

Chatterjea Polynomial Contraction Mapping Theorem in Metric Spaces with Application

Clement Boateng Ampadu

Independent Researcher
e-mail: profampadu@gmail.com

Abstract

In this paper, we introduce the notion of polynomial Chatterjea contraction mapping in metric spaces, and obtain a fixed point theorem. Some consequences of the main result and a conjecture are stated. The conjecture is illustrated with an example, and the conjecture is used to show existence and uniqueness of solutions for a certain class of fractional differential equations.

1 Introduction and Preliminaries

Theorem 1.1. [1] Let (X, d) be a metric space and suppose $T : X \mapsto X$ is a mapping satisfying the following contractive condition

$$d(Tx, Ty) \leq kd(x, y)$$

for all $x, y \in X$ and $k \in [0, 1)$. If (X, d) is complete, then T has a unique fixed point.

Definition 1.2. [2] A mapping $T : X \mapsto X$ on a metric space (X, d) is termed a *Kannan contraction* if there exists a constant λ with $0 \leq \lambda < \frac{1}{2}$ such that for every pair (x, y) the inequality below is valid

$$d(Tx, Ty) \leq \lambda(d(x, Tx) + d(y, Ty)).$$

Theorem 1.3. [3] A metric space (X, d) is complete precisely when every self-mapping T that satisfies the Kannan-type contraction condition possesses fixed point.

Definition 1.4. [4] Let T be a self-mapping on X with starting point $x_0 \in X$. The sequence $\{x_n\}$ constructed by the recursive formula

$$x_{n+1} = Tx_n, \quad n \in \mathbb{N}$$

is called the *Picard iteration sequence* generated by T and x_0 .

Received: November 18, 2025; Accepted: February 2, 2026; Published online: February 9, 2026

2020 Mathematics Subject Classification: 47H10, 54H25.

Keywords and phrases: Chatterjea contraction, polynomial contraction, metric space, fractional differential equation.

Copyright 2026 the Author

Definition 1.5. [5] A self-mapping T on a metric space (X, d) is termed a *polynomial contraction* if there are a collection of functions $a_1, \dots, a_k : X \times X \mapsto \mathbb{R}_+$ and $\lambda \in [0, 1)$ such that for some natural number k , the inequality

$$\sum_{i=0}^k a_i(Tx, Ty) d^i(Tx, Ty) \leq \lambda \sum_{i=0}^k a_i(x, y) d^i(x, y)$$

holds true.

Theorem 1.6. [5] Consider a complete metric space (X, d) endowed with $T : X \mapsto X$, a polynomial contraction with respect to a collection of functions $a_1, \dots, a_k : X \times X \mapsto \mathbb{R}_+$. Assuming further that the conditions below are in effect

- (i) The mapping T is continuous.
- (ii) There is an index $j \in \{1, 2, \dots, k\}$ and $A_j > 0$ such that the corresponding coefficient function a_j satisfies the inequality $a_j(x, y) \geq A_j$ for all $x, y \in X$.

Then T possesses exactly one fixed point x^* . Moreover, for any starting value x_0 in X the Picard sequence $\{x_n\}$ converges to x^* .

Definition 1.7. [4] A mapping $T : X \mapsto X$ on a metric space (X, d) is termed a *polynomial Kannan contraction* if there exists λ with $0 \leq \lambda < \frac{1}{2}$, a natural number k , and a collection $a_i : X \times X \mapsto \mathbb{R}_+$ for $i = 1, 2, \dots, k$ satisfying the following

$$\sum_{i=1}^k a_i(Tx, Ty) d^i(Tx, Ty) \leq \lambda \left(\sum_{i=1}^k a_i(x, Tx) d^i(x, Tx) + \sum_{i=0}^k a_i(y, Ty) d^i(y, Ty) \right)$$

for all $x, y \in X$.

Theorem 1.8. [4] Consider a complete metric space (X, d) endowed with a mapping $T : X \mapsto X$ that satisfies a polynomial Kannan contractive condition with respect to a collection of functions $a_1, \dots, a_k : X \times X \mapsto \mathbb{R}_+$. Assume further that the following conditions are in effect

- (i) The coefficient function a_i is symmetric in its arguments and continuous in its second argument for each $i = 1, 2, \dots, k$.
- (ii) There is an index $j \in \{1, 2, \dots, k\}$ and $A_j > 0$ such that the corresponding coefficient function a_j satisfies the inequality $a_j(x, y) \geq A_j$, for all $x, y \in X$.

