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Abstract

In this study, generalized Sasakian space forms are examined on W5−,W6,W7, and W9− curvature
tensors. Moreover, special curvature conditions with the help of W5−,W6,W7, W9− pseudosymmetry
and W5−,W6,W7, W9− Ricci pseudosymmetry are defined. The behavior for the generalized Sasakian
space form is then represented in accordance with these concepts.

1 Introduction

Contact geometry and its Riemannian counterparts are essential to modern differential geometry, spanning
areas from close connections to global analysis, mathematical physics, and topology. Among these
structures, Sasakian manifolds constitute an important class, serving as odd-dimensional analogues of
Kähler manifolds. Their rich geometric structure has motivated extensive investigations into their
curvature properties and symmetry conditions [1, 15,16].

Assume that M(ϕ, ξ, η, g) denotes the almost contact metric manifold. If there are functions F1, F2, F3

on M such that

R(X1, X2)X3 = F1[g(X2, X3)X1 − g(X1, X3)X2]

+F2[g(X1, ϕX3)ϕX2 − g(X2, ϕX3)ϕX1

2g(X1, ϕX2)ϕX3] + F3[η(X1)η(X3)X2

−η(X2)η(X3)X1 + g(X1, X3)η(X2)ξ

−g(X2, X3)η(X1)ξ], (1.1)
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M = M(ϕ, ξ, η, g) is defined as a generalized Sasakian space form and this kind of manifold is shown by
M2n+1(F1, F2, F3). In order to unify and generalize various curvature models arising in contact metric
geometry, the notion of generalized Sasakian space forms was introduced as a natural extension of classical
Sasakian space forms [3]. These manifolds are characterized by curvature tensors depending on three
smooth functions, allowing a broader framework that includes Sasakian, Kenmotsu, and cosymplectic
space forms as special cases. Since their introduction, generalized Sasakian space forms have attracted
considerable attention, particularly in the study of curvature-restricted geometric structures [4, 7].

A significant direction of research in this area concerns the interaction between generalized Sasakian
space forms and various curvature tensors. For instance, investigations involving projective, concircular,
conformal, and τ -curvature tensors have revealed notable geometric and topological consequences [2,10]. In
particular, conditions imposed on these tensors often lead to characterizations of local symmetry, conformal
flatness, or Einstein-like structures [8, 9].

Further developments include the study of generalized Sasakian space forms satisfying special curvature
conditions such as those involving the W0-curvature tensor or concircular curvature tensor, which yield
rigidity results and classification theorems [5, 6]. These findings show that the global geometry of such
manifolds is mainly determined by curvature constraints.

In recent years, attention has also shifted toward geometric flows and soliton structures on generalized
Sasakian space forms. Various types of solitons, including Ricci and other generalized solitons, have
been examined in low-dimensional settings, highlighting the dynamical aspects of these manifolds under
curvature evolution equations [11]. Parallel to this, new curvature tensors such as pseudo-quasi conformal
and contact conformal curvature tensors have been employed to derive further geometric properties and
invariance results [12,13].

Moreover, invariant submanifolds of generalized Sasakian space forms have been examined extensively,
especially in relation to different curvature tensors. These investigations provide insight into how ambient
curvature influences the intrinsic geometry of submanifolds [14]. The geometric behavior of generalized
Sasakian structures and its submanifold theory are better understood thanks to these investigations.

Motivated by the above studies, the present study aims to further investigate some curvature properties
of generalized Sasakian space forms under W5−,W6,W7, and W9− tensorial conditions. Therefore,
this study is organized as follows: In Section 2, some properties of W5−,W6,W7, and W9− curvature
tensors and structures of generalized Sasakian space form are given. In Section 3, W5−,W6,W7, and
W9− pseudosymmetry and Ricci pseuosymmetry conditions are discuused. Moreover, being Einstein or η
Einstein manifolds conditions are discussed in detail. In Section 4, the effectiveness of W operators as tools
for classifying and comprehending almost contact metric manifolds is confirmed by the transformation of
geometric meanings under W curvature conditions into new categories, namely Einstein manifold and η−
Einstein manifold.
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2 Preliminaries

In this section, some curvature tensor concepts are introduced with some basic properties of generalized
Sasakian manifolds.

If a smooth manifold M2n+1 admits a tensor field ϕ of type (1, 1), a vector field ξ, and a 1-form η that
meet the following conditions, then it has an almost contact structure (ϕ, ξ, η):

ϕ2X1 = −X1 + η(X1)ξ, η(ξ) = 1, (2.1)

and

g(ϕX1, ϕX2) = g(X1, X2)− η(X1)η(X2) (2.2)

for all vector fields X1, X2 on M2n+1, then (M2n+1, ϕ, ξ, η, g) is defined as an almost contact metric
manifold. It is clear that

g(ξ,X1) = η(X1). (2.3)

The transformation Φ defined by

Φ(X1, X2) = g(X1,ΦX2) (2.4)

for all X1, X2 ∈ χ(M), is defined as the fundamental 2- form of the almost contact metric structure
(ϕ, ξ, η, g). Here,

η ∧ Φn ̸= 0.

The Riemannian curvature tensor for the Sasakian space form is given by

R(X1, X2)X3 = (
k + 3

4
)[g(X1, X3)X1 − g(X1, X3)X2]

+ (
k − 1

4
)[g(X1, ϕX3)ϕX2 − g(X2, ϕX3)ϕX1

+ 2g(X1, ϕX2)ϕX3 + η(X1)η(X3)X2 (2.5)

− η(X2)η(X3)X1 + g(X1, X3)η(X2)ξ

− g(X2, X3)η(X1)ξ].

As we choose X1 = ξ,X2 = ξ, and X3 = ξ in (2.5), we get

R(ξ,X2)X3 = (F1 − F3)[g(X2, X3)ξ − η(X3)X2], (2.6)

R(X1, ξ)X3 = (F1 − F3)[−g(X1, X3)ξ + η(X3)X1], (2.7)

R(X1, X2)ξ = (F1 − F3)[η(X2)X1 − η(X1)X2]. (2.8)

Moreover, we write

η(R(X1, X2)X3) = (F1 − F3)[g(X2, X3)η(X1)− g(X1, X3)η(X2)].
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Lemma 2.1. For the generalized Sasakian space form M2n+1(F1, F2, F3), the relations listed below are
true:

S(X1, X2) = [2nF1 + 3F2 − F3]g(X1, X2)− [3F2 + (2n− 1)F3]η(X1)η(X2),

S(X1, ξ) = 2n(F1 − F3)η(X1), (2.9)

QX1 = [2nF1 + 3F2 − F3]X1 − [3F2 + (2n− 1)F3]η(X1)ξ,

Qξ = 2n(F1 − F3)ξ, (2.10)

r = 2n(2n+ 1)F1 + 6nF2 − 4nF3

for all X1, X2 ∈ χ(M2n+1). The Ricci operator, Ricci tensor, and scalar curvature of M2n+1(F1, F2, F3)

are denoted by Q,S, and r, respectively, [8].

Definition 2.2. Assume that M2n+1 is a generalized Sasakian space form. The curvature tensor W5 is
given by

W5(X1, X2)X3 = R(X1, X2)X3 −
1

n− 1
S(X1, X3)X2 − g(X1, X3)QX2 (2.11)

for all vector fields X1, X2, X3 on M, [2].

Lemma 2.3. Assume that M2n+1 is a generalized Sasakian space form. The relations listed below are
true [2]:

W5(ξ,X2)X3 = (F1 − F3)[g(X2, X3)ξ − η(X3)X2 −
2n

n− 1
η(X3X2) +

1

n− 1
η(X3)QX2, (2.12)

W5(X1, ξ)X3 = (F1 − F3)[−g(X1, X3)ξ + η(X3)X1 +
2n

n− 1
g(X1, X3)ξ]−

1

n− 1
S(X1, X3)ξ, (2.13)

W5(X1, X2)ξ = (F1 − F3)[η(X2)X1 − η(X1)X2] +
1

n− 1
[η(X1)QX2 − S(X1, X2)ξ]. (2.14)

Definition 2.4. Assume that M2n+1 is a generalized Sasakian space form. The curvature tensor W6 is
given by

W6(X1, X2)X3 = R(X1, X2)X3 −
1

n− 1
S(X2, X3)X1 − g(X2, X3)QX1 (2.15)

for all vector fields X1, X2, X3 on M, [2].

