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Abstract

In this study, generalized Sasakian space forms are examined on Ws—, Wi, W7, and Wgy— curvature
tensors. Moreover, special curvature conditions with the help of W5—, Wg, Wy, Wy— pseudosymmetry
and W5—, Wy, Wy, Wy— Ricci pseudosymmetry are defined. The behavior for the generalized Sasakian

space form is then represented in accordance with these concepts.

1 Introduction

Contact geometry and its Riemannian counterparts are essential to modern differential geometry, spanning
areas from close connections to global analysis, mathematical physics, and topology. Among these
structures, Sasakian manifolds constitute an important class, serving as odd-dimensional analogues of
Ké&hler manifolds. Their rich geometric structure has motivated extensive investigations into their

curvature properties and symmetry conditions |1, 15, 16].

Assume that M (¢, &, n, g) denotes the almost contact metric manifold. If there are functions Fi, Fy, F3
on M such that

R(X1,X2) X3 = Fi[g(X2, X3) X1 — g(X1, X3)X2]

+F[g(X1, 0 X3)9 X2 — g(Xa, 9 X3)0 X1

29(X1, $X2)9X3] + F3[n(X1)n(X3) X2

—n(X2)n(X3) X1 + g(X1, X3)n(X2)¢

—9(X2, X3)n(X1)E], (L.1)
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M = M(¢,&,m,g) is defined as a generalized Sasakian space form and this kind of manifold is shown by
M*"F1(Fy, Fy, F3). In order to unify and generalize various curvature models arising in contact metric
geometry, the notion of generalized Sasakian space forms was introduced as a natural extension of classical
Sasakian space forms [3]. These manifolds are characterized by curvature tensors depending on three
smooth functions, allowing a broader framework that includes Sasakian, Kenmotsu, and cosymplectic
space forms as special cases. Since their introduction, generalized Sasakian space forms have attracted

considerable attention, particularly in the study of curvature-restricted geometric structures |4, 7].

A significant direction of research in this area concerns the interaction between generalized Sasakian
space forms and various curvature tensors. For instance, investigations involving projective, concircular,
conformal, and 7-curvature tensors have revealed notable geometric and topological consequences |2,10]. In
particular, conditions imposed on these tensors often lead to characterizations of local symmetry, conformal

flatness, or Einstein-like structures [, 9].

Further developments include the study of generalized Sasakian space forms satisfying special curvature
conditions such as those involving the Wj-curvature tensor or concircular curvature tensor, which yield
rigidity results and classification theorems |5, 6]. These findings show that the global geometry of such

manifolds is mainly determined by curvature constraints.

In recent years, attention has also shifted toward geometric flows and soliton structures on generalized
Sasakian space forms. Various types of solitons, including Ricci and other generalized solitons, have
been examined in low-dimensional settings, highlighting the dynamical aspects of these manifolds under
curvature evolution equations [11|. Parallel to this, new curvature tensors such as pseudo-quasi conformal
and contact conformal curvature tensors have been employed to derive further geometric properties and

invariance results |12, 13].

Moreover, invariant submanifolds of generalized Sasakian space forms have been examined extensively,
especially in relation to different curvature tensors. These investigations provide insight into how ambient
curvature influences the intrinsic geometry of submanifolds [14]. The geometric behavior of generalized

Sasakian structures and its submanifold theory are better understood thanks to these investigations.

Motivated by the above studies, the present study aims to further investigate some curvature properties
of generalized Sasakian space forms under Wy—, Wy, W7, and Wy— tensorial conditions. Therefore,
this study is organized as follows: In Section 2, some properties of Ws—, Wg, W7, and Wy— curvature
tensors and structures of generalized Sasakian space form are given. In Section 3, W5—, Wgs, W7, and
Wo— pseudosymmetry and Ricci pseuosymmetry conditions are discuused. Moreover, being Einstein or 7
Einstein manifolds conditions are discussed in detail. In Section 4, the effectiveness of W operators as tools
for classifying and comprehending almost contact metric manifolds is confirmed by the transformation of
geometric meanings under W curvature conditions into new categories, namely Einstein manifold and n—

Einstein manifold.
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2 Preliminaries

In this section, some curvature tensor concepts are introduced with some basic properties of generalized

Sasakian manifolds.

If a smooth manifold M2"*! admits a tensor field ¢ of type (1,1), a vector field £, and a 1-form 7 that

meet the following conditions, then it has an almost contact structure (¢,&,n):

¢°X1 = —X1 +n(X1)€, né) =1, (2.1)

and

(¢ X1, 0X2) = g(X1, X2) — n(X1)n(X2) (2.2)

for all vector fields X1, Xo on M?"*1 then (M?"*1 ¢,& n,g) is defined as an almost contact metric

manifold. It is clear that

9(§, X1) = n(X1). (2.3)

The transformation ® defined by
O(X1, Xo) = g(X1,PX2) (2.4)

for all X1, X2 € x(M), is defined as the fundamental 2- form of the almost contact metric structure

(¢,€,m,9). Here,
nA®" #£0.

The Riemannian curvature tensor for the Sasakian space form is given by

k+3

4
+ (%)[Q(Xla $X3)p X2 — g(X2, 0 X3)p X1

+ 29(X1, 6 X2)p X3 +n(X1)n(X3) X2 (2.5)
— n(X2)n(X3) X1 + g(X1, X3)n(X2)€
- g(Xa, X3)n(X1)E].

R(X1,X2)X5 = ( No(X1, X3) X1 — 9(X1, X3) X3]

As we choose X7 =&, X9 =&, and X3 = ¢ in (2.5), we get

R(§, X2) X3 = (F1— F3)[g(X2, X3)§ —n(X3) X2, (2.6)
R(X1,§)Xs = (I — F3)[—g(X1, X3)§ + n(X3) X1], (2.7)
R(X1,X2)¢ = (F1— F3)[n(X2)X1 —n(X1)Xa). (2.8)

Moreover, we write

n(R(X1, X2)X3) = (F1 — F3)[g(X2, X3)n(X1) — (X1, X3)n(X2)].
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Lemma 2.1. For the generalized Sasakian space form M?"FY(Fy, Fy, I3), the relations listed below are

true:

S(X1,X2) = [2nFy + 3F, — F3)g(X1, X2) — [3F, + (2n — 1) Fa]n(X1)n(Xa),
S(X1,€) = 2n(Fy — F3)n(X1), (2.9)
QX) = [2nF| + 3F, — F3)X1 — [3F, + (2n — 1) Fs]n(X1)¢,
Q¢ = 2n(Fy — Fy)E, (2.10)
r=2n(2n+ 1)F) + 6nF, — 4nFy

for all X1, Xy € x(M*1). The Ricci operator, Ricci tensor, and scalar curvature of M*" 1 (Fy, Fy, F3)
are denoted by Q, S, and r, respectively, [5].

Definition 2.2. Assume that M*"*! is a generalized Sasakian space form. The curvature tensor Ws is

given by
1
W5(X1,X2) X3 = R(X1, X9) X3 — mS(Xl,XE;)XQ —g9(X1, X3)QXs (2.11)

for all vector fields X1, X2, X3 on M, [2].

