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Abstract

In this paper, we introduce the notion of Reich contraction of integral type in metric spaces with
w-distance and prove a fixed point theorem. Some conjectures conclude the paper.

1 Introduction and Preliminaries

Theorem 1.1. [1] Let T be a mapping from a complete metric space (X, d) into itself satisfying

d(Tx, Ty) ≤ c[d(x, Tx) + d(y, Ty)], ∀x, y ∈ X, (2.1)

where c ∈ (0, 12) is a constant. Then T has a unique fixed point in X.

Theorem 1.2. [2] Let T be a mapping from a complete metric space (X, d) into itself satisfying∫ d(Tx,Ty)

0
φ(t)dt ≤ c

∫ d(x,y)

0
φ(t)dt, ∀x, y ∈ X, (2.2)

where c ∈ (0, 1) is a constant and φ : [0,∞) 7→ [0,∞) is Lebesgue integrable, summable on each compact
subset of [0,∞) and

∫ ϵ
0 φ(t)dt > 0 for each ϵ > 0. Then T has a unique fixed point a ∈ X such that

limn→∞ Tnx = a for each x ∈ X.

Notation 1.3. Throughout this paper, we assume the following

(a) R = (−∞,+∞).

(b) R+ = [0,+∞).

(c) N0 = {0} ∪ N, where N denotes the set of all positive integers.

(d) Φ will denote the class of all functions φ : [0,∞) 7→ [0,∞) which are Lebesgue integrable, summable
on each compact subset of R+ and

∫ ϵ
0 φ(t)dt > 0 for each ϵ > 0.
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Definition 1.4. [3] Let (X, d) be a metric space. A function p : X ×X 7→ R+ is called a w-distance in
X if it satisfies the following

(w1) p(x, z) ≤ p(x, y) + p(y, z), ∀x, y, z ∈ X,

(w2) for each x ∈ X, a mapping p(x, ·) : X 7→ R+ is lower semi-continuous, that is, if {yn}n∈N is a
sequence in X with limn→∞ yn = y ∈ X, then, p(x, y) ≤ lim infn→∞ p(x, yn),

(w3) for any ϵ > 0, there exists δ > 0 such that p(z, x) ≤ δ and p(z, y) ≤ δ imply d(x, y) ≤ ϵ.

Definition 1.5. [4] A self-mapping T in a metric space (X, d) is called orbitally continuous at u ∈ X if
limn→∞ Tnx = u, x ∈ X, implies that limn→∞ TTnx = Tu. The mapping T is orbitally continuous in X

if T is orbitally continuous at each u ∈ X.

Lemma 1.6. [3] Let X be a metric space with metric d and let p be a w-distance in X. Let {xn}n∈N
and {yn}n∈N be sequences in X, let {αn}n∈N and {βn}n∈N be sequences in R+ converging to 0, and let
x, y, z ∈ X, then the following hold:

(a) If p(xn, y) ≤ αn and p(xn, z) ≤ βn for any n ∈ N, then y = z. In particular, if p(x, y) = 0 and
p(x, z) = 0, then y = z.

(b) If p(xn, yn) ≤ αn and p(xn, z) ≤ βn for any n ∈ N, then {yn}n∈N converges to z.

(c) If p(xn, xm) ≤ αn for any n,m ∈ N with n > m, then {xn}n∈N is a Cauchy sequence.

(d) If p(x, xn) ≤ αn, for any n ∈ N , then {xn}n∈N is a Cauchy sequence.

Lemma 1.7. [5] Let φ ∈ Φ and {rn}n∈N be a nonnegative sequence with limn→∞ rn = a. Then

lim
n→∞

∫ rn

0
φ(t)dt =

∫ a

0
φ(t)dt.

Lemma 1.8. [5] Let φ ∈ Φ and {rn}n∈N be a nonnegative sequence. Then limn→∞
∫ rn
0 φ(t)dt = 0, if and

only if limn→∞ rn = 0.

Theorem 1.9. [6] Let (X, d) be a complete metric space and let f : X 7→ X be a Reich type single-valued
(a, b, c)-contraction, that is, there exists nonnegative numbers a, b, c with a+ b+ c < 1 such that

d(f(x), f(y)) ≤ ad(x, y) + bd(x, f(x)) + cd(y, f(y))

for each x, y ∈ X. Then T has a unique fixed point.