Lemma 2.5. Assume that M2n+1 is a generalized Sasakian space form. The relations listed below are
true [2]:

W6(ξ,X2)X3 = η(X3)X2 − 2g(X2, X3)ξ −
1

n− 1
S(X2, X3)ξ, (2.16)

W6(X1, ξ)X3 = −g(X1, X3)ξ + 2η(X3)X1 +
1

n− 1
η(X3)QX1, (2.17)

W6(X1, X2)ξ = η(X1)X2 +
1

n− 1
η(X2)QX1. (2.18)

Definition 2.6. Assume that M2n+1 is a generalized Sasakian space form. The curvature tensor W7 is
given by

W7(X1, X2)X3 = R(X1, X2)X3 −
1

n− 1
S(X2, X3)X1 +

1

n− 1
g(X2, X3)QX1 (2.19)

for all vector fields X1, X2, X3 on M, [2].
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Lemma 2.7. Assume that M2n+1 is a generalized Sasakian space form. The relations listed below are
true [2]:

W7(ξ,X2)X3 = (F1 − F3)[g(X2, X3)ξ − η(X3)X2 +
2n

n− 1
g(X2, X3)ξ]−

1

n− 1
S(X2, X3)ξ, (2.20)

W7(X1, ξ)X3 = (F1 − F3)[−g(X1, X3)ξ + η(X3)X1 −
2n

n− 1
η(X3)X1] +

1

n− 1
η(X3)QX1, (2.21)

W7(X1, X2)ξ = (F1 − F3)[η(X2)X1 − η(X1)X2 −
2n

n− 1
η(X2)X1] +

1

n− 1
η(X2)QX1. (2.22)

Definition 2.8. Assume that M2n+1 is a generalized Sasakian space form. The curvature tensor W9 is
given by

W9(X1, X2)X3 = R(X1, X2)X3 +
1

n− 1
S(X1, X2)X3 −

1

n− 1
g(X2, X3)QX1 (2.23)

for all vector fields X1, X2, X3 on M, [2].

Lemma 2.9. Assume that M2n+1 is a generalized Sasakian space form. The relations listed below are
true [2]:

W9(ξ,X2)X3 = (F1 − F3)[g(X2, X3)ξ − η(X3)X2 −
2n

n− 1
g(X2, X3)ξ +

2n

n− 1
η(X2)X3], (2.24)

W9(X1, ξ)X3 = (F1 − F3)[−g(X1, X3)ξ + η(X3)X1 +
2n

n− 1
η(X1)X3]−

1

n− 1
η(X3)QX1, (2.25)

W9(X1, X2)ξ = (F1 − F3)[η(X2)X1 − η(X1)X2] +
1

n− 1
[S(X1, X2)ξ − η(X2)QX1]. (2.26)

3 On Geometric Properties for Generalized Sasakian Manifolds

In this section, for W5−,W6−,W7−, and W9− curvature tensors in a generalized Sasakian manifold, we
provide the following geometric characterizations:

Definition 3.1. Assume that M2n+1(F1, F2, F3) is a (2n + 1)− dimesional generalized Sasakian space
form. If R ·W5 and Q(g,W5) are linearly dependent, where R is the Riemannian curvature tensor, then
M2n+1 is called a W5− pseudosymmetric.

In this specific case, a function λ0 exists such that

R ·W5 = λ0 ·Q(g,W5).

If λ0 = 0, then the M2n+1 is called a W5− semisymmetric.

Theorem 3.2. Let M2n+1 be a 2n + 1− dimensional generalized Sasakian space form. For F1 ̸= F3,
M2n+1 is a η− Einstein manifold if it is W5− pseudosymmetric.

Proof. Let M2n+1 be the generalized Sasakian space form that provides W5− pseudosemisymmetric:

(R(X1, X2) ·W5)(X4, X5, X3) = λ0 ·Q(g,W5)(X4, X5, X3;X1, X2)
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for all X1, X2, X3, X4, X5 ∈ χ(M). Hence, we have

R(X1, X2)W5(X4, X5)X3 −W5(R(X1, X2)X4, X5)X3 −W5(X4, R(X1, X2)X5)X3

−W5(X4, X5R(X1, X2)X3 = λ0 · [−g(X5, X3)W5(X4, X1)X2 + g(X4, X3)W6(X5, X1)X2 (3.1)

−g(X5, X1)W6(X3, X4)X2 + g(X4, X1)W5(X3, X5)X2g(X5, X2)W5(X3, X1)X4 + g(X4, X2)W5(X3, X1)X5].

Choosing X1 = ξ in (3.1) and exploiting (2.1), (2.3), (2.6), (2.12), (2.13), and (2.14), we obtain

(F1 − F3)g(X2,W5(X4, X5)X3)ξ − η(W5(X4, X5)X3)X2 − (F1 − F3)g(X2, X4)[(F1 − F3)g(X3, X5)ξ

−
2n(F1 − F3)

n− 1
η(X3)X5 +

1

n− 1
η(X3)QX5] + (F1 − F3)W5(X2, X5)X3 + (F1 − F3)g(X2, X5)

[−(F1 − F3)g(X3, X4)ξ + η(X3)X4 −
1

n− 1
S(X3, X4)ξ +

2n(F1 − F3)

n− 1
g(X3, X4)ξ]

+(F1 − F3)η(X5)W5(X2, X4)X3 − (F1 − F3)g(X2, X5)[(F1 − F3)η(X5)X4 − (F1 − F3)η(X4)X5

−
1

n− 1
S(X4, X5)ξ +

1

n− 1
η(X4)QX5] = λ0[−g(X5, X3)[−(F1 − F3)g(X4, X2) + (F1 − F3)η(X2)X4ξ

+
2n(F1 − F3)

n− 1
g(X2, X4)ξ] +−g(X3, X4)[−(F1 − F3)g(X5, X2)ξ + (F1 − F3)η(X2)X4

+
2n(F1 − F3)

n− 1
g(X2, X5)ξ −

1

n− 1
S(X2, X5)ξ]− η(X5)W5(X3, X4)X2 + η(X4)W5(X3, X5)X2

−g(X2, X5)[−(F1 − F3)g(X3, X4) +
2n(F1 − F3)

n− 1
g(X3, X4)ξξ −

1

n− 1
S(X3, X4)ξ + (F1 − F3)η(X4)X3]

+g(X2, X4)[−(F1 − F3)g(X3, X5)ξ + (F1 − F3)η(X5)X3 +
2n(F1 − F3)

n− 1
g(X3, X5)ξ −

1

n− 1
S(X3, X5)ξ]. (3.2)

If we write X4 = ξ in (3.2) and make simplifications by considering (2.1), (2.3), (2.9), and (2.12), we
calculate

(F1 − F3)[(F1 − F3)g(X5, X3)η(X2)ξ −
2n(F1 − F3)

n− 1
η(X3)g(X2, X5)ξ +

1

n− 1
η(X3)S(X4, X2)ξ − g(X5, X3)X2

+η(X2)η(X5)X2 − (F1 − F3)η(X2)g(X3, X5)ξ +W5(X2, X5)X3]− (F1 − F3)η(X5)η(X3)X2

−
2n(F1 − F3)

n− 1
η(X3)η(X5)X2 −

2n(F1 − F3)

n− 1
η(X3)η(X5)X2 +

1

n− 1
η(X3)η(X5)QX2 + (F1 − F3)g(X2, X3)X5

+
2n(F1 − F3)

n− 1
g(X2, X3)η(X5)ξ −

1

n− 1
g(X2, X3)QX5 = λ0[

2n(F1 − F3)

n− 1
g(X2, X5)η(X3)ξ

+(F1 − F3)η(X2)η(X3)X5 −
1

n− 1
S(X2, X5)η(X3)ξ + (F1 − F3)η(X5)g(X2, X3)ξ +

1

n− 1
S(X2, X3)η(X5)ξ

−
2n(F1 − F3)

n− 1
η(X5)g(X2, X3)ξ +W5(X3, X5)X2 − (F1 − F3)g(X2, X5)X3 − (F1 − F3)η(X2)g(X3, X5)ξ