Lemma 2.3. Assume that M?"t! is a generalized Sasakian space form. The relations listed below are

true [2]:
Ws(€X2)Xs = (Fi = Fy)lg(Xa Xa)€ = n(Xa)Xa — —(XaXa) + ——n(Xa)QXz, (212)
Wa(X1,Xs = (Fi— Fy)l-g(X1, Xo)6 +n(Xa)X1 + — (X1, Xa)e] = ——S(X1, X6, (2.13)
Ws(X1, X2)6 = (Fi— F)[n(Xa)X1 — n(X0)Xa] + —— [n(X1)QXz — S(X1, X2)e. (2.14)

Definition 2.4. Assume that M?>"t! is a generalized Sasakian space form. The curvature tensor We is
given by
1
We(X1, X2) X3 = R(X1, X2) X3 — mS(XQ,Xg)Xl — g(X2, X3)QX1 (2.15)

for all vector fields X1, X2, X3 on M, [2].

Lemma 2.5. Assume that M?"t! is a generalized Sasakian space form. The relations listed below are
true [2]:

1
We(€, X2)X3 = 1(X3)Xa — 29(X2, X3)€ — —— 5(X2, X3)¢, (2.16)
1
We(X1,6)Xs = —g(X1, X3)¢ +20(X3) X1 + —(X3)QX1, (2.17)
1

Wo(X1, X2)€ = n(X1) Xz + ———1(X2)QX1. (2.18)
Definition 2.6. Assume that M?>"*1 is a generalized Sasakian space form. The curvature tensor Wy is
given by

1 1

for all vector fields X1, X2, X3 on M, [2].
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Lemma 2.7. Assume that M?>"*1 is a generalized Sasakian space form. The relations listed below are
true [2]:

Wr(6, X2)Xs = (F1 — F3)[g(X2, X3)€ — n(X3) X2 + %Q(X%X:S)d - ﬁS(X%X:s)E, (2.20)
W (X1, OXs = (Fi = Fa)l—g(Xa, Xa)é + n(Xa) X1 — —n(Xe)Xa] + ——n(Xa)QXa, (221)
Wr(Xa Xa)f = (R - B)ln(X2)Xa — n(X0)Xa = ~Ton(Xa)Xa] + —n(X2)QXs. (222

Definition 2.8. Assume that M?"t! is a generalized Sasakian space form. The curvature tensor Wy is
given by

1 1
Wy (X1, Xo) X3 = R(X1, X2) X3 + mS(Xl,XQ)Xg — mg(Xg,Xg)QXl (2.23)

for all vector fields X1, X2, X3 on M, [2].

Lemma 2.9. Assume that M?>"*1 is a generalized Sasakian space form. The relations listed below are
true [2]:

Wo(€, X2)X3 = (F1— F3)[g(X2, X3)6 —n(X3) X2 — %Q(Xz,Xs)E + %W(Xz)X:ﬂ, (2.24)
Wo(X1,OXs = (Fi = Fy)l-g(X1, Xa)é + n(Xa)Xa + —n(X1)Xal - ——n(Xa)@X1, (225)
Wo(X1,X2)¢ = (F1— F3)[n(X2)X1 —n(X1)X2] + ﬁ[s(xh)ﬁ)f —n(X2)QX1]. (2.26)

3 On Geometric Properties for Generalized Sasakian Manifolds

In this section, for W5—, Wg—, Wr—, and Wgy— curvature tensors in a generalized Sasakian manifold, we

provide the following geometric characterizations:

Definition 3.1. Assume that M*"* 1 (Fy, Fy, F3) is a (2n + 1)— dimesional generalized Sasakian space
form. If R- W5 and Q(g, W5) are linearly dependent, where R is the Riemannian curvature tensor, then

M2+ s called a Ws— pseudosymmetric.

In this specific case, a function A\ exists such that
R-Ws5 = Xo-Q(g, Ws).
If \g = 0, then the M?"*! is called a W5— semisymmetric.

Theorem 3.2. Let M?"*! be a 2n + 1— dimensional generalized Sasakian space form. For Fy # F3,
M2+ s a n— Einstein manifold if it is Ws— pseudosymmetric.

Proof. Let M?"*! be the generalized Sasakian space form that provides W5— pseudosemisymmetric:

(R(X1,X2) - Ws5)(X4, X5, X3) = Ao - Qg, Ws) (X4, X5, X3; X1, X2)
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for all X1, X, X3, X4, X5 € x(M). Hence, we have
R(X1, X2)W5(Xa, X5) X3 — W5 (R(X1, X2) X4, X5) X3 — W5 (X4, R(X1, X2)X5)X3

—W5 (X4, Xs R(X1, X2) X3 = Ao - [—9(X5, X3)W5(X4, X1) X2 + g(X4, X3)We(X5, X1) X2 (3.1)
—9(X5, X1)We(X3, X4) X2 + g(Xa, X1)W5(X3, X5) X29(X5, X2)W5(X3, X1) X4 + g(Xa, X2)W5(X3, X1)X5].

Choosing X7 = ¢ in (3.1) and exploiting (2.1), (2.3), (2.6), (2.12), (2.13), and (2.14), we obtain

(F1 — F3)g(X2, W5 (X4, X5)X3)§ — n(W5(X4, X5)X3) X2 — (F1 — F3)g(X2, Xa)[(F1 — F3)g(X3, X5)¢
_2n(F) — F3)

LX) X+ o n(X0)QXs] + (Fi — Fa)Ws (Xz, X5)Xs + (Fi — Fa)g(X2, X)

[—(F1 — F3)g(X3, X4)€ + n(X3) X4 — ﬁS(X& X14)€+ 2”(51__1F3)g(X3,X4)g]
+(I1 — F3)n(Xs5)Ws(X2, X4) X3 — (F1 — F3)g(X2, X5)[(F1 — F3)n(X5)Xa — (F1 — F3)n(X4)Xs

- 71*1 5(Xa, X5)€ + fi T1(X0)QX5] = No[—9(Xs, Xo)[—(Fy = F3)g(Xa, Xo) + (Fy — Fy)n(X2) Xag

$ 2T 0, X)e] 4 —g(Xs, Xa) (1 — Fi)g(Xa, X2)E + (Fi — Fo)n(X2)Xa
+‘2n(:1:1F*3)9(X27 X5)¢ — ~ i 7 5(X2, X5)€] = n(X5)Ws (X3, Xa) X2 + n(Xa)W5 (X3, X5) Xz

2n(F1 — F3)

9(Xs, Xa)€€ — ——S(X3, X4)& + (Fy — Fy)n(X4)Xs]
n—1 n—1

—9(X2, X5)[=(F1 — F3)g9(X3, X4) +

n(F1 — F3)

g(X2, Xa)[=(Fy — Fa)g(Xa, X5)€ + (Fi — Fa)n(Xs)Xa + - — 9(Xs, X5)6 - ﬁS(Xs,Xwﬂ (3.2)

If we write Xy = £ in (3.2) and make simplifications by considering (2.1), (2.3), (2.9), and (2.12), we
calculate

(F1 — F3)[(F1 — F3)9(X5, X3)n(X2)¢§ — %__IFT’)