Then T possesses exactly one fixed point x^* . Moreover, for any starting value x_0 in X , the Picard sequence $\{x_n\}$ converges to x^* .

Theorem 1.9. [6] Let (X, d) be a metric space. Suppose $T : X \mapsto X$ is a mapping satisfying

$$d(Tx, Ty) \leq \alpha(d(x, Ty) + d(y, Tx))$$

for all $x, y \in X$ and $\alpha \in [0, \frac{1}{2})$. If (X, d) is complete, then T has a unique fixed point.

2 Main Result

Definition 2.1. A mapping $T : X \mapsto X$ on a metric space (X, d) will be called a *polynomial Chatterjea contraction* if there exists λ with $0 \leq \lambda < \frac{1}{2}$, a natural number k , and a collection $a_i : X \times X \mapsto \mathbb{R}_+$ for $i = 1, \dots, k$ satisfying the following

$$\sum_{i=1}^k a_i(Tx, Ty) d^i(Tx, Ty) \leq \lambda \left(\sum_{i=1}^k a_i(x, Ty) d^i(x, Ty) + \sum_{i=1}^k a_i(y, Tx) d^i(y, Tx) \right)$$

for all $x, y \in X$.

Remark 2.2. The generalized Chatterjea type condition introduced above encompasses various new classes of contractive mappings as particular instances:

(i) Setting $k = 1$ and $a_1 \equiv 1$ yields the classical Chatterjea contraction originally introduced by Chatterjea [6], which satisfies

$$d(Tx, Ty) \leq \lambda(d(x, Ty) + d(y, Tx))$$

for all $x, y \in X$.

(ii) Choosing $k = 2$, $a_1 \equiv 0$ and $a_2 \equiv 1$ leads to the pure quadratic Chatterjea contraction, that is, a self-mapping T on a metric (X, d) for which there exist a constant $\lambda \in [0, \frac{1}{2})$ such that

$$d^2(Tx, Ty) \leq \lambda[d^2(x, Ty) + d^2(y, Tx)]$$

for all $x, y \in X$.

(iii) Similarly, setting $k = 3$, $a_1 \equiv a_2 \equiv 0$ and $a_3 \equiv 1$ gives rise to the pure cubic Chatterjea contraction, where a self-mapping T on (X, d) satisfies

$$d^3(Tx, Ty) \leq \lambda[d^3(x, Ty) + d^3(y, Tx)]$$

for all $x, y \in X$ and for a certain $\lambda \in [0, \frac{1}{2})$.

(iv) More generally, setting $k = m$, with $a_j \equiv 0$, for $1 \leq j \leq m - 1$ and $a_m \equiv 1$ yields a pure Chatterjea contraction of m -power, defined by the condition

$$d^m(Tx, Ty) \leq \lambda[d^m(x, Ty) + d^m(y, Tx)]$$

for all $x, y \in X$ and a certain $\lambda \in [0, \frac{1}{2})$.

Theorem 2.3. Consider a complete metric space (X, d) endowed with a mapping $T : X \mapsto X$ that satisfies a polynomial Chatterjea contractive condition with respect to a collection of functions $a_1, \dots, a_k : X \times X \mapsto \mathbb{R}_+$. Assume further the conditions below are in effect

- (i) The coefficient function a_i is symmetric in its arguments and continuous in its second argument for each $i = 1, 2, \dots, k$.
- (ii) There is an index $j \in \{1, 2, \dots, k\}$ and $A_j > 0$ such that the corresponding coefficient function a_j satisfies the inequality $a_j(x, y) \geq A_j$ for all $x, y \in X$.

Then T possesses exactly one fixed point x^* . Moreover, for any starting value x_0 in X , the Picard sequence $\{x_n\}$ converges to x^* .