−
1

n− 1
S(X3, X5)η(X2)ξ +

2n(F1 − F3)

n− 1
g(X3, X5)η(X2)ξ]. (3.3)

If we choose X3 = ξ in (3.3), we briefly compute

(F1 − F3)[−
2n(F1 − F3)

n− 1
g(X2, X5)ξ −

2n(F1 − F3)

n− 1
η(X5)X2 +

1

n− 1
η(X5)QX2 +

2n(F1 − F3)

n− 1
η(X5)η(X2)ξ]

= λ0[−
1

n− 1
S(X2, X5)ξ +

2n(F1 − F3)

n− 1
g(X5, X2)ξ −

2n(F1 − F3)

n− 1
η(X2)X5 +

1

n− 1
η(X2)QX5. (3.4)

Taking inner product both sides of the equation by X6 ∈ χ(M) and choosing X5 = ξ, we acquire

S(X2, X6) = 2ng(X2, X6).

Corollary 3.3. Let M2n+1(F1, F2, F3) be a generalized Sasakian space form that is (2n+1)− dimesional.
M2n+1 is either an Einstein manifold or F1 = F3 if it is W5− semisymmetric.
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Definition 3.4. Assume that M2n+1(F1, F2, F3) is a (2n + 1)− dimesional generalized Sasakian space
form. If R ·W5 and Q(S,W5) are linearly dependent, then M2n+1 is called W5− Ricci pseudosymmetric.

In this case, a function λ10 exists such that

R ·W5 = λ10 ·Q(S,W5),

where S is the Ricci curvature tensor. If λ10 = 0, then the M2n+1 is called a W5− Ricci semisymmetric.

Theorem 3.5. Let M2n+1 be a 2n+ 1− dimensional generalized Sasakian space form. For F1 ̸= F3 and
λ10 ̸= 0, M2n+1 is a η− Einstein manifold if it is W5− pseudosymmetric.

Proof. Let M2n+1 be the generalized Sasakian space form that provides W5− Ricci pseudosemisymmetric:

(R(X1, X2) ·W5)(X4, X5, X3) = λ10 ·Q(S,W5)(X4, X5, X3;X1, X2)

for all X1, X2, X3, X4, X5 ∈ χ(M). Hence, we have

R(X1, X2)W5(X4, X5)X3 −W5(R(X1, X2)X4, X5)X3 −W5(X4, R(X1, X2)X5)X3 −W5(X4, X5R(X1, X2)X3

= λ10 · [−S(X5, X3)W5(X4, X1)X2 + S(X4, X3)W5(X5, X1)X2 − S(X5, X1)W5(X3, X4)X2 (3.5)

−g(X5, X2)W5(X3, X1)X4 + S(X4, X2)W5(X3, X1)X5].

Choosing X1 = ξ in (3.5) and exploiting (2.9) and (2.13), we obtain

(F1 − F3)g(X2,W5(X4, X5)X3)ξ − η(W5(X4, X5)X3)X2 − (F1 − F3)g(X2, X4)[(F1 − F3)g(X3, X5)ξ

−
2n(F1 − F3)

n− 1
η(X3)X5 +

1

n− 1
η(X3)QX5] + (F1 − F3)W5(X2, X5)X3 + (F1 − F3)g(X2, X5)

[−(F1 − F3)g(X3, X4)ξ + η(X3)X4 −
1

n− 1
S(X3, X4)ξ +

2n(F1 − F3)

n− 1
g(X3, X4)ξ]

+(F1 − F3)η(X5)W5(X2, X4)X3 − (F1 − F3)g(X2, X5)[(F1 − F3)η(X5)X4 − (F1 − F3)η(X4)X5

−
1

n− 1
S(X4, X5)ξ +

1

n− 1
η(X4)QX5] = λ10[−S(X5, X3)[−(F1 − F3)g(X4, X2)ξ + (F1 − F3)η(X2)X4

−
1

n− 1
S(X2, X4)ξ +

2n(F1 − F3)

n− 1
g(X2, X4)ξ] + S(X3, X4)[−(F1 − F3)g(X5, X2)ξ + (F1 − F3)η(X2)X5

+
2n(F1 − F3)

n− 1
g(X2, X5)ξ −

1

n− 1
S(X2, X5)ξ] + 2n(F1 − F3)η(X5)W5(X3, X4)X2 + 2nη(X4)W5(X3, X5)X2

−S(X2, X5)[−(F1 − F3)g(X3, X4)ξ +
2n(F1 − F3)

n− 1
g(X2, X4)ξ −

1

n− 1
S(X2, X4)ξ + (F1 − F3)η(X2)X5]

+S(X2, X4)[−(F1 − F3)g(X3, X5)ξ − (F1 − F3)η(X5)X3 +
2n(F1 − F3)

n− 1
g(X3, X5)ξ −

1

n− 1
S(X3, X5)ξ]. (3.6)

If we write X4 = ξ in (3.6) and make simplifications by considering (2.1), (2.3), (2.9), and (2.13), we
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calculate

(F1 − F3)[(F1 − F3)g(X5, X3)η(X2)ξ −
2n(F1 − F3)

n− 1
η(X3)g(X2, X5)ξ +

1

n− 1
η(X3)S(X4, X2)ξ

−g(X5, X3)X2 + η(X2)η(X5)X2 − (F1 − F3)η(X2)g(X3, X5)ξ +W5(X2, X5)X3]− (F1 − F3)η(X5)η(X3)X2

−
2n(F1 − F3)

n− 1
η(X3)η(X5)X2 −

2n(F1 − F3)

n− 1
η(X3)η(X5)X2 +

1

n− 1
η(X3)η(X5)QX2 +

(F1 − F3)g(X2, X3)X5 +
2n(F1 − F3)

n− 1
g(X2, X3)η(X5)ξ −

1

n− 1
g(X2, X3)QX5

= λ10[2n(F1 − F3)η(X3)[−(F1 − F3)g(X2, X5) + (F1 − F3)η(X2)X5 −
1

n− 1
S(X2, X5)ξ

+
2n(F1 − F3)

n− 1
g(X2, X5)ξ] + 2n(F1 − F3)η(X5)[−(F1 − F3)g(X2, X3) + (F1 − F3)η(X2)X3

−
1

n− 1
S(X2, X3)ξ +

2n(F1 − F3)

n− 1
g(X2, X3)ξ] + 2n(F1 − F3)W5(X3, X5)X2 − S(X2, X5)

[−(F1 − F3)η(X3)ξ + (F1 − F3)X3] + 2n(F1 − F3η(X2))[−(F1 − F3)g(X3, X5)ξ + (F1 − F3)η(X5)X3

−
1

n− 1
S(X3, X5)ξ +

2n(F1 − F3)

n− 1
g(X3, X5)ξ]]. (3.7)

If we choose X3 = ξ in (3.7), we briefly compute

(F1 − F3)[−
2n(F1 − F3)

n− 1
g(X2, X5)ξ −

2n(F1 − F3)

n− 1
η(X5)X2 +

1

n− 1
η(X5)QX2 +

2n(F1 − F3)

n− 1
η(X5)η(X2)ξ]

= λ10[−
2n(F1 − F3)

n− 1
S(X2, X5)ξ +

4n2(F1 − F3)

n− 1
g(X5, X2)ξ −

4n2(F1 − F3)2

n− 1
η(X2)X5]. (3.8)

Taking inner product both sides of (3.8) by X6 ∈ χ(M) and choosing X5 = ξ, we acquire

S(X2, X6)− 2ng(X2, X6) + 4n2λ10(F1 − F3)η(X2)η(X6) = 0.

