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Abstract

Integral inequalities are a fundamental part of modern mathematical analysis and the theory of function
spaces. In this paper, we present several refinements and extensions to classical integral inequalities,
with a particular focus on those of Hölder, Hardy, Minkowski, Clarkson, and Schweitzer. First, we
apply Hölder’s inequality to find new refined bounds. Then, we establish Hölder-type inequalities
using extended Young’s inequalities. Consequently, we derive Hardy-type derivative inequalities with
an optimal weight factor. After that, we introduce the Minkowski-Clarkson relation and variation for
two functions. Lastly, we formulate a weighted generalisation of Schweitzer’s inequality incorporating
parametric functions. Concrete examples involving the beta and gamma functions demonstrate the
sharpness and applicability of the proposed bounds, showing measurable improvements upon their
classical counterparts.

1 Introduction

Since the invention of calculus by Isaac Newton and Gottfried Wilhelm Leibniz in the 17th century, the
concept of integration has undergone profound development [2,16]. In the 19th century, Bernhard Riemann
formulated a rigorous definition of the integral, establishing a foundation for classical analysis [19]. Later,
in 1901, Henri Lebesgue introduced the revolutionary notion of measure theory, extending integration to
a far more general and flexible framework [13]. Following these milestones, numerous integral inequalities
were developed, amongst which Jensen’s, Minkowski’s, Cauchy-Schwarz’s, and Hölder’s inequalities have
become fundamental to modern analysis [11].

Building on this historical foundation, integral inequalities have emerged as fundamental tools
in modern analysis, providing essential instruments for understanding the behaviour of functions,
estimating solutions to differential and integral equations, and establishing quantitative bounds across
diverse branches of mathematics. These inequalities forge a crucial link between the local properties
of functions—such as convexity, monotonicity, and smoothness, and their global behaviour, typically
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characterised through integrals. Beyond their theoretical significance, integral inequalities also underpin
applications in functional analysis, probability theory, and partial differential equations, where they often
form the basis for stability and convergence results. See, for instance, [5, 14,18].

Given their fundamental importance, many mathematicians have sought to investigate new integral
inequalities and refine existing ones. For instance, in 2021, Eric Anders Carlen and his team established
a remarkable result by showing that, for any p ∈ (0, 1] ∪ [2,∞), one has

∫
Ω
|f + g|pdµ ≤

(
1 +

22/p∥fg∥p/2
(∥f∥pp + ∥g∥pp)2/p

)p−1 ∫
Ω
(|f |p + |g|p)dµ,

where

∥f∥p =
(∫

Ω
|f |pdµ

)1/p

denotes the usual Lp-norm. This inequality represents a notable refinement of the standard norm
inequality [6]. More recently, in 2023, Jorge Paz Moyado and collaborators established reverse Hölder-type
inequalities along with their applications [17]. In 2024, Thabet Abdeljawad and his research group
extended Schweitzer’s inequality to a Riemann-Liouville fractional calculus setting [1]. In a similar fashion,
Noureddine Azzouz and Bouharket Benaissa introduced a reverse Minkowski-type inequality based on the
k-weighted fractional integral operator in 2025 [3]. These recent advances stimulate further exploration
into new inequalities that can be formulated from these pivotal findings.

Motivated by these developments, in this work, we establish several new refinements and extensions of
classical integral inequalities. Our contributions are five-fold, as described below.

• Firstly, we systematically refine fundamental inequalities by exploring their interplay, deriving refined
bounds for ∥fk∥pkpk through strategic applications of Hölder’s inequality (Section 2).

• Secondly, we construct new Hölder-type inequalities using the generalised Young’s inequalities by
Choi (Section 3).

• Thirdly, we establish Hardy-type derivative inequalities, one with explicit optimal constants, via
Cauchy-Schwarz’s inequality (Section 4).

• Fourthly, we unify Minkowski’s and Clarkson’s inequalities to obtain refined and variant two-function
bounds (Section 5).

• Finally, we extend Schweitzer’s classical inequality to the Lp space with weight functions, establishing
new bounds for pairs of functions (Section 6).

Throughout the paper, concrete examples involving the beta and gamma functions illustrate both the
sharpness and applicability of these results.
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2 Refined Bounds by Hölder’s Inequality

Notation. Throughout the paper, n stands for a positive integer.

First of all, we recall the statement of the celebrated Hölder integral inequality, established earlier by
Otto Ludwig Hölder in 1889.