2 Main Results

Theorem 2.1. Let (X, d) be a complete metric space and let p be a w-distance in X. Assume that
T : X 7→ X satisfies ∫ p(Tx,Ty)

0
φ(t)dt ≤ c

∫ 1
3
[p(x,y)+p(x,Tx)+p(y,Ty)]

0
φ(t)dt, ∀x, y ∈ X, (3.1)
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where c ∈ [0, 1) is a constant and φ ∈ Φ. Then T has a unique fixed point u ∈ X, p(u, u) = 0, and
limn→∞ p(Tnx0, u) = 0 for each x0 ∈ X.

Proof. Pick an arbitrary point x0 ∈ X and define xn = Tnx0 for each n ∈ N0. Now we consider the
following two cases:

Case 1. Assume that xn0 = xn0−1 for some n0 ∈ N. It is easy to see that xn0−1 is a fixed point
of T , xn = xn0−1 for each n ≥ n0, and limn→∞ Tnx0 = xn0−1. Suppose that p(xn0−1, xn0−1) > 0. It
follows from (3.1) and φ ∈ Φ that∫ p(xn0−1,xn0−1)

0
φ(t)dt =

∫ p(Txn0−1,Txn0−1)

0
φ(t)dt

≤ c

∫ 1
3
[p(xn0−1,xn0−1)+p(xn0−1,Txn0−1)+p(xn0−1,Txn0−1)]

0
φ(t)dt

≤ c

∫ 1
3
[p(xn0−1,xn0−1)+p(xn0−1,xn0−1)+p(xn0−1,xn0−1)]

0
φ(t)dt

<

∫ p(xn0−1,xn0−1)

0
φ(t)dt

which is a contradiction. Hence p(xn0−1, xn0−1) = 0 which yields that

lim
n→∞

p(xn, xn0−1) = p(xn0−1, xn0−1) = 0.

Case 2. Assume that xn ̸= xn−1 for all n ∈ N. Suppose that

p(xn0−1, xn0) = 0 for some n0 ∈ N. (3.2)

From (3.1), (3.2), and φ ∈ Φ, we deduce the following

0 ≤
∫ p(xn0 ,xn0+1)

0
φ(t)dt

=

∫ p(Txn0−1,Txn0 )

0
φ(t)dt

≤ c

∫ 1
3
[p(xn0−1,xn0 )+p(xn0−1,Txn0−1)+p(xn0 ,Txn0 )]

0
φ(t)dt

= c

∫ 1
3
[p(xn0−1,xn0 )+p(xn0−1,xn0 )+p(xn0 ,xn0+1)]

0
φ(t)dt

= 0

which means that ∫ p(xn0 ,xn0+1)

0
φ(t)dt = 0

which together with φ ∈ Φ gives that
p(xn0 , xn0+1) = 0. (3.3)
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Note that (3.2), (3.3) and (w1) gives that

0 ≤ p(xn0−1, xn0+1) ≤ p(xn0−1, xn0) + p(xn0 , xn0+1) = 0

that is
p(xn0−1, xn0+1) = 0. (3.4)

It follows from (3.2),(3.4), and Lemma 1.6, that xn0 = xn0+1, which is absurd and hence

p(xn−1, xn) > 0, ∀n ∈ N. (3.5)

From (3.1), (3.5) and φ ∈ Φ, we deduce the following∫ p(xn,xn+1)

0
φ(t)dt =

∫ p(Txn−1,Txn)

0
φ(t)dt

≤ c

∫ 1
3
[p(xn−1,xn)+p(xn−1,Txn−1)+p(xn,Txn)]

0
φ(t)dt

= c

∫ 1
3
[p(xn−1,xn)+p(xn−1,xn)+p(xn,xn+1)]

0
φ(t)dt

≤ c

∫ 1
3
[3p(xn−1,xn)]

0
φ(t)dt

<

∫ p(xn−1,xn)

0
φ(t)dt, ∀n ∈ N

which together with (3.5) implies that

0 < p(xn, xn+1) < p(xn−1, xn), ∀n ∈ N. (3.6)