+n(X2)n(Xs) X2 — (F1 — F3)n(X2)g(X3, X5)€ + Ws(X2, X5)X3] — (F1 — F3)n(X5)n(X3) X

1(Xs)g(Xa2, X8)& + ——n(X3)S(Xs, X2)€ — g(Xs, Xa)X2

,2n<F1%1F3> 1(X3)n(X5)Xa — Lf 1:1F3)n<xs>n<x5>x2 + L (X )n(X5)QX + (Fy — F3)g(Xa, X3)Xs
MQ(X2,X3)77(X5)§ - ﬁg(Xme)QXE) = /\O[MQ(XQ,Xs)n(Xs)ﬁ

n—1 -1

(1 — Fa)n(X2)n(Xa)Xs — ——5(X2, Xa)n(Xa)E + (Fi — Fa)n(Xa)g(Xz, X)é + ——S(Xz, Xe)n(Xs)€

2n(F) — F3)

1 1(X5)g(Xa, X3)€ + Wi (X5, X5) X — (1 — Fi)g(X2, X5) X3 — (F1 — F3)n(X2)g(X3, X5)¢

2n(F) — F3)

— 9(X3, X5)n(X2)E]. (3.3)

— L S(Xa, Xs)n(Xa)€ +
n—1

If we choose X3 = ¢ in (3.3), we briefly compute

o2n(Fy — F)

(F— m) (- 2B gy e - L) x4 Lnoses + LY o000
= Ao[*LS(XmXQE + MQ(X&)Q)& - Mn(?ﬁ)){s + i77(952)QX5- (3.4)
n—1 n—1 n—1 n—1

Taking inner product both sides of the equation by X¢ € x(M) and choosing X5 = &, we acquire
S(Xg, Xﬁ) = 2ng(X2, X6)
O

Corollary 3.3. Let M?"TY(Fy, Fy, F3) be a generalized Sasakian space form that is (2n+1)— dimesional.

M2+ s either an Einstein manifold or Fy = F3 if it is Ws— semisymmetric.
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Definition 3.4. Assume that M?" Y[y, Fy, F3) is a (2n + 1)— dimesional generalized Sasakian space
form. If R-Ws and Q(S,Ws) are linearly dependent, then M?"*1 is called W5s— Ricci pseudosymmetric.

In this case, a function Ajg exists such that
R-Ws = Ao - Q(S, Ws),
where S is the Ricci curvature tensor. If \jg = 0, then the M?**! is called a W5— Ricci semisymmetric.

Theorem 3.5. Let M?"*! be a 2n + 1— dimensional generalized Sasakian space form. For Fy # F3 and
Ao # 0, M2t s a n— Einstein manifold if it is Ws— pseudosymmetric.

Proof. Let M?"*1 be the generalized Sasakian space form that provides Ws— Ricci pseudosemisymmetric:

(R(X1, X2) - W5)(X4, X5, X3) = Ao - Q(S, W5) (X4, X5, X3; X1, X2)
for all X1, Xo, X3, X4, X5 € x(M). Hence, we have

R(X1, X2)W5(X4, X5)X3 — W5(R(X1,X2) X4, X5)X3 — W5(X4, R(X1, X2)X5)X3 — W5(X4, X5 R(X1, X2)X3
= Ao - [—S (X5, X3)W5 (X4, X1) X2 + S(X4, X3)W5(X5, X1) X2 — S(X5, X1)Ws(X3, X4)X> (3.5)
—g(X5,X2)W5(X3,X1)X4 +S(X4,X2)W5(X3,X1)X5].

Choosing X7 = ¢ in (3.5) and exploiting (2.9) and (2.13), we obtain

(F1 — F3)g(X2, W5(X4, X5)X3)§ — n(W5(Xa, X5)X3) X2 — (F1 — F3)g(X2, X4)[(F1 — F3)g(X3, X5)¢
_ 2n(Fy — I5)

— n(X3)Xs5 + ﬁn(XS)QXﬂ + (F1 — F3)W5(X2, X5)X3 + (F1 — F3)9(X2, X5)

[—(F1 — F3)g(X3, X4)€ +n(X3)X4 — ﬁS(Xg, X1)€+ 2"(:1:11?3)9()(3, X4)€]

+(F1 — F3)n(Xs5)Ws (X2, Xa) X3 — (F1 — F3)g(X2, X5)[(F1 — F3)n(X5) X4 — (F1 — F3)n(X4) X5
] i 15(X41X5)£ to— i 177(X4)QX5] = A10[—S8(Xs5, X3)[—(F1 — F3)g(X4, X2)€ + (F1 — F3)n(X2)X4

1 2n(Fy — F:
——S(XQ,X4)§+M
n—1 n—1
2n(Fy — F:
4 n(f — )

n—1

9(X2, X4)€] + S(X3, Xa)[~(F1 — F3)g(X5, X2)§ + (F1 — F3)n(X2)Xs

9(X2, X5)¢ — ﬁS(Xg, X5)E] + 2n(F1 — F3)n(Xs)Ws(X3, X4) X2 + 2nn(X4)Ws (X3, X5) X2

2n(F1 — F3)

—5(Xa, X5)[=(F1 = F3)g(X3, Xa)§ + —

9(X2, X)€ — ———8(X2, Xa)E + (Fi — Fo)n(X2) Xs]

2n(F1 — F3)

+8(X2, Xa)[—(F1 — F3)g(X3, X5)§ — (F1 — F3)n(X5)X3 + —

9(Xs, X3)€ — ——5(Xs, Xa)e]. (3.6)

If we write X4 = £ in (3.6) and make simplifications by considering (2.1), (2.3), (2.9), and (2.13), we
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calculate

(F1 — F3)[(F1 — F3)9(X5, X3)n(X2)§ — wrﬂ){@g(}(z){s)i + ﬁn(XL%)S(Xz;,Xz)&

—9(Xs5, X3) X2 + n(X2)n(Xs5) X2 — (F1 — F3)n(X2)g(Xs, X5)§ + W5(X2, X5)X3] — (F1 — F3)n(Xs5)n(X3) X2

2B g % = P () X + (o n(X)QXa +

- F:
(F1 — F3)g(X2, X3) X5 + wg(XmXS)W(XE))i - ﬁg(Xzst)QXs

= Mo[2n(F1 — F3)n(X3)[—(F1 — F3)g(X2, X5) + (F1 — F3)n(X2)Xs5 — ﬁS(Xz,Xs)ﬁ

AT 5y, X)e] o+ 2n(F1 — Fa)(Xs) = (Fy — Fa)g(Xa, Xo) + (Fi — Fa)n(Xa)Xa
on(Fy — F3)
n—1
[—(F1 — F3)n(X3)€ + (F1 — F3) X3] + 2n(F1 — F3n(X2))[—(F1 — F3)g(X3, X5)& + (F1 — F3)n(X5) X3

2= (x5, X)) (37

1
— S (X2, Xa)E 9(X2, X3)&] + 2n(F1 — F3)W5(X3, X5) X2 — 5(X2, X5)

1
———5(X3,X5)6 +
n—1

If we choose X3 = ¢ in (3.7), we briefly compute

2n(F) — Fy) 2n(Fy — F3) n(Fy — F3)

(F1 = F3)[ 1 9(X2, X5)€ — n(X5) X2 + Ln(Xs)QXz 42 7(X5)n(X2)¢]
— n—1 n—1 n—1
_ 2 _ 2 2
= ol I 0, xpe+ L) s e - TSI ) X, (3.8)

Taking inner product both sides of (3.8) by Xg € x(M) and choosing X5 = £, we acquire
S(Xa, X6) — 2ng(Xa, X6) + 4n*Mio(F1 — F3)n(X2)n(Xg) = 0.
O

Corollary 3.6. Let M?"*! be a 2n 4+ 1— dimensional generalized Sasakian space form. For Fy # F3,

M2+ s an Einstein manifold if it is Ws— semisymmetric.