Corollary 3.6. Let M2n+1 be a 2n + 1− dimensional generalized Sasakian space form. For F1 ̸= F3,
M2n+1 is an Einstein manifold if it is W5− semisymmetric.

Definition 3.7. Assume that M2n+1(F1, F2, F3) is a (2n + 1)− dimesional generalized Sasakian space
form. If R ·W6 and Q(g,W6) are linearly dependent, then M2n+1 is called a W6− pseudosymmetric.

In this specific case, a function λ1 exists such that

R ·W6 = λ1 ·Q(g,W6),

where R is the Riemann curvature tensor. If λ1 = 0, the M2n+1 is called a W6− semisymmetric.

Theorem 3.8. Let M2n+1 be a 2n+1− dimensional generalized Sasakian space form. M2n+1 is either an
Eintein manifold if λ1 =

(F1−F3)(n+1)
8n(n−1) or a η− Einstein manifold if F1 ̸= F3 if it is W6− pseudosymmetric.

Proof. Let M2n+1 be the generalized Sasakian space form that provides W6− pseudosemisymmetric:

(R(X1, X2) ·W6)(X4, X5, X3) = λ1 ·Q(g,W6)(X4, X5, X3;X1, X2)
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for all X1, X2, X3, X4, X5 ∈ χ(M). Hence, we have

R(X1, X2)W6(X4, X5)X3 −W6(R(X1, X2)X4, X5)X3 −W6(X4, R(X1, X2)X5)X3

−W6(X4, X5R(X1, X2)X3 = λ1 · [−g(X5, X3)W6(X4, X1)X2 + g(X4, X3)W6(X5, X1)X2 (3.9)

−g(X5, X1)W6(X3, X4)X2 + g(X4, X1)W6(X3, X5)X2 − g(X5, X2)W6(X3, X1)X4 + g(X4, X2)W6(X3, X1)X5].

Choosing X1 = ξ in (3.9) and exploiting (2.1), (2.16), (2.17), and (2.18), we obtain

(F1 − F3)[g(X2,W6(X4, X5)X3)ξ − η(W6(X4, X5)X3)X2 − g(X2, X4)[(F1 − F3)g(X5, X3)ξ − η(X3)X5

−
1

n− 1
S(X5, X3)ξ +

1

n− 1
η(X5)QX3] + η(X4)W6(X2, X5)X3 + g(X2, X5)[−(F1 − F3)g(X4, X3)ξ

+(F1 − F3)η(X3)X4 −
2n(F1 − F3)

n− 1
η(X3)X4 +

1

n− 1
η(X4)QX3] + η(X5)W6(X4, X2)X3

−(F1 − F3)g(X2, X3)[η(X5)X4 − η(X4)X5 −
2n

n− 1
η(X5)X4 +

2n

n− 1
g(X4, X5)ξ] + η(X5)W6(X4, X5)X2] (3.10)

= λ1[−g(X5, X3)[−(F1 − F3)g(X4, X2) + (F1 − F3)η(X2)X4 −
2n(F1 − F3)

n− 1
η(X2)X4

+
1

n− 1
η(X4)QX2] + g(X4, X2)[−(F1 − F3)g(X5, X2)ξ + (F1 − F3)η(X2)X5 −

2n(F1 − F3)

n− 1
η(X2)X5

+
1

n− 1
η(X5)QX2]− η(X5)W6(X3, X4)X2 + η(X4)W6(X3, X5)X2 + g(X5, X2)[−(F1 − F3)g(X3, X4)ξ

+(F1 − F3)η(X4)X3 −
2n(F1 − F3)

n− 1
η(X4)X3 +

1

n− 1
η(X3)QX4] + g(X2, X4)

[−(F1 − F3)g(X3, X5)ξ + (F1 − F3)η(X5)X3]−
2n(F1 − F3)

n− 1
η(X5)X3 +

1

n− 1
η(X3)QX5]

If we write X4 = ξ in (3.10) and make simplifications by considering (2.16), we calculate

(F1 − F3)[(F1 − F3)g(X5, X3)η(X2)ξ − (F1 − F3)η(X3)g(X2, X5)ξ − (F1 − F3)g(X5, X3)X2 +
1

n− 1
S(X4, X3)X2

−
2n(F1 − F3)

n− 1
η(X3)η(X5)X2 − (F1 − F3)η(X2)g(X5, X3)ξ + (F1 − F3)η(X2)η(X3)X5 +W6(X2, X5)X3]

+
2n(F1 − F3)

n− 1
η(X3)g(X2, X5)ξ −

1

n− 1
g(X2, X5)QX3 + (F1 − F3)η(X5)g(X2, X3)ξ − (F1 − F3)g(X2, X3)η(X5)ξ

+(F1 − F3)g(X2, X3)X5 +
2n(F1 − F3)

n− 1
g(X2, X3)η(X5)ξ −

2n(F1 − F3)

n− 1
η(X5)g(X2, X3)ξ

= λ1[
2n(F1 − F3)

n− 1
g(X5, X3) + η(X2)ξ −

(F1 − F3)

n− 1
g(X5, X3)QX2 − (F1 − F3)η(X3)g(X5, X2)ξ

+(F1 − F3)η(X2)η(X3)X5 +
1

n− 1
η(X5)η(X3)QX2 + (F1 − F3)η(X5)g(X3, X2)ξ −

1

n− 1
η(X5)η(X3)QX2

+W6(X3, X5)X2 −
2n(F1 − F3)

n− 1
η(X2)η(X3)X5 − (F1 − F3)g(X5, X2)η(X3)ξ + (F1 − F3)g(X5, X2)X3

−
2n(F1 − F3)

n− 1
g(X5, X2)X3 +

2n

n− 1
η(X3)g(X5, X2)ξ − (F1 − F3)η(X2)g(X3, X5)ξ +

1

n− 1
η(X2)η(X3)QX5]. (3.11)

If we choose X3 = ξ in (3.11), we briefly compute

(F1 − F3)
2[(

n+ 1

n− 1
)g(X2, X5)ξ + η(X2)X5] = λ1[

2n(F1 − F3)

n− 1
η(X5)η(X2)ξ −

(F1 − F3)

n− 1
η(X5)QX2

+
2n(F1 − F3)

n− 1
η(X2)QX5 +

1

n− 1
S(X2, X5)ξ −

2n(F1 − F3)

n− 1
g(X2, X5)ξ +

2n

n− 1
g(X2, X5)ξ +

1

n− 1
η(X2)QX5].

Taking inner product both sides of the equation by X6 ∈ χ(M) and choosing X5 = ξ, we acquire

(F1 − F3)[−2n(F1 − F3)g(X2, X6) + [(F1 − F3)(n+ 1)− 8λ1n(n− 1)]η(X2)η(X6) + λ1S(X2, X6)] = 0.
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Definition 3.9. Assume that M2n+1(F1, F2, F3) is a (2n + 1)− dimesional generalized Sasakian space
form. If R ·W6 and Q(S,W6) are linearly dependent, then M2n+1 is called a W6− Ricci pseudosymmetric.

In this specific case, a function λ1 exists such that

R ·W6 = λ2 ·Q(S,W6),

where S is the Rici curvature tensor. If λ2 = 0, then the M2n+1 is said to be a W6− Ricci semisymmetric.

Theorem 3.10. Let M2n+1 be a 2n+1− dimensional generalized Sasakian space form. Given F1−F3−1 ̸=
0 and (F1 − F3)

2 = 2n
n−1 , M

2n+1 is an Eintein manifold if it is W6− Ricci semisymmetric.