Note that (3.6) yields that the sequence {p(xn, xn+1)}n∈N0 is positive and strictly decreasing. Thus there
exists a constant v ≥ 0 with

lim
n→∞

p(xn, xn+1) = v. (3.7)

Suppose that v > 0. By means of (3.1), (3.7), φ ∈ Φ and Lemma 1.7, we conclude that∫ v

0
φ(t)dt = lim

n→∞

∫ p(xn,xn+1)

0
φ(t)dt

= lim
n→∞

∫ p(Txn−1,Txn)

0
φ(t)dt

≤ lim
n→∞

c

∫ 1
3
[p(xn−1,xn)+p(xn−1,Txn−1)+p(xn,Txn)]

0
φ(t)dt

= lim
n→∞

c

∫ 1
3
[p(xn−1,xn)+p(xn−1,xn)+p(xn,xn+1)]

0
φ(t)dt

≤ lim
n→∞

c

∫ 1
3
[3p(xn−1,xn)]

0
φ(t)dt

<

∫ v

0
φ(t)dt
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which is impossible and hence v = 0, that is,

lim
n→∞

p(xn, xn+1) = 0. (3.8)

Similarly, we get that
lim
n→∞

p(xn+1, xn) = 0. (3.9)

Now we show that
lim

n,m→∞
p(xn, xm) = 0. (3.10)

Otherwise there is a constant ϵ > 0 such that for each positive integer k, there are positive integers m(k)

and n(k) with m(k) > n(k) > k such that

p(xn(k), xm(k)) > ϵ.

For each positive integer k, let m(k) denote the least integer exceeding n(k) and satisfying the above
inequality. It follows that

p(xn(k), xm(k)) > ϵ and p(xn(k), xm(k)−1) ≤ ϵ, ∀k ∈ N. (3.11)

Note that

ϵ < p(xn(k), xm(k))

≤ p(xn(k), xn(k)−1) + p(xn(k)−1, xm(k)−1) + p(xm(k)−1, xm(k))

≤ p(xn(k), xn(k)−1) + p(xn(k)−1, xn(k)) + p(xn(k), xm(k)−1) + p(xm(k)−1, xm(k))

≤ p(xn(k), xn(k)−1) + p(xn(k)−1, xn(k)) + ϵ+ p(xm(k)−1, xm(k)).

(3.12)

Letting k → ∞ in (3.12) and using (3.8), (3.9) and (3.11), we get

lim
k→∞

p(xn(k), xm(k)) = lim
k→∞

p(xn(k)−1, xm(k)−1) = ϵ. (3.13)

By virtue of (3.1), (3.13), φ ∈ Φ, and Lemma 1.7, we deduce that∫ ϵ

0
φ(t)dt = lim

k→∞

∫ p(xn(k),xm(k))

0
φ(t)dt

= lim
k→∞

∫ p(Txn(k)−1,Txm(k)−1)

0
φ(t)dt

≤ lim
k→∞

c

∫ 1
3
[p(xn(k)−1,xm(k)−1)+p(xn(k)−1,Txn(k)−1)+p(xm(k)−1,Txm(k)−1)]

0
φ(t)dt

= lim
k→∞

c

∫ 1
3
[p(xn(k)−1,xm(k)−1)+p(xn(k)−1,xn(k))+p(xm(k)−1,xm(k))]

0
φ(t)dt

≤ lim
k→∞

c

∫ 1
3
[3p(xn(k)−1,xm(k)−1)]

0
φ(t)dt

<

∫ ϵ

0
φ(t)dt
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which is a contradiction. Thus, (3.10) holds. Let ϵ > 0 and δ denote the number in (w3). It follows from
(3.10) that there exists N ∈ N satisfying

p(xN , xn) < δ and p(xN , xm) < δ, ∀n,m ∈ N

which together with (w3) yields that

d(xn, xm) < ϵ, ∀n,m ≥ N

that is, {xn}n∈N0 is a Cauchy sequence. Since (X, d) is a complete metric space, it follows that there exists
a point u ∈ X such that limn→∞ xn = u. Observe that (3.10) guarantees that for each ϵ > 0, there exists
Nϵ ∈ N satisfying

0 ≤ p(xn, xm) < ϵ, ∀n,m ≥ Nϵ

which together with (w2) and limn→∞ xn = u yields that

0 ≤ p(xn, u) ≤ lim
m→∞

inf p(xn, xm) ≤ ϵ, ∀n ≥ Nϵ

which gives that
lim
n→∞

p(xn, u) = 0. (3.14)