Definition 3.7. Assume that M*"*1(Fy, Fy, F3) is a (2n + 1)— dimesional generalized Sasakian space
form. If R-Wg and Q(g, Ws) are linearly dependent, then M?"+1 is called a Wg— pseudosymmetric.

In this specific case, a function \; exists such that
R-Ws = A1 - Q(g, W),
where R is the Riemann curvature tensor. If \; = 0, the M?"*1 is called a Ws— semisymmetric.

Theorem 3.8. Let M?" ! be a 2n+1— dimensional generalized Sasakian space form. M?"*1 is either an

Eintein manifold if \y = F—Fs)(nt1)

Sn(n—1) 0T a1~ Binstein manifold if Fy # F3 if it is Wg— pseudosymmetric.

Proof. Let M?"*! be the generalized Sasakian space form that provides Wg— pseudosemisymmetric:

(R(X1,X2) - W) (X4, X5, X3) = A1 - Q(g, Ws) (X4, X5, X3; X1, X2)
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for all X1, X, X3, X4, X5 € x(M). Hence, we have

R(X1, X2)We(X4, X5) X3 — We(R(X1, X2) X4, X5) X3 — Ws (X4, R(X1, X2)X5)X3
—We(X4, Xs R(X1,X2)X3 = A1 - [—9(X5, X3)We (X4, X1) X2 + g(X4, X3)Ws(Xs5, X1) X2 (3.9)
—9(X5, X1)We (X3, X4) X2 + 9(Xa, X1)We(X3, X5) X2 — (X5, X2)We(X3, X1) X4 + g(Xa, X2)We (X3, X1)X5].

Choosing X7 = ¢ in (3.9) and exploiting (2.1), (2.16), (2.17), and (2.18), we obtain
(F1 — Fs)[g(X2, We(X4, X5)X3)€§ — n(We(Xa, X5)X3) X2 — g(X2, Xa)[(F1 — F3)g(X5, X3)€ — n(X3)Xs

L S(Xs, Xa )+ ——n(X5)QXa] + (X0 Wo(Xz, X5)Xs + g(Xa, Xs)[—(Fiy — Fa)g(Xa, Xa)€

2n(F1 — F3)
n—1

—(F1 — F3)g(X2, X3)[n(X5) X4 — n(X4) X5 — %W(X5)X4 + %g(-’% X5)€] +n(X5)We (X4, X5)Xo] (3.10)

+(F1 — F3)n(X3) X4 n(X3)Xa + ﬁﬁ(XzL)QXs] +n(X5)We (X4, X2) X3

2n(Fy — F3)

= M [~9(X5, X3)[-(F1 — F3)g(Xa, X2) + (F1 — F3)n(X2) X4 — —

n(X2) X4

2n(F) — F3)

— 1(X2)Xs

—on(Xa)QXa] + g(Xa, Xa)[—(Fr — Fa)g(Xs, Xa)6 + (Fy — Fa)n(X2) Xs -

+ﬁn(X5)QX2] = 1(X5)We(X3, Xa) X2 + n(Xa)We(X3, X5) X2 + 9(Xs5, Xo)[—(F1 — F3)g(X3, X4)§

_ 2n(Fy — F3)

+(F1 — F3)n(X4) X3
n—1

HX0Xs + ——n(Xa)QXa] + g(X2, Xa)

(F1 — F3)

[~(F1 = F)g(Xa, X5)6 + (F1 — Fa)a(X5) Xs] = 2L =28 0x5) X + ——n(X0)QXs]

If we write X4 = £ in (3.10) and make simplifications by considering (2.16), we calculate

(F1 — F3)[(F1 — F3)g(X5, X3)n(X2)§ — (F1 — F3)n(X3)g9(X2, X5)§ — (F1 — F3)g9(Xs5, X3) X2 + ﬁS(Xme)XQ

_Qn(fl—_ng)”(Xs)ﬁ(Xs)Xz = (F1 — F3)n(X2)g(Xs5, X3)€ + (Fi — F3)n(X2)n(X3)Xs5 + We(X2, X5)X3]
@n(Xs)g(szxs)E - ﬁg(Xme)QX:s + (F1 — F3)n(X5)9(X2, X3)§ — (F1 — F3)g(X2, X3)n(Xs5)¢
2n(Fy — F)

-1

9(Xs5, X3) + n(X2)€ —

2n(F) — F3)
-1

(X5, X3)QX2 — (F1 — F3)n(X3)9(X5, X2)€

+(I1 — F3)g(X2, X3) X5 + 9(X2, X3)n(X5)€ —

(F1 — F3)
n—1

n(X5)g(X2, X3)¢

2n(F) — F3)

=
1l —

+(F1 — Fy)n(Xa)n(Xa)Xs + ——n(Xs)n(Xs)QXz + (Fi — Fa)n(Xs)g(Xa, X2)6 — ——n(Xs)n(Xs)QXa

+We (X3, X5) X2 — Mn(xz)n(x?,)xf) — (F1 = F3)9(X5, Xo)n(X3)€ + (F1 — F3)g(X5, X2) X3
,271(571:11?3) 9(Xs5, X2) X3 + 7n2f1n(X3)g(X5,X2)§ = (F1 = F3)n(X2)g(Xs, X5)€ + —ni [1X2)n(X3)Q@Xs]. (3.11)

If we choose X3 = ¢ in (3.11), we briefly compute

(71— F (0006, Xa)e + 002 Xs] = M2 (e~ T 000,
$ P )0 + s, xape - I g, et (3, Xo)E + L on(X2)Q5]
n—1 n—1 -1 n—1 n—1

Taking inner product both sides of the equation by Xg € x(M) and choosing X5 = £, we acquire
(F1 = Fs)[2n(F1 — F3)g(X2, X¢) + [(F1 — F3)(n + 1) — 8\in(n — 1)]n(X2)n(Xe) + A1.5(X2, X6)] = 0.

O]
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Definition 3.9. Assume that M?" Y[y, Fy, F3) is a (2n + 1)— dimesional generalized Sasakian space
form. If R-Wg and Q(S, Ws) are linearly dependent, then M*"* is called a Wg— Ricci pseudosymmetric.

In this specific case, a function A\; exists such that
R-Wg = Xa-Q(S, W),
where S is the Rici curvature tensor. If Ay = 0, then the M?"*! is said to be a Ws— Ricci semisymmetric.