Proof. Let M2n+1 be the generalized Sasakian space form that provides W6− pseudosemisymmetric:

(R(X1, X2) ·W6)(X4, X5, X3) = λ2 ·Q(S,W6)(X4, X5, X3;X1, X2)

for all X1, X2, X3, X4, X5 ∈ χ(M). Hence, we have

R(X1, X2)W6(X4, X5)X3 −W6(R(X1, X2)X4, X5)X3 −W6(X4, R(X1, X2)X5)X3

−W6(X4, X5R(X1, X2)X3 = λ2 · [−S(X5, X3)W6(X4, X1)X2 + S(X4, X3)W6(X5, X1)X2 (3.12)

−S(X5, X1)W6(X3, X4)X2 + S(X4, X1)W6(X3, X5)X2 − S(X5, X2)W6(X3, X1)X4 + S(X4, X2)W6(X3, X1)X5].

If we write X1 = ξ in (3.12) and make simplifications by using (2.9) and (2.17), we calculate

(F1 − F3)[(F1 − F3)g(X5, X3)η(X2)ξ − (F1 − F3)η(X3)g(X2, X5)ξ − (F1 − F3)g(X5, X3)X2 +
1

n− 1
S(X4, X3)X2

−
2n(F1 − F3)

n− 1
η(X3)η(X5)X2 − (F1 − F3)η(X2)g(X5, X3)ξ + (F1 − F3)η(X2)η(X3)X5 +W6(X2, X5)X3]

+
2n(F1 − F3)

n− 1
η(X3)g(X2, X5)ξ −

1

n− 1
g(X2, X5)QX3 + (F1 − F3)η(X5)g(X2, X3)ξ − (F1 − F3)g(X2, X3)η(X5)ξ

+(F1 − F3)g(X2, X3)X5 +
2n(F1 − F3)

n− 1
g(X2, X3)η(X5)ξ −

2n(F1 − F3)

n− 1
η(X5)g(X2, X3)ξ = λ2[−S(X5, X3)

[−(F1 − F3)g(X4, X2)ξ + (F1 − F3)η(X2)X4 −
2n(F1 − F3)

n− 1
η(X2)X4 +

1

n− 1
η(X4)QX2]

S(X4, X3)[−(F1 − F3)g(X5, X2)ξ + (F1 − F3)η(X2)X5 −
2n(F1 − F3)

n− 1
η(X2)X5 +

1

n− 1
η(X5)QX2]

−2n(F1 − F3)η(X5)W6(X4, X3)X2 + 2n(F1 − F3)η(X4)W6(X3, X5)X2 − S(X4, X2)[−(F1 − F3)

g(X4, X3)ξ + (F1 − F3)η(X4)X3 −
2n(F1 − F3)

n− 1
η(X4)X3 +

1

n− 1
η(X3)QX4]]. (3.13)
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If we choose X4 = ξ in (3.13), we easily calculate by using (2.3), (2.10), and (2.17)

(F1 − F3)[(F1 − F3)g(X5, X3)η(X2)ξ − (F1 − F3)η(X3)g(X2, X5)ξ − (F1 − F3)g(X5, X3)X2 +
1

n− 1
S(X4, X3)X2

−
2n(F1 − F3)

n− 1
η(X3)η(X5)X2 − (F1 − F3)η(X2)g(X5, X3)ξ + (F1 − F3)η(X2)η(X3)X5 +W6(X2, X5)X3]

+
2n(F1 − F3)

n− 1
η(X3)g(X2, X5)ξ −

1

n− 1
g(X2, X5)QX3 + (F1 − F3)η(X5)g(X2, X3)ξ − (F1 − F3)g(X2, X3)η(X5)ξ

+(F1 − F3)g(X2, X3)X5 +
2n(F1 − F3)

n− 1
g(X2, X3)η(X5)ξ −

2n(F1 − F3)

n− 1
η(X5)g(X2, X3)ξ

= λ2[
2n(F1 − F3)

n− 1
S(X5, X3) + η(X2)ξ −

1

n− 1
QX2S(X5, X3)− 2n(F1 − F3)

2η(X3)g(X2, X5)ξ

+2n(F1 − F3)
2η(X2)η(X3)X5 −

4n2(F1 − F3)2

n− 1
η(X3)η(X2)X5 +

2n(F1 − F3)

n− 1
η(X3)η(X5)QX2

+2n(F1 − F3)
2η(X3)g(X2, X5)ξ + 2n(F1 − F3)

2η(X5)g(X2, X3)ξ − 2n(F1 − F3)
2η(X5)η(X2)X3

+
4n2(F1 − F3)2

n− 1
η(X5)η(X2)X3 −

2n

n− 1
η(X3)η(X5)QX2 + 2n(F1 − F3)W6(X3, X5)X2

+(F1 − F3)S(X2, X5)η(X3)− (F1 − F3)S(X2, X5)X3 +
2n(F1 − F3)

n− 1
S(X2, X5)X3

−
2n(F1 − F3)

n− 1
S(X2, X5)η(X3)ξ]. (3.14)

If we choose X3 = ξ in (3.14), we compute

(F1 − F3)
2[−g(X2, X5)ξ +

2n

n− 1
g(X2, X5)ξ + η(X2)X5] = λ2[

8n2(F1 − F3)2

n− 1
η(X5)η(X2)ξ

−
4n2(F1 − F3)2

n− 1
η(X2)X5 −

2n(F1 − F3)

n− 1
η(X5)QX2 −

2n(F1 − F3)

n− 1
S(X2, X5)ξ +

2n(F1 − F3)

n− 1
η(X5)QX2].

Taking inner product both sides of the equation by X6 ∈ χ(M) and choosing X5 = ξ, we acquire

− 2n

n− 1
g(X2, X6) + (−(F1 − F3)

2 +
2n

n− 1
)η(X2)η(X6) =

λ22n(F1 − F3 − 1)

n− 1
S(X2, X6).

Definition 3.11. Assume that M2n+1(F1, F2, F3) is a (2n + 1)− dimesional generalized Sasakian space
form, R is the Riemann curvature tensor. If R ·W7 and Q(g,W7) are linearly dependent, then M2n+1 is
called a W7− pseudosymmetric.

In this specific case, a function λ1 exists such that

R ·W7 = λ3 ·Q(g,W7).

If λ3 = 0, then the M2n+1 is called a W7− semisymmetric.

Theorem 3.12. Let M2n+1 be a 2n+1− dimensional generalized Sasakian space form. If M2n+1 is W7−
pseudosymmetric, then it is either an Eintein manifold if F1 ̸= F3 or F1 = F3.

Proof. Let M2n+1 be the generalized Sasakian space form that provides W7− pseudosemisymmetric:

(R(X1, X2) ·W7)(X4, X5, X3) = λ3 ·Q(g,W7)(X4, X5, X3;X1, X2)

Earthline J. Math. Sci. Vol. 16 No. 2 (2026), 161-178



172 Emel Karaca, Tuğba Mert and Mehmet Atçeken

for all X1, X2, X3, X4, X5 ∈ χ(M). Hence, we have

R(X1, X2)W7(X4, X5)X3 −W7(R(X1, X2)X4, X5)X3 −W7(X4, R(X1, X2)X5)X3

−W7(X4, X5R(X1, X2)X3 = λ1 · [−g(X5, X3)W7(X4, X1)X2 + g(X4, X3)W7(X5, X1)X2 (3.15)

−g(X5, X1)W7(X3, X4)X2 + g(X4, X1)W7(X3, X5)X2 − g(X5, X2)W7(X3, X1)X4 + g(X4, X2)W7(X3, X1)X5].