Making use of (3.1),(3.14), φ ∈ Φ, and Lemma 1.7, we obtain that

0 ≤
∫ p(Txn,Tu)

0
φ(t)dt

≤ c

∫ 1
3
[p(xn,u)+p(xn,Txn)+p(u,Tu)]

0
φ(t)dt

= c

∫ 1
3
[p(xn,u)+p(xn,xn+1)+p(u,Tu)]

0
φ(t)dt

≤ c

∫ 1
3
[3p(xn,u)]

0
φ(t)dt → 0 as n → ∞

that is

lim
n→∞

∫ p(Txn,Tu)

0
φ(t) = 0

which together with Lemma 1.8 means that

lim
n→∞

p(xn+1, Tu) = lim
n→∞

p(Txn, Tu) = 0

which together with (w1) and (3.8) yields that

0 ≤ p(xn, Tu) ≤ p(xn, xn+1) + p(xn+1, Tu) → 0 as n → ∞

that is
lim
n→∞

p(xn, Tu) = 0. (3.15)
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Combining (3.14) and (3.15) and using Lemma 1.6, we deduce that u = Tu. Next we show that p(u, u) = 0.
Suppose that p(u, u) > 0. It follows from (3.1) and φ ∈ Φ that

0 <

∫ p(u,u)

0
φ(t)dt

=

∫ p(Tu,Tu)

0
φ(t)dt

≤ c

∫ 1
3
[p(u,u)+p(u,Tu)+p(u,Tu)]

0
φ(t)dt

= c

∫ 1
3
[p(u,u)+p(u,u)+p(u,u)]

0
φ(t)dt

<

∫ p(u,u)

0
φ(t)dt

(3.16)

which is impossible. That is, p(u, u) = 0. Finally, we show that T possesses a unique fixed point in
X. Suppose that α and β are two fixed points of T in X. Similar to the proof of (3.16), we infer that
p(α, α) = p(β, β) = 0. Suppose that p(β, α) > 0. It follows from (3.1) and φ ∈ Φ that

0 <

∫ p(β,α)

0
φ(t)dt

=

∫ p(Tβ,Tα)

0
φ(t)dt

≤ c

∫ 1
3
[p(β,α)+p(β,Tβ)+p(α,Tα)]

0
φ(t)dt

= c

∫ 1
3
[p(β,α)+p(β,β)+p(α,α)]

0
φ(t)dt

= c

∫ 1
3
p(β,α)

0
φ(t)dt

<

∫ p(β,α)

0
φ(t)dt

which is absurd. Consequently, p(β, α) = 0, which together with p(β, β) = 0 and Lemma 1.6 implies that
β = α. This completes the proof.

3 Conjectures

The open problems are to prove or disprove the following

Conjecture 3.1. Let (X, d) be a complete metric space and let p be a w-distance in X. Assume that
T : X 7→ X satisfies∫ p(Tx,Ty)

0
φ(t)dt ≤ a

∫ p(Tx,x)

0
φ(t)dt+ b

∫ p(Ty,y)

0
φ(t)dt+ c

∫ p(x,y)

0
φ(t)dt, ∀x, y ∈ X,
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where φ ∈ Φ and
a, b, and c are nonnegative and a+ b+ c < 1.

Then T has a unique fixed point u ∈ X, p(u, u) = 0, and limn→∞ p(Tnx0, u) = 0 for each x0 ∈ X.

Conjecture 3.2. Let (X, d) be a complete metric space and let p be a w-distance in X. Assume that
T : X 7→ X is an orbitally continuous mapping satisfying∫ p(Tx,Ty)

0
φ(t)dt ≤ a

∫ p(Tx,x)

0
φ(t)dt+ b

∫ p(Ty,y)

0
φ(t)dt+ c

∫ p(x,y)

0
φ(t)dt, ∀x, y ∈ X,

where φ ∈ Φ and
a, b, and c are nonnegative and a+ b+ c < 1.

Then T has a unique fixed point u ∈ X, p(u, u) = 0, and limn→∞ p(Tnx0, u) = 0 for each x0 ∈ X.
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