Theorem 3.10. Let M?"*! be a 2n+1— dimensional generalized Sasakian space form. Given Fi—F3—1 #
0 and (Fy — F3)? = %, M2t s an Eintein manifold if it is We— Ricci semisymmetric.

Proof. Let M?"*! be the generalized Sasakian space form that provides Wg— pseudosemisymmetric:

(R(X1, X2) - We) (X4, X5, X3) = A2 - Q(S, Ws) (X4, X5, X35 X1, X2)
for all X1, X9, X3, X4, X5 € x(M). Hence, we have

R(X1, X2)We(X4, X5) X3 — We(R(X1,X2) X4, X5) X3 — Ws(X4, R(X1, X2)X5)X3
—We (X4, Xs R(X1,X2)X3 = A2 - [—5(X5, X3)Ws (X4, X1) X2 + S(Xa, X3)Ws(X5, X1)X2 (3.12)
—S(Xs5, X1)We(X3, X4) X2 + S(X4, X1)Ws(X3, X5) X2 — S(Xs5, X2)Wes (X3, X1) X4 + S(Xy, X2)We(X3, X1)X5].

If we write X7 = £ in (3.12) and make simplifications by using (2.9) and (2.17), we calculate

(F1 — F3)[(F1 — F3)9(X5, X3)n(X2)¢ — (F1 — F3)n(X3)g9(X2, X5)§ — (F1 — F3)g(X5, X3) X2 + ﬁS(X4,X3)X2

2B = ES) (X)X — (Fy — Fa)n(X2)g(Xs, Xa)6 + (Fi — Fa)n(Xa)n(Xs)Xs + We(Xa, X5)X3]

n—1
2n(:1—_1F3)”(Xs)g(Xz,Xs)E - ni 19(X2, X5)QXs + (F1 — F3)n(X5)g(X2, X3)€ — (F1 — F3)g(Xz, X5)n(X5)¢
+(F1 — F3)g(X2, X3) X5 + %g(XzyXa)n(Xs)E - %n(&a)g(}(z){z)é = A2[-S(X5, X3)

2n(Fy — F3)

[—(F1 — F3)g(X4, X2)€ + (F1 — F3)n(X2) Xy — —

n(X2) X4 + L77(X4)QX2]
n—1

2B ) X5 + o (X5)QXa]
—2n(F1 — F3)n(Xs5)Wes (X4, X3)X2 + 2n(F1 — F3)n(X4)Ws (X3, X5)X2 — S(X4, X2)[—(F1 — F3)

2n (I — F3)
C on—1

S(Xa, X3)[=(F1 — F3)9(X5, X2)€ + (F1 — F3)n(X2) X5 —

(X4, X3)E + (Fy — Fa)n(Xa)Xs H(X0) X5 + ——n(X5)QX4]]. (3.13)
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If we choose Xy = £ in (3.13), we easily calculate by using (2.3), (2.10), and (2.17)

(Fi = F)[(F1 — F)g(Xs, Xa)n(X2)€ — (Fi — Fs)n(Xa)g(Xa, X5)€ — (Fi — Fa)g(X5, Xo) Xz + —— (X1, X3) X2

“M?:li?’) N(Xs)n(X5) X2 — (Fi — F3)n(X2)g(Xs5, X3)€ + (F1 — F3)n(X2)n(Xs)Xs + We (X2, X5)X3]
%W(Xs)g()ﬁ,)%)ﬁ - ﬁg(XLXE))QXB + (F1 — F3)n(X5)g(X2, X3)¢ — (F1 — F3)g(X2, X3)n(X5)¢

In(fy - F5) FS)H(Xz,Xs)??(X5)§ Lt )

+(F1 — F3)9(X2,X3)X5 +
n—1 n—1

n(Xs5)g(X2, X3)¢

2n(F; — F:
:)\2[771( 171 3)

S(Xs, Xs) + n(X2)€ — ——QX2S(Xs, Xs) — 2n(F1 — F)*n(Xa)g(X2, Xs)¢

2 _ 2 _
_ W MW(XSM(XS)QXZ
+2n(F1 — F3)*n(X3)g(Xa, X5)& + 2n(F1 — F3)*n(Xs)g(X2, X3)¢ — 2n(F1 — F3)*n(Xs)n(X2) X3
4n?(Fy — F3)?
Yo

+2n(F1 — F3)*n(X2)n(X3)Xs n(X3)n(X2)Xs +

HX)N(X2)Xa = —Zon(Xa)n(X8)QXz + 2n(Fi — o) Wa(Xa, X3)Xa

n(F1 — F3)

2
+(F1 — F3)S(X2, X5)n(X3) — (F1 — F3)S(X2, X5)X3 + — S(X2,X5)X3

—MS(X%&M(X?,)Q. (3.14)

If we choose X3 = ¢ in (3.14), we compute

2 F — F 2
S = B (X
2 )2 _ _ —

_An®(F1 — Fy) (X2) X5 — 2n(F1 FS)U(Xs)QX2 _ 2n(Fy F3)S(X2,X5)§+ 2n(F1 — F3)
n—1 n—1 n—1 n—1

(Fy = Fy)2l=g(Xa2, X5)6 + —g(Xa, X5 )6 +1(X2) X5 = Dol

n(X5)QX2].

Taking inner product both sides of the equation by Xg € x(M) and choosing X5 = £, we acquire

2n 2n AQQTL(Fl — F3 — 1)
Xy, X, —(F, — F3)? Xo)n(Xg) =
n—lg( 2, X6) + (—(F1 — F3) +n_1)77( 2)n(X6) w1

S(X27X6)'
O]

Definition 3.11. Assume that M*"TY(Fy, Fy, F3) is a (2n + 1)— dimesional generalized Sasakian space
form, R is the Riemann curvature tensor. If R- Wz and Q(g, Wr) are linearly dependent, then M?"+1 is

called a Wr— pseudosymmetric.

In this specific case, a function A\; exists such that
R-Wz7=X3-Q(g,Wr).
If A3 = 0, then the M?"*! is called a W7 — semisymmetric.

Theorem 3.12. Let M?"*! be a 2n+ 1— dimensional generalized Sasakian space form. If M*" 1 js Wy—

pseudosymmetric, then it is either an Eintein manifold if Iy # F3 or F} = F3.

Proof. Let M?"*! be the generalized Sasakian space form that provides W7— pseudosemisymmetric:

(R(X1,X2) - Wr)(X4, X5, X3) = A3 - Q(g, Wr) (X4, X5, X3; X1, X2)
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for all X1, X, X3, X4, X5 € x(M). Hence, we have

R(X1, Xo)W7(X4, X5) X3 — Wr(R(X1, X2) X4, X5) X3 — Wr (X4, R(X1, X2)X5)X3
—Wr (X4, Xs R(X1, X2) X3 = A1 - [—g(X5, X3)W7 (X4, X1) X2 + g(X4, X3)Wr(X5, X1) X2 (3.15)
—9(X5, X1)Wr (X3, X4) X2 + 9(Xa, X1)Wr(X3, X5) X2 — (X5, X2)W7(X3, X1) X4 + g(Xa, X2)W7 (X3, X1)X5].