Proof. Let $x_0 \in X$ be chosen arbitrarily. Define the sequence $\{x_n\}_{n=0}^{\infty}$ recursively by $x_{n+1} = Tx_n$ for all n and also define

$$P_n = \sum_{i=1}^k a_i(x_n, x_{n+1}) d^i(x_n, x_{n+1}).$$

Letting $x = x_n$ and $y = x_{n+1}$ in Definition 2.1 yields

$$\begin{aligned} \sum_{i=1}^k a_i(x_{n+1}, x_{n+2}) d^i(x_{n+1}, x_{n+2}) &\leq \lambda \left(\sum_{i=1}^k a_i(x_n, x_{n+2}) d^i(x_n, x_{n+2}) + \sum_{i=1}^k a_i(x_{n+1}, x_{n+1}) d^i(x_{n+1}, x_{n+1}) \right) \\ &\leq \lambda \left(\sum_{i=1}^k \{a_i(x_n, x_{n+1}) d^i(x_n, x_{n+1}) + a_i(x_{n+1}, x_{n+2}) d^i(x_{n+1}, x_{n+2})\} \right) \end{aligned}$$

that is, $P_{n+1} \leq \lambda(P_n + P_{n+1})$ which implies that

$$P_{n+1} \leq \frac{\lambda}{1-\lambda} P_n = \gamma P_n$$

where $\gamma = \frac{\lambda}{1-\lambda} < 1$, since $\lambda < \frac{1}{2}$. It follows by induction that

$$P_n \leq \gamma^n P_0$$

for all $n \geq 0$. Now from (ii), there is an index j such that $a_j(x_n, x_{n+1}) \geq A_j > 0$. Then we have

$$A_j d^j(x_n, x_{n+1}) \leq \sum_{i=1}^k a_i(x_n, x_{n+1}) d^i(x_n, x_{n+1}) = P_n \leq \gamma^n P_0$$

which implies that

$$d(x_n, x_{n+1}) \leq \left(\frac{\gamma^n P_0}{A_j} \right)^{\frac{1}{j}}.$$

Applying the triangle inequality for $m > n \geq 0$, it follows that

$$d(x_n, x_m) \leq \sum_{l=n}^{m-1} d(x_l, x_{l+1}) \leq \left(\frac{P_0}{A_j} \right)^{\frac{1}{j}} \sum_{l=n}^{\infty} \gamma^{\frac{l}{j}} = \left(\frac{P_0}{A_j} \right)^{\frac{1}{j}} \frac{\gamma^{\frac{n}{j}}}{1 - \gamma^{\frac{1}{j}}}.$$

Given that $\gamma < 1$, the right-hand side approaches to zero. Thus $\{x_n\}$ is a Cauchy sequence in the complete metric space X , ensuring its convergence to a point $x^* \in X$. To confirm that x^* is a fixed point, we substitute $x = x^*$ and $y = x_n$ in Definition 2.1, then we have

$$\sum_{i=1}^k a_i(Tx^*, x_{n+1}) d^i(Tx^*, x_{n+1}) \leq \lambda \left(\sum_{i=1}^k a_i(x^*, x_{n+1}) d^i(x^*, x_{n+1}) + \sum_{i=1}^k a_i(x_n, Tx^*) d^i(x_n, Tx^*) \right).$$

Passing to the limit as $n \rightarrow \infty$ and applying the continuity of a_i in its second argument, we deduce that

$$\sum_{i=1}^k a_i(Tx^*, x^*) d^i(Tx^*, x^*) \leq \lambda \left(\sum_{i=1}^k a_i(x^*, x^*) d^i(x^*, x^*) + \sum_{i=1}^k a_i(x^*, Tx^*) d^i(x^*, Tx^*) \right)$$

that is,

$$P(Tx^*, x^*) \leq \lambda P(x^*, Tx^*)$$

where $P(u, v) = \sum_{i=1}^k a_i(u, v) d^i(u, v)$. Owing to $\lambda < 1$ and a_i is symmetric in its arguments, it follows that $Tx^* = x^*$. Assume, for the purposes of proving uniqueness that x^* and y^* are both fixed points of T , then using Definition 2.1, we conclude that

$$\begin{aligned} P(x^*, y^*) &\leq \lambda(P(x^*, y^*) + P(y^*, x^*)) \\ &\leq 2\lambda P(x^*, y^*). \end{aligned}$$

Since $1 - 2\lambda \neq 0$, then $P(x^*, y^*) = 0$, which in view of (ii), leads to $x^* = y^*$, and this completes the proof. \square

