γ = λ
1−λ < 1, since λ < 1

2 . It follows by induction that

Pn ≤ γnP0

for all n ≥ 0. Now from (ii), there is an index j such that aj(xn, xn+1) ≥ Ai > 0. Then we have

Ajd
j(xn, xn+1) ≤

k∑
i=1

ai(xn, xn+1)d
i(xn, xn+1) = Pn ≤ γnP0

which implies that

d(xn, xn+1) ≤
(
γnP0

Aj

) 1
j

.

Applying the triangle inequality for m > n ≥ 0, it follows that

d(xn, xm) ≤
m−1∑
l=n

d(xl, xl+1) ≤
(
P0

Aj

) 1
j

∞∑
l=n

γ
l
j =

(
P0

Aj

) 1
j γ

n
j

1− γ
1
j

.

Given that γ < 1, the right-hand side approaches to zero. Thus {xn} is a Cauchy sequence in the
complete metric space X, ensuring its convergence to a point x∗ ∈ X. To confirm that x∗ is a fixed point,
we substitute x = x∗ and y = xn in Definition 2.1, then we have

k∑
i=1

ai(Tx
∗, xn+1)d

i(Tx∗, xn+1) ≤ λ

( k∑
i=1

ai(x
∗, xn+1)d

i(x∗, xn+1) +
k∑

i=1

ai(xn, Tx
∗)di(xn, Tx

∗)

)
.
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Passing to the limit as n → ∞ and applying the continuity of ai in its second argument, we deduce that

k∑
i=1

ai(Tx
∗, x∗)di(Tx∗, x∗) ≤ λ

( k∑
i=1

ai(x
∗, x∗)di(x∗, x∗) +

k∑
i=1

ai(x
∗, Tx∗)di(x∗, Tx∗)

)

that is,

P (Tx∗, x∗) ≤ λP (x∗, Tx∗)

where P (u, v) =
∑k

i=1 ai(u, v)d
i(u, v). Owing to λ < 1 and ai is symmetric in its arguments, it follows

that Tx∗ = x∗. Assume, for the purposes of proving uniqueness that x∗ and y∗ are both fixed points of
T , then using Definition 2.1, we conclude that

P (x∗, y∗) ≤ λ(P (x∗, y∗) + P (y∗, x∗))

≤ 2λP (x∗, y∗).

Since 1 − 2λ ̸= 0, then P (x∗, y∗) = 0, which in view of (ii), leads to x∗ = y∗, and this completes the
proof.

Now using Remark 2.2 and Theorem 2.3, we have the following

Corollary 2.4. Let (X, d) be a metric space. If (X, d) is complete and T : X 7→ X is a Chatterjea
contraction, then there is a unique element x∗ with Tx∗ = x∗. For every starting value x0 in X, the
sequence {xn}∞n=0 defined by the recurrence relation

xn+1 = Txn, n ∈ Z≥0

converges to x∗ with respect to the metric d.

Corollary 2.5. Let (X, d) be a metric space. If (X, d) is complete and T : X 7→ X is a pure quadratic
Chatterjea contraction, then there is a unique element x∗ with Tx∗ = x∗. For every starting value x0 in
X, the sequence {xn}∞n=0 defined by the recurrence relation

xn+1 = Txn, n ∈ Z≥0

converges to x∗ with respect to the metric d.

Corollary 2.6. Let (X, d) be a metric space. If (X, d) is complete and T : X 7→ X is a pure cubic
Chattterjea contraction, then there is a unique element x∗ with Tx∗ = x∗. For every starting value x0 in
X, the sequence {xn}∞n=0 defined by the recurrence relation

xn+1 = Txn, n ∈ Z≥0

converges to x∗ with respect to the metric d.
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Corollary 2.7. Let (X, d) be a metric space. If (X, d) is complete and T : X 7→ X is a pure Chatterjea
contraction of m power, then there is a unique element x∗ with Tx∗ = x∗. For every starting value x0 in
X, the sequence {xn}∞n=0 defined by the recurrence relation

xn+1 = Txn, n ∈ Z≥0

converges to x∗ with respect to the metric d.

Now to conclude this section, we state an open problem and illustrate it.

Conjecture 2.8. Consider a complete metric space (X, d) endowed with a mapping T : X 7→ X that
satisfies a polynomial Chatterjea contractive condition with respect to a collection of functions a1, · · · , ak :

X ×X 7→ R+. Assume further that the conditions below are in effect

(i) For every 1 ≤ i ≤ k, there exists Mi > 0 such that the coefficient function ai satisfies ai(x, y) ≤ Mi

across all (x, y) in X ×X.

(ii) There is an index j ∈ {1, 2, · · · , k} and Aj > 0 such that the corresponding coefficient function aj

satisfies the inequality aj(x, y) ≥ Aj, for all x, y ∈ X.

(iii) Each coefficient function ai is lower semi-continuous in its first argument.

Then T possesses exactly one fixed point x∗. Moreover, for any starting value x0 in X, the Picard sequence
{xn} converges to x∗.

Example 2.9. We consider (X, d) a metric space with X = [0, 1] and the standard Euclidean metric
d(x, y) = |x− y|. Define T : X 7→ X by

T (x) =
x2

3
.