Lemma 1. (Hölder’s inequality, [24]) Let (Ω,A, µ) be a measure space, and let p1, . . . , pn ≥ 1 satisfy∑n
j=1 1/pj = 1. Suppose f1, . . . , fn : Ω → R are µ-measurable functions such that fj ∈ Lpj (Ω) for each

j ∈ {1, . . . , n}. Then, we have ∥∥∥∥∥∥
n∏

j=1

fj

∥∥∥∥∥∥
1

≤
n∏

j=1

∥fj∥pj .

Our first main result provides a lower bound for ∥fk∥pkpk by applying Hölder’s inequality in multiple
configurations. The key insight is to consider different groupings of the exponents {pj}.

Theorem 2. Let (Ω,A, µ) be a measure space, and let p1, . . . , pn > 1 satisfy
∑n

j=1 1/pj = 1. Suppose
f1, . . . , fn : Ω → R are µ-measurable functions such that 0 < ∥fi∥pj < ∞ for i, j ∈ {1, . . . , n}. Then, for
any k ∈ {1, . . . , n}, we have

∥fk∥pkpk ≥
n∏

i=1

∫
Ω
|fk|pk/pi

∏
j ̸=k

|fj |dµ

∏
j ̸=k

(
∥fj∥n−1

pj ∥fj∥pk
)−1

.

Proof. Fix k. First, applying Hölder’s inequality with exponents {pj} gives∫
Ω

n∏
j=1

|fj |dµ ≤
(∫

Ω
|fk|pkdµ

)1/pk ∏
j ̸=k

(∫
Ω
|fj |pjdµ

)1/pj

,

which implies

(∫
Ω
|fk|pkdµ

)1/pk

≥

∫
Ω

n∏
j=1

|fj |dµ

∏
j ̸=k

(∫
Ω
|fj |pjdµ

)1/pj
. (1)

Next, for each i ̸= k, we apply Hölder’s inequality to the factors |fk|pk/pi , |fi|, and |fj | (for j ̸= k, i) with
exponents pi, pk, and pj , respectively. Note that 1/pi + 1/pk +

∑
j ̸=k,i 1/pj = 1. This yields∫

Ω
|fk|pk/pi

∏
j ̸=k

|fj |dµ ≤
(∫

Ω
|fk|pkdµ

)1/pi (∫
Ω
|fi|pkdµ

)1/pk ∏
j ̸=k,i

(∫
Ω
|fj |pjdµ

)1/pj

,

which can be rearranged to

(∫
Ω
|fk|pkdµ

)1/pi

≥

∫
Ω
|fk|pk/pi

∏
j ̸=k

|fj |dµ

(∫
Ω
|fi|pkdµ

)1/pk ∏
j ̸=k,i

(∫
Ω
|fj |pjdµ

)1/pj
. (2)
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Multiplying Equation (1) and all the Equation (2) over i ̸= k, the left-hand side becomes
∫
Ω |fk|pkdµ since∑n

j=1 1/pj = 1. The right-hand side becomes∫
Ω

n∏
j=1

|fj |dµ

∏
i ̸=k

∫
Ω
|fk|pk/pi

∏
j ̸=k

|fj |dµ


∏
j ̸=k

(∫
Ω
|fj |pjdµ

)1/pj

∏
i ̸=k

(∫
Ω
|fi|pkdµ

)1/pk ∏
j ̸=k,i

(∫
Ω
|fj |pjdµ

)1/pj

 .

Performing some algebraic manipulation, we obtain the desired result.

For the special case that n = 2, we have∫
Ω
|f |pdµ ≥

(∫
Ω
|fg|dµ

)(∫
Ω
|f |p/q|g|dµ

)(∫
Ω
|g|qdµ

)−1/q (∫
Ω
|g|pdµ

)−1/p

,

where 1/p+ 1/q = 1.

As a demonstration, we now proceed to a sequence of corollaries illustrating specific parameter choices
of Theorem 2.

Corollary 3. Let p1, . . . , pn > 1 satisfy
∑n

j=1 1/pj = 1, and let α1, . . . , αn > 0. Suppose f : (0, 1) → R
is a Lebesgue integrable function and 0 <

∫ 1
0 |f(x)|pjdx < ∞ for each j. Then, for any k ∈ {1, . . . , n}, we

have ∫ 1

0
|f(x)|pkdx ≥

n∏
i=1

∫ 1

0
|f(x)|pk/pi

∏
j ̸=k

xαjdx

∏
j ̸=k

(αjpj + 1)(n−1)/pj (αjpk + 1)1/pk .

Proof. Fix k. The result is immediate by applying Theorem 2, taking fk = f and fj(x) = xαj for all j ̸= k

together with some further simplification.