Now using Remark 2.2 and Theorem 2.3, we have the following

Corollary 2.4. *Let (X, d) be a metric space. If (X, d) is complete and $T : X \mapsto X$ is a Chatterjea contraction, then there is a unique element x^* with $Tx^* = x^*$. For every starting value x_0 in X , the sequence $\{x_n\}_{n=0}^{\infty}$ defined by the recurrence relation*

$$x_{n+1} = Tx_n, \quad n \in \mathbb{Z}_{\geq 0}$$

converges to x^ with respect to the metric d .*

Corollary 2.5. *Let (X, d) be a metric space. If (X, d) is complete and $T : X \mapsto X$ is a pure quadratic Chatterjea contraction, then there is a unique element x^* with $Tx^* = x^*$. For every starting value x_0 in X , the sequence $\{x_n\}_{n=0}^{\infty}$ defined by the recurrence relation*

$$x_{n+1} = Tx_n, \quad n \in \mathbb{Z}_{\geq 0}$$

converges to x^ with respect to the metric d .*

Corollary 2.6. *Let (X, d) be a metric space. If (X, d) is complete and $T : X \mapsto X$ is a pure cubic Chatterjea contraction, then there is a unique element x^* with $Tx^* = x^*$. For every starting value x_0 in X , the sequence $\{x_n\}_{n=0}^{\infty}$ defined by the recurrence relation*

$$x_{n+1} = Tx_n, \quad n \in \mathbb{Z}_{\geq 0}$$

converges to x^ with respect to the metric d .*

Corollary 2.7. *Let (X, d) be a metric space. If (X, d) is complete and $T : X \mapsto X$ is a pure Chatterjea contraction of m power, then there is a unique element x^* with $Tx^* = x^*$. For every starting value x_0 in X , the sequence $\{x_n\}_{n=0}^{\infty}$ defined by the recurrence relation*

$$x_{n+1} = Tx_n, \quad n \in \mathbb{Z}_{\geq 0}$$

converges to x^ with respect to the metric d .*

Now to conclude this section, we state an open problem and illustrate it.

Conjecture 2.8. *Consider a complete metric space (X, d) endowed with a mapping $T : X \mapsto X$ that satisfies a polynomial Chatterjea contractive condition with respect to a collection of functions $a_1, \dots, a_k : X \times X \mapsto \mathbb{R}_+$. Assume further that the conditions below are in effect*

- (i) *For every $1 \leq i \leq k$, there exists $M_i > 0$ such that the coefficient function a_i satisfies $a_i(x, y) \leq M_i$ across all (x, y) in $X \times X$.*
- (ii) *There is an index $j \in \{1, 2, \dots, k\}$ and $A_j > 0$ such that the corresponding coefficient function a_j satisfies the inequality $a_j(x, y) \geq A_j$, for all $x, y \in X$.*
- (iii) *Each coefficient function a_i is lower semi-continuous in its first argument.*

Then T possesses exactly one fixed point x^ . Moreover, for any starting value x_0 in X , the Picard sequence $\{x_n\}$ converges to x^* .*

Example 2.9. We consider (X, d) a metric space with $X = [0, 1]$ and the standard Euclidean metric $d(x, y) = |x - y|$. Define $T : X \mapsto X$ by

$$T(x) = \frac{x^2}{3}.$$

T fails to be a classical Chatterjea contraction. For instance, taking $x = 0, y = 1$, we observe that

$$d(T0, T1) = \frac{1}{3} \leq \frac{4}{3}\lambda = \lambda[d(0, T1) + d(1, T0)]$$

which implies that $\lambda \geq \frac{1}{4}$, a contradiction to the fact that $\lambda \in [0, \frac{1}{2})$. We show T is a polynomial Chatterjea contraction with $k = 1$ and weight function $a_1(x, y) = 1 + x^2 + y^2$. To verify the contraction condition, we must establish that for some $\lambda \in [0, \frac{1}{2})$, the inequality below holds for every pair $x, y \in X$:

$$\left(1 + \frac{x^4}{9} + \frac{y^4}{9}\right) \left| \frac{x^2}{3} - \frac{y^2}{3} \right| \leq \frac{5}{19} \left[\left(1 + x^2 + \frac{y^4}{9}\right) \left| x - \frac{y^2}{3} \right| + \left(1 + y^2 + \frac{x^4}{9}\right) \left| y - \frac{x^2}{3} \right| \right].$$

Figure 1 shows that the “BlueGreenYellow” surface (RHS of the contraction inequality) dominates the “RustTones” surface (LHS of the contraction inequality). This demonstrates that the inequality is satisfied for all $x, y \in [0, 1]$ with $\lambda = \frac{5}{19}$. Since $\frac{5}{19} < \frac{1}{2}$, T satisfies the polynomial Chatterjea contraction condition with the given parameters. Moreover the function $a_1(x, y)$ is bounded above by 3, that is, $a_1(x, y) \leq 3$. It

also satisfies the lower bound $a_1(x, y) \geq 1 = A_1 > 0$. Therefore the requirements of the above conjecture hold, ensuring that T has exactly one fixed point, which is $x = 0$.