Choosing X7 = ¢ in (3.15) and using (2.1), (2.3), (2.17), (2.20), (2.21), and (2.22), we obtain

(F1 — F3)[g(X2, Wr(X4, X5)X3)§ — n(Wr (X4, X5)X3) X2 — g(X2, Xa)[(F1 — F3)9(X5, X3)§
2n(F1 — F3)

1
—n(X3)Xs — ——5(X5,X3)¢ +
n—1 -1

9(X5, X3)€] + n(Xa)Wr (X2, X5)X3

2n(F1 — F3)

—9(X2, X5)[-(F1 — F3)g(Xa, X3)€ + (F1 — F3)n(X3) X4 "

0(Xs) X4 + ——n(Xs)QX4]
n—1

H(XS)Wr (X, X2)Xs = g(X2, Xa)I1(X3) X = 0(X0) X5 — —-(X5) X + ——n(X5)QXi] (3.16)

2n(F) — F3)

+n(Xz)Wr (X4, X5)Xo] = A3[—g(X5, X3)[—(F1 — F3)g(X4, X3)€ + (F1 — F3)n(X3) X4 — —

n(X3) X4

2n(F) — F3)

o n(Xa)QX] + g(Xa, Xa)[=(Fy — Fa)g(Xs, Xa)6 + (F1 — Fan(Xa) Xs — 201

n(X2)Xs

+ﬁW(X2)QX5} = n(X5)Wr(X3, Xa) X2 + n(Xa)Wr(X3, X5) X2 — g(Xs5, X2)[—(F1 — F3)g(X3, X4)§

2n(F1 — F3)

+(F1 = F3)n(Xa)Xs — 7

0(X4) X3 + ——n(X4)QXs]
n—1

2n(Fy — F3)

(X, Xa)[=(F1 = F3)g(X3, X5)§ + (F1 — Fy)n(X5) Xa] — ———

0(Xs)X5 + ——n(X5)QXa]
n—1

If we write X4 = £ in (3.16) and make simplifications by considering (2.20) and (2.21), we calculate

2n(Fy — F3)

— 9(Xs5, X3) X2 + Wr (X2, X5)X3

1
(F1 = F3)[(F1 = F3)g(X5, X3) X2 + —— 5(X5, X2) X2

,n% - S(Xa, Xa)n(Xs)¢ + AnQillg(XQ, Xa)n(Xs)6 +g(Xa, Xa) X5 — —— L -S(Xs, X2)n(Xs)¢

_ 2n(Fy — I5)

+n2f177(X3)9(X27 X5)€ = A3[(F1 — F3)n(X3)n(X2)Xs —

n(X2)n(Xs)Xs

+ﬁn(x2)n(X3)QXs +n(Xs5)g(X2, X3)EW7 (X3, X5) X2 — (F1 — F3)g(X2, X5)X3

L 2nlF = Fy)

— 9(X2, X5) X3 — ﬁg(X%XS)Q)Q — (F1 — F3)g9(X5, X3)n(X2)€]. (3.17)

If we choose X3 = ¢ in (3.17), we compute

— )2 _ _ _ 2
2B B n(X5) X2 + (. FB)TI(X5)QX2 SBo k) FB)S(XQ:Xs)iJr el = 1%) 9(X2, X5)¢
n—1 n—1 n—1 n—1
=gl 2P ) X 4 ()X - (%, X+ L) o, e (319)
- n—1 n—1 n—1

Taking inner product both sides of the equation by Xg € x(M) and choosing X5 = £, we acquire

(F1 — F3)

1 [5(Xa, Xo) — 2n(Fy — F3)g(Xa, X¢)] = 0.

O]

Corollary 3.13. Let M?"*Y(Fy, Fy, I3) be a generalized Sasakian space form that is (2n+1)— dimesional.

M2+ s either an Einstein manifold or Fy = F3 if it is We— semisymmetric.

Definition 3.14. Assume that M*"*1(Fy, Fy, F3) is a (2n + 1)— dimesional generalized Sasakian space
form. If R- Wy and Q(S, Wr) are linearly dependent, then M*"*! is called a Wy— Ricci pseudosymmetric.
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In this specific case, a function A4 exists such that
R-Wr7 = X3-Q(S,Wr),
where S is the Rici curvature tensor. If Ay = 0, then the M?"*1 is called a W7y— Ricci semisymmetric.

Theorem 3.15. Let M?"*! be a 2n + 1— dimensional generalized Sasakian space form. M?"+1 is either

an Eintein manifold if F1 # F3 or Fy = F3 if it is Wr— Ricci pseudosymmetric.

Proof. Let M?"*1 be the generalized Sasakian space form that provides W7 — Ricci pseudosemisymmetric:

(R(X1, X2) - Wr)(X4, X5, X3) = Ay - Q(S, Wr) (X4, X5, X3; X1, Xo)
for all X1, Xo, X3, X4, X5 € x(M). Hence, we have

R(X1, X2)W7 (X4, X5)X3 — Wr(R(X1,X2) X4, X5)X3 — W7 (X4, R(X1,X2)X5)X3
W7 (X4, X5 R(X1, X2) X3 = Mg - [-5(X5, X3)Wr(Xg, X1) X2 + S(X4, X3)W7(X5, X1)X2 (3.19)
—S(Xs5, X1)Wr(X3, X4) X2 + S(X4, X1)W7(X3, X5) X2 — S(X5, Xo)Wr (X3, X1) X4 + S(Xy, X2)Wr(X3, X1)X5].

Choosing X7 = ¢ in (3.19) and using (2.1), (2.3), (2.6), (2.9), (2.21), and (2.22), we obtain

(F1 — F3)[g(X2, Wr(X4, X5)X3)§ — n(Wr (X4, X5)X3) X2 — S(X2, Xa)[(F1 — F3)g(X5, X3)¢
2n(F1 — F3)

1
—n(X3)Xs — ——85(X5,X3)¢ +
n—1 -1

(X5, X3)¢] + n(Xa)W7 (X2, X5) X3

2n(F1 — F3)

—5(Xa, X5)[—(F1 — F3)g(X4, X3)§ + (F1 — F3)n(X3)Xa ]

0(Xs) X1 + ——n(Xs5)QXa]
n—1

D(X5)Wr(X1, X2) X — S(Xa, Xo)[n(X5) Xa = m(Xa) X5 — ~2-n(X5) X4 + ——n(X5)QX] (3:20)

2n(Fy — F3)

+n(X3)Wr(Xa, X5)Xo] = Aa[=5(X5, Xa)[—(F1 — F)g(Xa, Xs)€ + (F1 — F3)n(X3) Xy — —

n(X3) X4

2n(Fy — F3)

— 1(X2)Xs

(X2 QX + S(Xa, Xa)l~(Fy — Fa)g(Xs, X2)€ + (Fi = Fa)i(Xa) X5 —

t i 17’(X2)QX5] —2n(F1 — F3)n(Xa)Wr (X3, X5) X2 — S(Xs5, X2)[—(F1 — F3)g(X3, X4)§

_ 2n(Fy — F5)

0(X4) X3 + ——n(X4)QXa]
n—1 n—1

+(F1 — F3)n(X4) X3

2n(F1 — F3)