Choosing X1 = ξ in (3.15) and using (2.1), (2.3), (2.17), (2.20), (2.21), and (2.22), we obtain

(F1 − F3)[g(X2,W7(X4, X5)X3)ξ − η(W7(X4, X5)X3)X2 − g(X2, X4)[(F1 − F3)g(X5, X3)ξ

−η(X3)X5 −
1

n− 1
S(X5, X3)ξ +

2n(F1 − F3)

n− 1
g(X5, X3)ξ] + η(X4)W7(X2, X5)X3

−g(X2, X5)[−(F1 − F3)g(X4, X3)ξ + (F1 − F3)η(X3)X4 −
2n(F1 − F3)

n− 1
η(X3)X4 +

1

n− 1
η(X3)QX4]

η(X5)W7(X4, X2)X3 − g(X2, X3)[η(X5)X4 − η(X4)X5 −
2n

n− 1
η(X5)X4 +

1

n− 1
η(X5)QX4] (3.16)

+η(X3)W7(X4, X5)X2] = λ3[−g(X5, X3)[−(F1 − F3)g(X4, X3)ξ + (F1 − F3)η(X3)X4 −
2n(F1 − F3)

n− 1
η(X3)X4

+
1

n− 1
η(X3)QX4] + g(X4, X3)[−(F1 − F3)g(X5, X2)ξ + (F1 − F3)η(X2)X5 −

2n(F1 − F3)

n− 1
η(X2)X5

+
1

n− 1
η(X2)QX5]− η(X5)W7(X3, X4)X2 + η(X4)W7(X3, X5)X2 − g(X5, X2)[−(F1 − F3)g(X3, X4)ξ

+(F1 − F3)η(X4)X3 −
2n(F1 − F3)

n− 1
η(X4)X3 +

1

n− 1
η(X4)QX3]

+g(X2, X4)[−(F1 − F3)g(X3, X5)ξ + (F1 − F3)η(X5)X3]−
2n(F1 − F3)

n− 1
η(X3)X5 +

1

n− 1
η(X5)QX3]

If we write X4 = ξ in (3.16) and make simplifications by considering (2.20) and (2.21), we calculate

(F1 − F3)[(F1 − F3)g(X5, X3)X2 +
1

n− 1
S(X5, X2)X2 −

2n(F1 − F3)

n− 1
g(X5, X3)X2 +W7(X2, X5)X3

−
1

n− 1
S(X2, X3)η(X5)ξ +

2n

n− 1
g(X2, X3)η(X5)ξ + g(X2, X3)X5 −

1

n− 1
S(X5, X2)η(X3)ξ

+
2n

n− 1
η(X3)g(X2, X5)ξ = λ3[(F1 − F3)η(X3)η(X2)X5 −

2n(F1 − F3)

n− 1
η(X2)η(X3)X5

+
1

n− 1
η(X2)η(X3)QX5 + η(X5)g(X2, X3)ξW7(X3, X5)X2 − (F1 − F3)g(X2, X5)X3

+
2n(F1 − F3)

n− 1
g(X2, X5)X3 −

1

n− 1
g(X2, X5)QX3 − (F1 − F3)g(X5, X3)η(X2)ξ]. (3.17)

If we choose X3 = ξ in (3.17), we compute

−
2n(F1 − F3)2

n− 1
η(X5)X2 +

(F1 − F3)

n− 1
η(X5)QX2 −

(F1 − F3)

n− 1
S(X2, X5)ξ +

2n(F1 − F3)2

n− 1
g(X2, X5)ξ

= λ3[−
2n(F1 − F3)

n− 1
η(X2)X5 +

1

n− 1
η(X2)QX5 −

1

n− 1
S(X2, X5)ξ +

2n(F1 − F3)

n− 1
g(X2, X5)ξ]. (3.18)

Taking inner product both sides of the equation by X6 ∈ χ(M) and choosing X5 = ξ, we acquire

(F1 − F3)

n− 1
[S(X2, X6)− 2n(F1 − F3)g(X2, X6)] = 0.

Corollary 3.13. Let M2n+1(F1, F2, F3) be a generalized Sasakian space form that is (2n+1)− dimesional.
M2n+1 is either an Einstein manifold or F1 = F3 if it is W6− semisymmetric.

Definition 3.14. Assume that M2n+1(F1, F2, F3) is a (2n + 1)− dimesional generalized Sasakian space
form. If R ·W7 and Q(S,W7) are linearly dependent, then M2n+1 is called a W7− Ricci pseudosymmetric.
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In this specific case, a function λ4 exists such that

R ·W7 = λ3 ·Q(S,W7),

where S is the Rici curvature tensor. If λ4 = 0, then the M2n+1 is called a W7− Ricci semisymmetric.

Theorem 3.15. Let M2n+1 be a 2n+ 1− dimensional generalized Sasakian space form. M2n+1 is either
an Eintein manifold if F1 ̸= F3 or F1 = F3 if it is W7− Ricci pseudosymmetric.

Proof. Let M2n+1 be the generalized Sasakian space form that provides W7− Ricci pseudosemisymmetric:

(R(X1, X2) ·W7)(X4, X5, X3) = λ4 ·Q(S,W7)(X4, X5, X3;X1, X2)

for all X1, X2, X3, X4, X5 ∈ χ(M). Hence, we have

R(X1, X2)W7(X4, X5)X3 −W7(R(X1, X2)X4, X5)X3 −W7(X4, R(X1, X2)X5)X3

−W7(X4, X5R(X1, X2)X3 = λ4 · [−S(X5, X3)W7(X4, X1)X2 + S(X4, X3)W7(X5, X1)X2 (3.19)

−S(X5, X1)W7(X3, X4)X2 + S(X4, X1)W7(X3, X5)X2 − S(X5, X2)W7(X3, X1)X4 + S(X4, X2)W7(X3, X1)X5].

Choosing X1 = ξ in (3.19) and using (2.1), (2.3), (2.6), (2.9), (2.21), and (2.22), we obtain

(F1 − F3)[g(X2,W7(X4, X5)X3)ξ − η(W7(X4, X5)X3)X2 − S(X2, X4)[(F1 − F3)g(X5, X3)ξ

−η(X3)X5 −
1

n− 1
S(X5, X3)ξ +

2n(F1 − F3)

n− 1
g(X5, X3)ξ] + η(X4)W7(X2, X5)X3

−S(X2, X5)[−(F1 − F3)g(X4, X3)ξ + (F1 − F3)η(X3)X4 −
2n(F1 − F3)

n− 1
η(X3)X4 +

1

n− 1
η(X3)QX4]

η(X5)W7(X4, X2)X3 − S(X2, X3)[η(X5)X4 − η(X4)X5 −
2n

n− 1
η(X5)X4 +

1

n− 1
η(X5)QX4] (3.20)

+η(X3)W7(X4, X5)X2] = λ4[−S(X5, X3)[−(F1 − F3)g(X4, X3)ξ + (F1 − F3)η(X3)X4 −
2n(F1 − F3)

n− 1
η(X3)X4

+
1

n− 1
η(X3)QX4] + S(X4, X3)[−(F1 − F3)g(X5, X2)ξ + (F1 − F3)η(X2)X5 −

2n(F1 − F3)

n− 1
η(X2)X5

+
1

n− 1
η(X2)QX5]− 2n(F1 − F3)η(X4)W7(X3, X5)X2 − S(X5, X2)[−(F1 − F3)g(X3, X4)ξ

+(F1 − F3)η(X4)X3 −
2n(F1 − F3)

n− 1
η(X4)X3 +

1

n− 1
η(X4)QX3]

+S(X2, X4)[−(F1 − F3)g(X3, X5)ξ + (F1 − F3)η(X5)X3]−
2n(F1 − F3)

n− 1
η(X3)X5 +

1

n− 1
η(X5)QX3].