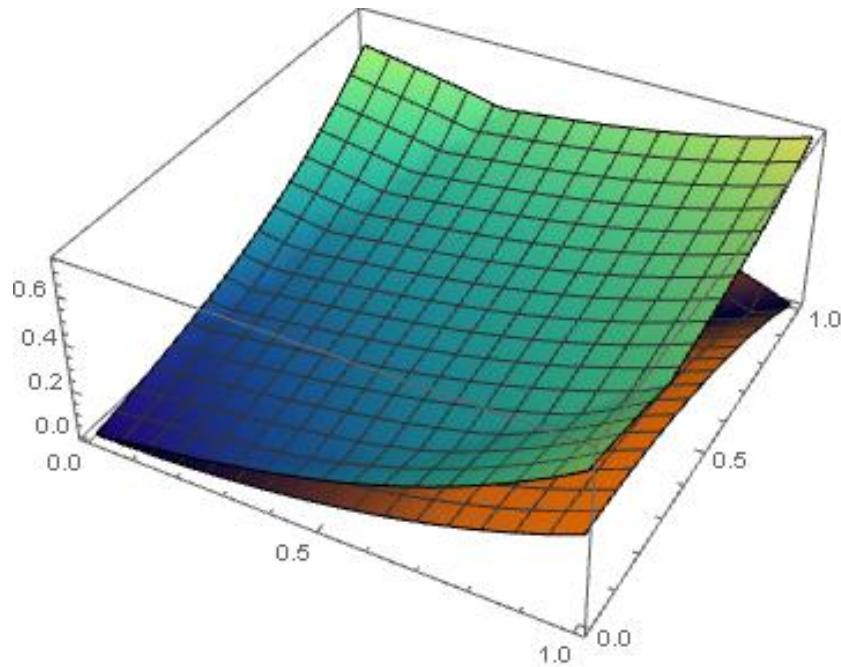


Figure 1: Comparison of both sides of the polynomial Chatterjea inequality in the above example over $[0, 1]$.

3 Application

This section is devoted to applying the conjecture to prove the existence and uniqueness of solutions for a certain class of nonlinear PDEs involving the Caputo derivative. Let us focus on the following initial value problem (IVP) involving a Caputo fractional derivative

$$\begin{cases} D^\alpha y(t) = f(t, y(t)), & t \in [0, L] \\ y(0) = y_0 \end{cases}.$$

In this context, $f : [0, L] \times \mathbb{R} \mapsto \mathbb{R}$ denotes a specified nonlinear function and the operator D^α is defined as the Caputo derivative of fractional order $\alpha \in (0, 1)$. It is well established that the above IVP problem can be reformulated as the following integral equation of the Volterra type:

$$y(t) = y_0 + \frac{1}{\Gamma(\alpha)} \int_0^t (t-s)^{\alpha-1} f(s, y(s)) ds.$$

We aim to demonstrate that a continuous solution to the IVP problem exists and is unique. We consider the space $C([0, L])$ of continuous functions $y : [0, L] \mapsto \mathbb{R}$, which when equipped with the following supremum

norm $\|\cdot\|_\infty$, forms a complete metric space:

$$d(y, z) = \|y - z\|_\infty = \sup_{t \in [0, L]} |y(t) - z(t)|.$$

Define $T : C([0, L]) \mapsto C([0, L])$ by

$$(Ty)(t) = y_0 + \frac{1}{\Gamma(\alpha)} \int_0^t (t-s)^{\alpha-1} f(s, y(s)) ds.$$

We proceed to establish the following theorem, which guarantees the unique existence of a solution to the above IVP problem.

Theorem 3.1. *Let $\alpha \in (0, 1)$, $L > 0$, and suppose the nonlinear function $f : [0, L] \times \mathbb{R} \mapsto \mathbb{R}$ satisfies*

(A1) *f is continuous on $[0, L] \times \mathbb{R}$.*

(A2) *There exists a constant $\mu > 0$ such that for all $t \in [0, L]$ and all $u, v \in \mathbb{R}$,*

$$|f(t, u) - f(t, v)| \leq \mu(|u - Tv| + |v - Tu|)$$

where T is defined as above and $2\mu L^\alpha < \Gamma(\alpha + 1)$.