(X2, Xa)[=(F1 = F3)g(Xs, X5)€ + (F1 — Fy)n(X5)Xa] — ———

1(Xs) X5 + ——n(X5)QXs].
n—1

If we write X4 = £ in (3.20) and make simplifications by considering (2.3), (2.9), and (2.20), we calculate

(F1 — F3)[g(X2, W7(X4, X5)X3)§ — n(Wr (X4, X5)X3) X2 — S(X2, Xa)[(F1 — F3)g(X5, X3)§

WQ(X& X3)€] + n(Xa)Wr (X2, X5) X3

2n(F1 — F3)
—1

1
—n(X3)X5 — ES(X&XS)ﬁ +

—8(Xa, Xs)[—(Fy — Fy)g(X1, X)& + (Fy — Fy)n(Xs) X4 — 1(X6)Xa + ——n(X3)QX4]

H(XS)Wr (X, X2)Xs = 8(Xa, X) (Xe) Xa = 0(X0) X5 = (X)X + ——n(X5)QXd]

+n(X3)Wr(Xa, X5)Xo] = M(F1 — F3)[=2n(F1 — F3)n(X3)g(X2, X5)§ + 2n(F1 — F3)n(X2)n(X3)Xs

_4n2(F1 — F3)
n—1

2n 2n
o M X2)n(X5)QX3 + 2nWr (X3, X5)Xa + S(Xz, X5)n(Xs)€ — §(X2, X5) X5 + ——— 5(X5, X5) X3

n(X2)n(Xs)Xs + %W(XZ)TI(XB)QX5 +2nn(X5)9(X2, X3)§ — 2n(F1 — F3)n(X2)n(Xs)Xs (3.21)

*ﬁS(X% X5)QX3 — 2n(F1 — F3)n(X2)g9(Xs, X5)§ + 2nn(X2)n(Xs) X3 + %n(XﬂTI(XE))QXs}-
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If we choose X3 = ¢ in (3.21), we compute

_ 2 _ _ _ 2
—7211(}:;_ 1F3) n(X5) X2 + 7(}7:1 — f3)n(X5)QX2 - 7(11 - fg)S(X27X5)§ + 7%(1:_ 1F3) 9(X2, X5)¢
2 _ 2 —
= bRy — B X5 — T oy 2T, 0
2 _ 2 —
2 — R Xs + T 0 e - U B g v, x)e) (3.22)

Taking inner product both sides of the equation by X¢ € x(M) and choosing X5 = &, we acquire

(F1 — F3)

n—1

[S(XQ,XG) - 2n(F1 - Fg)g(Xz,XG)] =0.

Corollary 3.16. Assume that M*" Y (Fy, Fy, F3) is a (2n + 1)— dimesional generalized Sasakian space
form. If M?"t1 is Wy— semisymmetric, M*" 1 is either an Einstein manifold or Fy = F3.

Definition 3.17. Assume that M*"*1(Fy, Fy, F3) is a (2n + 1)— dimesional generalized Sasakian space
form. If R- Wy and Q(g, Wy) are linearly dependent, then M>*"*1 is called a Wo— pseudosymmetric.

In this specific case, a function \; exists such that
R- W9 = )‘5 ' Q(97 Wﬁ)a
where R is the Riemann curvature tensor. If A5 = 0, then the M?"*1 is called a Wy— semisymmetric.

Theorem 3.18. Let M?" ! be a 2n + 1—dimensional generalized Sasakian space form. If M2+ is Wo—

pseudosymmetric, then M*"*1 is either an Eintein manifold if (Fy — F3) = 2% or a n— Einstein manifold

n—1
if (Fy — F3) # 2% if Fy # F3.

Proof. Let M?**1 be the generalized Sasakian space form that provides Wy— pseudosemisymmetric:

(R(X1, Xo) - Wy)(Xy, X5, X3) = A1 - Q(g, We) (X4, X5, X35 X1, X3)
for all X1, X9, X3, X4, X5 € x(M). Hence, we have
R(X1, X2)Wo (X4, X5) X3 — Wo(R(X1, X2) X4, X5) X3 — Wo (X4, R(X1, X2)X5)X3

—Wo(X4, XsR(X1,X2)X3 = X5 - [—9(X5, X3)Wo (X4, X1) X2 + 9(X4, X3)Wo(X5, X1)Xo (3.23)
—9(X5, X1)Wo (X3, X4) X2 + g(X4, X1)Wo(X3, X5) X2 — g(Xs5, X2)Wo (X3, X1) X4 + g(Xa, X2)Wo (X3, X1)X5].
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Choosing X7 = ¢ in (3.23) and exploiting (2.1), (2.6), (2.8), (2.24), (2.25), and (2.26), we obtain

(F1 — F3)[g(X2, Wo(X4, X5)X3)§ — n(Wo (X4, X5)X3) X2 — g(X2, Xa)[(F1 — F3)9(X5, X3)€
—n(X3)X5 — ﬁS(XS,XB)E + ﬁn(XQQXS] +n(Xa)Wo(X2, X5) X3

9(X2, X5)[—(F1 — F3)g(X4, X3)€ 4 (F1 — F3)n(X3) X4 — %__IFS)W(XB)XAL + ﬁn(XMQXB]
+n(X5)Wo(Xa, X2) X3 — (F1 — F3)g9(X2, X3)[n(X5) X4 — n(X4) X5 — %U(Xs)th + %Q(X47X5)E] (3.24)
(X8 Wo (X4, X5) Xa] = s [-g(Xs, Xa) [ (Fi — Fy)g(Xa, X2)€ + (F1 — Fy)n(x)Xa + 2= x,

L n(X2)QXa] + 9(Xa, X (i — F)g(Xs, X2)€ + (Fy — Fy)n(X2) X + 21— TY)

N(X2)QXs5] — n(X5)Wo (X3, Xa) X2 + n(Xa)Wo (X3, X5) X2 — g(X5, Xo2)[—(F1 — F3)g(X3, X4)€

n(X5)X2

n—1
- F:
+(1 — F3)n(X4)Xs + %n@fs))ﬁ - ﬁW(XOQXS] +9(X2, X4)
2n(F1 — F3)

[=(F1 = F3)g(Xs, X5)¢ + (F1 — Fs)n(X5) X3 + —

1(X5) X5 — ——n(X5)QXa]

If we write X4 = € in (3.24) and make simplifications by considering (2.1), (2.9), and (2.10) we calculate

(F1 — Fs)[%g(Xs,Xs)Xz + Wo(X2, X5)X3 — %g(x’m)(s)x’s — (F1 — F3)9(X2,X3)X5
= Nol(Fi ~ Fa)n(Xa)g(Xa, Xo)6 — 2= g0 e+ 2L g xpnexae

(L= F)n(X2)(Xa) X + (FL = Fa)(X2)n(Xa) X5 — ——n(Xa)n(Xa) QX

+(F1 — F3)n(Xs5)g9(X2, X3)¢ + ﬁn(xz)n(Xs)QXs + Wo(X3,X5)X2 — (F1 — F3)g9(X2, X5)X3

2T X)X X ) 4 g(Xo, X5)QX3)
n—1 n-1

4 2n(F1 — F3)

(X2 )n(Xa) X

- (X5 n(X2)QX]. (325)

If we choose X3 = ¢ in (3.25), we briefly compute

(F1 - F3)[&__1&)?7(X5)X2 — (1 — F3)n(X2)Xs + ﬁS(XQ,ng - ﬁn(Xs)QXz
—MQ(X%XM{ — (I — F3)n(X2)X5] = A5[WU(X2M(X5)§
—ﬁﬂ(Xz)Q)Q - %__11:‘3)9()(2,)(5)5 + %n()@)xs]. (3.26)

By selecting X5 = £ and taking the inner product of both sides of (3.26) by Xg € x (M), we obtain

1

n(F1 — F3) 2n 2n(F1 — F3)
n—1 )+

S(X2,Xe6) + (—2(Fy — F3) — 2 + In(X2)n(Xe —

(Fr =5l n—1 n—1

9(X2,X6)] = 0.
O

Corollary 3.19. Let M?"*tY(Fy, Fy, I3) be a generalized Sasakian space form that is (2n+1)— dimesional.
If M2+ s Wy semisymmetric, it is either a n— FEinstein manifold if Fy # F3 or F} = F3.