If we write X4 = ξ in (3.20) and make simplifications by considering (2.3), (2.9), and (2.20), we calculate

(F1 − F3)[g(X2,W7(X4, X5)X3)ξ − η(W7(X4, X5)X3)X2 − S(X2, X4)[(F1 − F3)g(X5, X3)ξ

−η(X3)X5 −
1

n− 1
S(X5, X3)ξ +

2n(F1 − F3)

n− 1
g(X5, X3)ξ] + η(X4)W7(X2, X5)X3

−S(X2, X5)[−(F1 − F3)g(X4, X3)ξ + (F1 − F3)η(X3)X4 −
2n(F1 − F3)

n− 1
η(X3)X4 +

1

n− 1
η(X3)QX4]

η(X5)W7(X4, X2)X3 − S(X2, X3)[η(X5)X4 − η(X4)X5 −
2n

n− 1
η(X5)X4 +

1

n− 1
η(X5)QX4]

+η(X3)W7(X4, X5)X2] = λ4(F1 − F3)[−2n(F1 − F3)η(X3)g(X2, X5)ξ + 2n(F1 − F3)η(X2)η(X3)X5

−
4n2(F1 − F3)

n− 1
η(X2)η(X3)X5 +

2n

n− 1
η(X2)η(X3)QX5 + 2nη(X5)g(X2, X3)ξ − 2n(F1 − F3)η(X2)η(X5)X3 (3.21)

−
2n

n− 1
η(X2)η(X5)QX3 + 2nW7(X3, X5)X2 + S(X2, X5)η(X3)ξ − S(X2, X5)X3 +

2n

n− 1
S(X2, X5)X3

−
1

n− 1
S(X2, X5)QX3 − 2n(F1 − F3)η(X2)g(X3, X5)ξ + 2nη(X2)η(X5)X3 +

2n

n− 1
η(X2)η(X5)QX3].
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If we choose X3 = ξ in (3.21), we compute

−
2n(F1 − F3)2

n− 1
η(X5)X2 +

(F1 − F3)

n− 1
η(X5)QX2 −

(F1 − F3)

n− 1
S(X2, X5)ξ +

2n(F1 − F3)2

n− 1
g(X2, X5)ξ

= λ4[2n(F1 − F3)
2η(X2)X5 −

4n2(F1 − F3)2

n− 1
η(X2)X5 +

2n(F1 − F3)

n− 1
η(X2)QX5

−2n(F1 − F3)
2η(X2)X5 +

4n2(F1 − F3)2

n− 1
g(X2, X5)ξ −

2n(F1 − F3)

n− 1
S(X2, X5)ξ]. (3.22)

Taking inner product both sides of the equation by X6 ∈ χ(M) and choosing X5 = ξ, we acquire

(F1 − F3)

n− 1
[S(X2, X6)− 2n(F1 − F3)g(X2, X6)] = 0.

Corollary 3.16. Assume that M2n+1(F1, F2, F3) is a (2n + 1)− dimesional generalized Sasakian space
form. If M2n+1 is W7− semisymmetric, M2n+1 is either an Einstein manifold or F1 = F3.

Definition 3.17. Assume that M2n+1(F1, F2, F3) is a (2n + 1)− dimesional generalized Sasakian space
form. If R ·W9 and Q(g,W9) are linearly dependent, then M2n+1 is called a W9− pseudosymmetric.

In this specific case, a function λ1 exists such that

R ·W9 = λ5 ·Q(g,W6),

where R is the Riemann curvature tensor. If λ5 = 0, then the M2n+1 is called a W9− semisymmetric.

Theorem 3.18. Let M2n+1 be a 2n+1−dimensional generalized Sasakian space form. If M2n+1 is W9−
pseudosymmetric, then M2n+1 is either an Eintein manifold if (F1−F3) =

2n
n−1 or a η− Einstein manifold

if (F1 − F3) ̸= 2n
n−1 if F1 ̸= F3.

Proof. Let M2n+1 be the generalized Sasakian space form that provides W9− pseudosemisymmetric:

(R(X1, X2) ·W9)(X4, X5, X3) = λ1 ·Q(g,W6)(X4, X5, X3;X1, X2)

for all X1, X2, X3, X4, X5 ∈ χ(M). Hence, we have

R(X1, X2)W9(X4, X5)X3 −W9(R(X1, X2)X4, X5)X3 −W9(X4, R(X1, X2)X5)X3

−W9(X4, X5R(X1, X2)X3 = λ5 · [−g(X5, X3)W9(X4, X1)X2 + g(X4, X3)W9(X5, X1)X2 (3.23)

−g(X5, X1)W9(X3, X4)X2 + g(X4, X1)W9(X3, X5)X2 − g(X5, X2)W9(X3, X1)X4 + g(X4, X2)W9(X3, X1)X5].
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Choosing X1 = ξ in (3.23) and exploiting (2.1), (2.6), (2.8), (2.24), (2.25), and (2.26), we obtain

(F1 − F3)[g(X2,W9(X4, X5)X3)ξ − η(W9(X4, X5)X3)X2 − g(X2, X4)[(F1 − F3)g(X5, X3)ξ

−η(X3)X5 −
1

n− 1
S(X5, X3)ξ +

1

n− 1
η(X5)QX3] + η(X4)W9(X2, X5)X3

g(X2, X5)[−(F1 − F3)g(X4, X3)ξ + (F1 − F3)η(X3)X4 −
2n(F1 − F3)

n− 1
η(X3)X4 +

1

n− 1
η(X4)QX3]

+η(X5)W9(X4, X2)X3 − (F1 − F3)g(X2, X3)[η(X5)X4 − η(X4)X5 −
2n

n− 1
η(X5)X4 +

2n

n− 1
g(X4, X5)ξ] (3.24)

+η(X5)W9(X4, X5)X2] = λ5[−g(X5, X3)[−(F1 − F3)g(X4, X2)ξ + (F1 − F3)η(X2)X4 +
2n(F1 − F3)

n− 1
η(X4)X2

−
1

n− 1
η(X2)QX4] + g(X4, X2)[−(F1 − F3)g(X5, X2)ξ + (F1 − F3)η(X2)X5 +

2n(F1 − F3)

n− 1
η(X5)X2

−
1

n− 1
η(X2)QX5]− η(X5)W9(X3, X4)X2 + η(X4)W9(X3, X5)X2 − g(X5, X2)[−(F1 − F3)g(X3, X4)ξ

+(F1 − F3)η(X4)X3 +
2n(F1 − F3)

n− 1
η(X3)X4 −

1

n− 1
η(X4)QX3] + g(X2, X4)

[−(F1 − F3)g(X3, X5)ξ + (F1 − F3)η(X5)X3 +
2n(F1 − F3)

n− 1
η(X3)X5 −

1

n− 1
η(X5)QX3]]

If we write X4 = ξ in (3.24) and make simplifications by considering (2.1), (2.9), and (2.10) we calculate

(F1 − F3)[
2n(F1 − F3)

n− 1
g(X3, X5)X2 +W9(X2, X5)X3 −

2n(F1 − F3)

n− 1
g(X2, X5)X3 − (F1 − F3)g(X2, X3)X5

= λ5[−(F1 − F3)η(X2)g(X3, X5)ξ −
2n(F1 − F3)

n− 1
g(X3, X5)ξ +

2n(F1 − F3)

n− 1
g(X3, X5)η(X2)ξ

+(F1 − F3)η(X2)η(X3)X5 + (F1 − F3)η(X2)η(X3)X5 −
1

n− 1
η(X2)η(X3)QX5

+(F1 − F3)η(X5)g(X2, X3)ξ +
1

n− 1
η(X2)η(X5)QX3 +W9(X3, X5)X2 − (F1 − F3)g(X2, X5)X3

−
2n(F1 − F3)

n− 1
η(X3)g(X2, X5)ξ +

1

n− 1
g(X2, X5)QX3] +

2n(F1 − F3)

n− 1
η(X2)η(X3)X5

−
1

n− 1
η(X5)η(X2)QX3]. (3.25)

If we choose X3 = ξ in (3.25), we briefly compute

(F1 − F3)[
2n(F1 − F3)

n− 1
η(X5)X2 − (F1 − F3)η(X2)X5 +

1

n− 1
S(X2, X5)ξ −

1

n− 1
η(X5)QX2

−
2n(F1 − F3)

n− 1
g(X2, X5)ξ − (F1 − F3)η(X2)X5] = λ5[

2n(F1 − F3)

n− 1
η(X2)η(X5)ξ

−
1

n− 1
η(X2)QX5 −

2n(F1 − F3)

n− 1
g(X2, X5)ξ +

2n(F1 − F3)

n− 1
η(X2)X5]. (3.26)

By selecting X5 = ξ and taking the inner product of both sides of (3.26) by X6 ∈ χ(M), we obtain

(F1 − F3)[
1

n− 1
S(X2, X6) + (−2(F1 − F3)−

2n(F1 − F3)

n− 1
+

2n

n− 1
)η(X2)η(X6) +

2n(F1 − F3)

n− 1
g(X2, X6)] = 0.