Then the Caputo fractional IVP problem possesses a unique solution in $C([0, L])$.

Proof. Let $y, z \in C([0, L])$. Given any $t \in [0, L]$, we estimate

$$\begin{aligned} |Ty(t) - Tz(t)| &= \left| \frac{1}{\Gamma(\alpha)} \int_0^t (t-s)^{\alpha-1} [f(s, y(s)) - f(s, z(s))] ds \right| \\ &\leq \frac{1}{\Gamma(\alpha)} \int_0^t (t-s)^{\alpha-1} |f(s, y(s)) - f(s, z(s))| ds. \end{aligned}$$

By assumption (A2), we have

$$|f(s, y(s)) - f(s, z(s))| \leq \mu(|y(s) - Tz(s)| + |z(s) - Ty(s)|).$$

Substituting into the integral above we have

$$\begin{aligned} |Ty(t) - Tz(t)| &\leq \frac{\mu}{\Gamma(\alpha)} \int_0^t (t-s)^{\alpha-1} (|y(s) - Tz(s)| + |z(s) - Ty(s)|) ds \\ &\leq \frac{\mu}{\Gamma(\alpha)} (\|y - Tz\|_\infty + \|z - Ty\|_\infty) \int_0^t (t-s)^{\alpha-1} ds \\ &= \frac{\mu t^\alpha}{\Gamma(\alpha+1)} (\|y - Tz\|_\infty + \|z - Ty\|_\infty). \end{aligned}$$

Evaluating the supremum for each $t \in [0, L]$, we conclude that

$$\|Ty - Tz\|_\infty \leq \lambda (\|y - Tz\|_\infty + \|z - Ty\|_\infty)$$

where $\lambda = \frac{\mu L^\alpha}{\Gamma(\alpha+1)}$. Now set $k = 1$ and define the coefficient function $a_1 : C([0, L]) \times C([0, L]) \mapsto \mathbb{R}_+$ by $a_1(x, y) = C$, where C is a positive real number. Thus the above inequality becomes

$$a_1(Ty, Tz)d(Ty, Tz) \leq \lambda[a_1(y, Tz)d(y, Tz) + a_1(z, Ty)d(z, Ty)]$$

which shows that T satisfies the condition of a polynomial Chatterjea contraction with a bounded coefficient function a_1 and $k = 1$. Since the metric space $(C([0, L]), d)$ is complete and all the assumptions of the conjecture are fulfilled, it follows that T possesses a fixed point $y^* \in C([0, L])$ uniquely. Moreover, the sequence $\{y_n\}$ generated by the Picard iteration

$$y_{n+1} = Ty_n$$

converges to y^* . Hence the fractional IVP problem possesses a unique solution in $C([0, L])$. \square

References

- [1] Banach, S. (1922). Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales. *Fundamenta Mathematicae*, 3, 133–181.
- [2] Kannan, R. (1969). Some results on fixed points–II. *The American Mathematical Monthly*, 76, 405–408. <https://doi.org/10.1080/00029890.1969.12000228>
- [3] Subrahmanyam, P. (1974). Remarks on some fixed point theorems related to Banach's contraction principle. *Journal of Mathematical and Physical Sciences*, 8, 445–457.
- [4] Gassem, F., Alfeedel, H. A. A., Saleh, H. N., Aldwoah, K., Alqahtani, M. H., Tedjani, A. H., & Muflh, B. (2025). Generalizing Kannan fixed point theorem using higher-order metric polynomials with application to fractional differential equations. *Fractal and Fractional*, 9, 609. <https://doi.org/10.3390/fractfract9090609>
- [5] Jleli, M., Pacurari, C. M., & Samet, B. (2025). Fixed point results for contractions of polynomial type. *Demonstratio Mathematica*, 58, 20250098. <https://doi.org/10.1515/dema-2025-0098>
- [6] Chatterjea, S. K. (1972). Fixed-point theorems. *Comptes Rendus de l'Académie Bulgare des Sciences*, 25, 727–730.

This is an open access article distributed under the terms of the Creative Commons Attribution License (<http://creativecommons.org/licenses/by/4.0/>), which permits unrestricted, use, distribution and reproduction in any medium, or format for any purpose, even commercially provided the work is properly cited.