Definition 3.20. Assume that M*"*1(Fy, Fy, F3) is a (2n + 1)— dimesional generalized Sasakian space
form. If R-Wy and Q(S, Wy) are linearly dependent, then M***! is called a Wo— Ricci pseudosymmetric.
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In this specific case, a function A\g exists such that
R-Wy = Xg - Q(S, Wy),
where S is the Ricci curvature tensor. If A\g = 0, then the M?"*! is called a Wy— Ricci semisymmetric.
Theorem 3.21. Let M?"*! be a 2n 4+ 1— dimensional generalized Sasakian space form. If M?"+1 is

27’L(F1—F3)—F1+F3—7’7,

(P —Fy)(nti) O on Einstein

Wo— Ricci pseudosymmetric, it is either an Fintein manifold if A\g =

maifold vith 1~ 3 = v # 2L

Proof. Let M?"*! be the generalized Sasakian space form that provides Wo— Ricci pseudosemisymmetric:

(R(X1, X2) - Wo) (X4, X5, X3) = M1 - Q(S, We) (X4, X5, X3; X1, X2)
for all X1, Xo, X3, X4, X5 € x(M). Hence, we have
R(X1, X2)Wy(Xa, X5) X3 — Wo(R(X1,X2) X4, X5)X3 — Wo (X4, R(X1, X2)X5)X3
—Wo (X4, Xs R(X1, X2) X3 = Xg - [—S(Xs5, X3)Wo (X4, X1)Xa + S(X4, X3)Wo (X5, X1) X2 (3.27)
—S(X5, X1)Wo (X3, X4) X2 + S(X4, X1)Wo(X3, X5) X2 — S(Xs5, X2)Wo(X3, X1)X4
+S5(X4, X2)Wo(X3, X1)X5].

Choosing X7 = ¢ in (3.27) and exploiting (2.1), (2.3), (2.6), (2.9) (2.10), (2.25), we obtain

(F1 — F3)[g(X2, Wo(X4, X5)X3)§ — n(Wo (X4, X5)X3) X2 — g(X2, Xa)[(F1 — F3)9(X5, X3)¢
—n(X3)X5 — ﬁS(XE),Xs)f + ﬁn(Xs)QXg] + n(X4)Wo (X2, X5)X3

2n(F) — Fj)
—1

+n(X5)Wo (X4, X2) X3 — (F1 — F3)g(X2, X3)[n(X5) X4 — n(X4) X5 — %H(Xs)Xz; + %Q(XAL,XS)Q (3.28)

9(X2, Xs5)[—(F1 — F3)g(X4, X3)€ + (F1 — F3)n(X3) X4 — n(X3)Xa + ﬁn(XzL)QXs}

2n(F1 — F3)

+n(Xs5)Wo (X4, X5)X2] = X6[—S (X5, X3)[—(F1 — F3)9(X4, X2)¢ + (F1 — F3)n(X2) X4 + T

n(X4) X2

2n(F1 — F3)

n(X5)X2
n—1

—ﬁU(XﬂQXd + S(X3, X4)[—9(X5, X2)& + (F1 — F3)n(X2) X5 +

_ni 177(X2)QX5] + 2n(F1 - F3)77(X4)W9(X37X5)X2 — S(X5,X2)[—(F1 — F3)g(Xg,X4)f

2n(F) — F3)

+(F1 — F3)n(X4) X3 +
n—1

0(Xa) X4 — ——1(X4)QXa)
n—1
oan(Fy — F)
n—1

If we write Xy = £ in (3.28) and make simplifications by considering (2.1), (2.3), (2.10), and (2.25), we
calculate

+8(X2, X4)[—(F1 — F3)g(X3, X5)¢ + (F1 — F3)n(X5)X3 + n(X3)Xs — ﬁn(XwQXsﬂ

(P = R M 00, X)X + Wo (Xa, Xa)Xs — =) (x5, X0)Xs — (1 = Fa)g(Xa, X)X
= ol (F1 — Fy) [ =X — —2(X2)¢] + 2n(Fy — Fa)n(Xs)[—g(X2, Xs)E + (Fi — Fa)n(X2) Xs
$ 2 ) ) — L n(X2)QXS] - 2n(Fy — F)n(Xs)[-g(Xa, Xa)E 4 (Fy — F)n(Xa) Xa

2 =) ) X = —n(X2)QXs] 4 20(Fy — Fy) WX, X5)Xz — S(Xa, Xa)[~(Fi — Fy)n(Xs)e
(1~ 1) X+ 2B e - QX+ om0 — (o) (R~ Fy)o(Xs, Xo)

(F1 —

= Byn(s)Xag + 2= 00 - L (x)QX) (3.29)
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If we choose X3 = ¢ in (3.29), we briefly compute

(=m0, — (= () X 4 (6 X)E — —on(X5) Qs
LI (3, X0 — (1 — Fn(X2)Xa] = Aoy — Fy)[-2mg(Xz, X5)€ — —on(X2) Qs

_ 2 _ 2 .
# 00 X £ 2 (L~ Fa)g(X, Xt + T ) X = T 00, Xa)g
2 _ 2 _
(X2 )n(Xs)€ + 2n(F1 — Fan(Xain(Xs)e + =)o) - ML) e (3.30)

Using the inner product of Xg € x(M) on both sides of (3.30) and choosing X5 = £, we obtain

S(Xz,Xg) —+ 2(2(F1 — F3)TL + F + F3 —n — 21’L(F1 — Fg)(n + 2))7](X2)7](X6) + 2TL(F1 — F3)(2)\6n — 1)g(X2,X6).
O

Corollary 3.22. Let M?>"*! be a 2n + 1— dimensional generalized Sasakian space form. If Fy — Fy # 0,

M2+ s an n— Einstein manifold if it is Wo— Ricci semisymmetric.

4 Conclusion

The main results of the paper conclude that W curvature conditions play an important role in defining
geometric structures for generalized Sasakian space forms. Under these conditions, geometric meanings are
transformed into new categories, specifically Einstein manifold and n— Einstein manifold, confirming the

efficacy of W operators as tools for classification and understanding of almost contact metric manifolds.
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