T fails to be a classical Chatterjea contraction. For instance, taking x = 0, y = 1, we observe that

d(T0, T1) =
1

3
≤ 4

3
λ = λ[d(0, T1) + d(1, T0)]

which implies that λ ≥ 1
4 , a contradiction to the fact that λ ∈ [0, 12). We show T is a polynomial Chatterjea

contraction with k = 1 and weight function a1(x, y) = 1 + x2 + y2. To verify the contraction condition,
we must establish that for some λ ∈ [0, 12), the inequality below holds for every pair x, y ∈ X:(

1 +
x4

9
+

y4

9

)∣∣∣∣x23 − y2

3

∣∣∣∣ ≤ 5

19

[(
1 + x2 +

y4

9

)∣∣∣∣x− y2

3

∣∣∣∣+ (
1 + y2 +

x4

9

)∣∣∣∣y − x2

3

∣∣∣∣].
Figure 1 shows that the “BlueGreenYellow” surface (RHS of the contraction inequality) dominates the
“RustTones” surface (LHS of the contraction inequality). This demonstrates that the inequality is satisfied
for all x, y ∈ [0, 1] with λ = 5

19 . Since 5
19 < 1

2 , T satisfies the polynomial Chatterjea contraction condition
with the given parameters. Moreover the function a1(x, y) is bounded above by 3, that is, a1(x, y) ≤ 3. It
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also satisfies the lower bound a1(x, y) ≥ 1 = A1 > 0. Therefore the requirements of the above conjecutre
hold, ensuring that T has exactly one fixed point, which is x = 0.

Figure 1: Comparison of both sides of the polynomial Chatterjea inequality in the above example over
[0, 1].

3 Application

This section is devoted to applying the conjecture to prove the existence and uniqueness of solutions for
a certain class of nonlinear PDEs involving the Caputo derivative. Let us focus on the following initial
value problem (IVP) involving a Caputo fractional derivativeDαy(t) = f(t, y(t)), t ∈ [0, L]

y(0) = y0
.

In this context, f : [0, L] × R 7→ R denotes a specified nonlinear function and the operator Dα is defined
as the Caputo derivative of fractional order α ∈ (0, 1). It is well established that the above IVP problem
can be reformulated as the following integral equation of the Volterra type:

y(t) = y0 +
1

Γ(α)

∫ t

0
(t− s)α−1f(s, y(s))ds.

We aim to demonstrate that a continuous solution to the IVP problem exists and is unique. We consider the
space C([0, L]) of continuou functions y : [0, L] 7→ R, which when equipped with the following supremum
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norm ∥ · ∥∞, forms a complete metric space:

d(y, z) = ∥y − z∥∞ = sup
t∈[0,L]

|y(t)− z(t)|.

Define T : C([0, L]) 7→ C([0, L]) by

(Ty)(t) = y0 +
1

Γ(α)

∫ t

0
(t− s)α−1f(s, y(s))ds.

We proceed to establish the following theorem, which guarantees the unique existence of a solution to the
above IVP problem.

Theorem 3.1. Let α ∈ (0, 1), L > 0, and suppose the nonlinear function f : [0, L]× R 7→ R satisfies

(A1) f is continuous on [0, L]× R.

(A2) There exists a constant µ > 0 such that for all t ∈ [0, L] and all u, v ∈ R,

|f(t, u)− f(t, v)| ≤ µ(|u− Tv|+ |v − Tu|)

where T is defined as above and 2µLα < Γ(α+ 1).

Then the Capuro fractional IVP problem possesses a unique solution in C([0, L]).

Proof. Let y, z ∈ C([0, L]). Given any t ∈ [0, L], we estimate

|Ty(t)− Tz(t)| =
∣∣∣∣ 1

Γ(α)

∫ t

0
(t− s)α−1[f(s, y(s))− f(s, z(s))]ds

∣∣∣∣
≤ 1

Γ(α)

∫ t

0
(t− s)α−1|f(s, y(s))− f(s, z(s))|ds.

By assumption (A2), we have

|f(s, y(s))− f(s, z(s))| ≤ µ(|y(s)− Tz(s)|+ |z(s)− Ty(s)|).

Substituting into the integral above we have

|Ty(t)− Tz(t)| ≤ µ

Γ(α)

∫ t

0
(t− s)α−1(|y(s)− Tz(s)|+ |z(s)− Ty(s)|)ds

≤ µ

Γ(α)
(∥y − Tz∥∞ + ∥z − Ty∥∞)

∫ t

0
(t− s)α−1ds

=
µtα

Γ(α+ 1)
(∥y − Tz∥∞ + ∥z − Ty∥∞).

Evaluating the supremum for each t ∈ [0, L], we conclude that

∥Ty − Tz∥∞ ≤ λ(∥y − Tz∥∞ + ∥z − Ty∥∞)
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where λ = µLα

Γ(α+1) . Now set k = 1 and define the coefficeint function a1 : C([0, L]) × C([0, L]) 7→ R+ by
a1(x, y) = C, where C is a positive real number. Thus the above inequality becomes

a1(Ty, Tz)d(Ty, Tz) ≤ λ[a1(y, Tz)d(y, Tz) + a1(z, Ty)d(z, Ty)]

which shows that T satisfies the condition of a polynomial Chatterjea contraction with a bounded coefficient
function a1 and k = 1. Since the metric space (C([0, L]), d) is complete and all the assumptions of the
conjecture are fulfilled, it follows that T possesses a fixed point y∗ ∈ C([0, L]) uniquely. Moreover, the
sequence {yn} generated by the Picard iteration

yn+1 = Tyn

converges to y∗. Hence the fractional IVP problem possesses a unique solution in C([0, L]).
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