Corollary 3.19. Let M2n+1(F1, F2, F3) be a generalized Sasakian space form that is (2n+1)− dimesional.
If M2n+1 is W9 semisymmetric, it is either a η− Einstein manifold if F1 ̸= F3 or F1 = F3.

Definition 3.20. Assume that M2n+1(F1, F2, F3) is a (2n + 1)− dimesional generalized Sasakian space
form. If R ·W9 and Q(S,W9) are linearly dependent, then M2n+1 is called a W9− Ricci pseudosymmetric.
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In this specific case, a function λ6 exists such that

R ·W9 = λ6 ·Q(S,W9),

where S is the Ricci curvature tensor. If λ6 = 0, then the M2n+1 is called a W9− Ricci semisymmetric.

Theorem 3.21. Let M2n+1 be a 2n + 1− dimensional generalized Sasakian space form. If M2n+1 is
W9− Ricci pseudosymmetric, it is either an Eintein manifold if λ8 = 2n(F1−F3)−F1+F3−n

2n(F1−F3)(n+1) or an Einstein

manifold with η− if λ8 =
1
2n and λ8 ̸= 2n(F1−F3)−F1+F3−n

2n(F1−F3)(n+1) .

Proof. Let M2n+1 be the generalized Sasakian space form that provides W9− Ricci pseudosemisymmetric:

(R(X1, X2) ·W9)(X4, X5, X3) = λ1 ·Q(S,W6)(X4, X5, X3;X1, X2)

for all X1, X2, X3, X4, X5 ∈ χ(M). Hence, we have

R(X1, X2)W9(X4, X5)X3 −W9(R(X1, X2)X4, X5)X3 −W9(X4, R(X1, X2)X5)X3

−W9(X4, X5R(X1, X2)X3 = λ6 · [−S(X5, X3)W9(X4, X1)X2 + S(X4, X3)W9(X5, X1)X2 (3.27)

−S(X5, X1)W9(X3, X4)X2 + S(X4, X1)W9(X3, X5)X2 − S(X5, X2)W9(X3, X1)X4

+S(X4, X2)W9(X3, X1)X5].

Choosing X1 = ξ in (3.27) and exploiting (2.1), (2.3), (2.6), (2.9) (2.10), (2.25), we obtain

(F1 − F3)[g(X2,W9(X4, X5)X3)ξ − η(W9(X4, X5)X3)X2 − g(X2, X4)[(F1 − F3)g(X5, X3)ξ

−η(X3)X5 −
1

n− 1
S(X5, X3)ξ +

1

n− 1
η(X5)QX3] + η(X4)W9(X2, X5)X3

g(X2, X5)[−(F1 − F3)g(X4, X3)ξ + (F1 − F3)η(X3)X4 −
2n(F1 − F3)

n− 1
η(X3)X4 +

1

n− 1
η(X4)QX3]

+η(X5)W9(X4, X2)X3 − (F1 − F3)g(X2, X3)[η(X5)X4 − η(X4)X5 −
2n

n− 1
η(X5)X4 +

2n

n− 1
g(X4, X5)ξ] (3.28)

+η(X5)W9(X4, X5)X2] = λ6[−S(X5, X3)[−(F1 − F3)g(X4, X2)ξ + (F1 − F3)η(X2)X4 +
2n(F1 − F3)

n− 1
η(X4)X2

−
1

n− 1
η(X2)QX4] + S(X3, X4)[−g(X5, X2)ξ + (F1 − F3)η(X2)X5 +

2n(F1 − F3)

n− 1
η(X5)X2

−
1

n− 1
η(X2)QX5] + 2n(F1 − F3)η(X4)W9(X3, X5)X2 − S(X5, X2)[−(F1 − F3)g(X3, X4)ξ

+(F1 − F3)η(X4)X3 +
2n(F1 − F3)

n− 1
η(X3)X4 −

1

n− 1
η(X4)QX3]

+S(X2, X4)[−(F1 − F3)g(X3, X5)ξ + (F1 − F3)η(X5)X3 +
2n(F1 − F3)

n− 1
η(X3)X5 −

1

n− 1
η(X5)QX3]]

If we write X4 = ξ in (3.28) and make simplifications by considering (2.1), (2.3), (2.10), and (2.25), we
calculate

(F1 − F3)[
2n(F1 − F3)

n− 1
g(X3, X5)X2 +W9(X2, X5)X3 −

2n(F1 − F3)

n− 1
g(X2, X5)X3 − (F1 − F3)g(X2, X3)X5

= λ6[−(F1 − F3)[
2n

n− 1
X2 −

2n

n− 1
η(X2)ξ] + 2n(F1 − F3)η(X3)[−g(X2, X5)ξ + (F1 − F3)η(X2)X5ξ

+
2n(F1 − F3)

n− 1
η(X5)X2 −

1

n− 1
η(X2)QX5] + 2n(F1 − F3)η(X5)[−g(X2, X3)ξ + (F1 − F3)η(X2)X3ξ

+
2n(F1 − F3)

n− 1
η(X3)X2 −

1

n− 1
η(X2)QX3] + 2n(F1 − F3)W9(X3, X5)X2 − S(X2, X5)[−(F1 − F3)η(X3)ξ

(F1 − F3)X3 +
2n(F1 − F3)

n− 1
η(X3)ξ −

1

n− 1
QX3] + 2n(F1 − F3)η(X2)[−(F1 − F3)g(X3, X5)ξ

+(F1 − F3)η(X5)X3ξ +
2n(F1 − F3)

n− 1
η(X3)X5 −

1

n− 1
η(X5)QX3]. (3.29)
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If we choose X3 = ξ in (3.29), we briefly compute

(F1 − F3)[
2n(F1 − F3)

n− 1
η(X5)X2 − (F1 − F3)η(X2)X5 +

1

n− 1
S(X2, X5)ξ −

1

n− 1
η(X5)QX2

−
2n(F1 − F3)

n− 1
g(X2, X5)ξ − (F1 − F3)η(X2)X5] = λ6(F1 − F3)[−2ng(X2, X5)ξ −

2n

n− 1
η(X2)QX5

+
4n(F1 − F3)

n− 1
η(X5)X2 + 2n(F1 − F3)g(X2, X5)ξ +

4n2(F1 − F3)

n− 1
η(X5)X2 −

4n2(F1 − F3)

n− 1
g(X2, X5)ξ

−2nη(X2)η(X5)ξ + 2n(F1 − F3η(X2)η(X5)ξ +
4n2(F1 − F3)

n− 1
η(X2)X5 −

4n2(F1 − F3)

n− 1
η(X2)η(X5)ξ (3.30)

Using the inner product of X6 ∈ χ(M) on both sides of (3.30) and choosing X5 = ξ, we obtain

S(X2, X6) + 2(2(F1 − F3)n+ F1 + F3 − n− 2n(F1 − F3)(n+ 2))η(X2)η(X6) + 2n(F1 − F3)(2λ6n− 1)g(X2, X6).

Corollary 3.22. Let M2n+1 be a 2n+ 1− dimensional generalized Sasakian space form. If F1 − F3 ̸= 0,
M2n+1 is an η− Einstein manifold if it is W9− Ricci semisymmetric.

4 Conclusion

The main results of the paper conclude that W curvature conditions play an important role in defining
geometric structures for generalized Sasakian space forms. Under these conditions, geometric meanings are
transformed into new categories, specifically Einstein manifold and η− Einstein manifold, confirming the
efficacy of W operators as tools for classification and understanding of almost contact metric manifolds.
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