For the special case that n = 2, we have∫ 1

0
|f(x)|pdx ≥

(∫ 1

0
|f(x)|xαdx

)(∫ 1

0
|f(x)|p/qxαdx

)
(αq + 1)1/q(αp+ 1)1/p,

where 1/p+ 1/q = 1.

Example 4. By taking f(x) = 1− x and n = 2 in Corollary 3, we get∫ 1

0
(1− x)pdx ≥ (αq + 1)1/q(αp+ 1)1/p

(∫ 1

0
xα(1− x)dx

)(∫ 1

0
xα(1− x)p/qdx

)
,

equivalently,
1

p+ 1
≥ (αq + 1)1/q(αp+ 1)1/pB(α+ 1, 2)B

(
α+ 1, 1 +

p

q

)
,

where B(·, ·) is the beta function [4].
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Corollary 5. Let p1, . . . , pn > 1 satisfy
∑n

j=1 1/pj = 1, and let α1, . . . , αn > 0. Suppose f : (0,∞) → R
is a Lebesgue integrable function and 0 <

∫∞
0 |f(x)|pjdx < ∞ for each j. Then, for any k ∈ {1, . . . , n},

we have ∫ ∞

0
|f(x)|pkdx ≥

n∏
i=1

∫ ∞

0
|f(x)|pk/pi

∏
j ̸=k

e−αjxdx

∏
j ̸=k

(αjpj)
(n−1)/pj (αjpk)

1/pk .

Proof. Fix k. The result is immediate by applying Theorem 2, taking fk = f and fj(x) = e−αjx for all
j ̸= k together with some further simplification.

For the special case that n = 2, we have∫ ∞

0
|f(x)|pdx ≥

(∫ ∞

0
|f(x)|e−αxdx

)(∫ ∞

0
|f(x)|p/qe−αxdx

)
(αq)1/q(αp)1/p,

where 1/p+ 1/q = 1.

One may naturally inquire whether it is possible to obtain an upper bound for ∥fk∥pkpk as well. In this
regard, Panagiotis Krasopoulos and Lazhar Bougoffa have established a reverse-type Hölder inequality in
2022, stated below.

Lemma 6. [12] Let (Ω,A, µ) be a measure space, and let p1, . . . , pn > 1 satisfy
∑n

j=1 1/pj = 1. Suppose
f1, . . . , fn : Ω → R are µ-measurable functions such that 0 < ∥fj∥pj < ∞ and 0 < mj ≤ fj ≤ Mj µ-a.e.
for j ∈ {1, . . . , n}. Then, we have

n∏
j=1

∥fj∥
pj
pj ≤ M

∥∥∥∥∥∥
n∏

j=1

fj

∥∥∥∥∥∥
n

1

,

where M =
∏n

j=1M
pj−1
j /

∏n
j=1m

n−1
j .

Using this reverse Hölder inequality, we easily obtain an upper bound complementing Theorem 2:

∥fk∥pkpk ≤

M

∥∥∥∥∥∥
n∏

j=1

fj

∥∥∥∥∥∥
n

1∏
j ̸=k

∥fj∥
pj
pj

. (3)

However, we note that this result is limited by the restriction that mj > 0 µ-a.e., as the essential infimum
of many special functions over interesting domains equals zero.

3 Hölder-type Inequalities via Choi-Young’s Inequalities

Having established refined bounds through strategic applications of Hölder’s inequality, we now turn
to constructing new Hölder-type inequalities using a different approach based on the generalised Young
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inequality founded by Daeshik Choi in 2018. First, we present this inequality, the Jensen inequality, and
the alternative reverse Hölder inequality (which is a different version from the one in Section 2 for a specific
purpose).

Lemma 7. [7] Let a, b > 0, and let p, q > 1 such that 1/p + 1/q = 1. Then, for any positive integer n,
we have (

a

p
+

b

q

)n

≥ (a1/pb1/q)n + (2r)n
((

a+ b

2

)n

− (ab)n/2
)
, (4)(

a

p
+

b

q

)n

≤ (a1/pb1/q)n + (2R)n
((

a+ b

2

)n

− (ab)n/2
)
, (5)

where r = min{1/p, 1/q} and R = max{1/p, 1/q}.

Lemma 8. (Jensen’s inequality, [22]) Let (Ω,A, µ) be a probability measure space. Let f : Ω → R be a
µ-measurable function, and let φ : R → R be a convex function. Then, we have

φ

(∫
Ω
fdµ

)
≤
∫
Ω
φ ◦ fdµ.

Lemma 9. Let (Ω,A, µ) be a probability measure space, and let f : Ω → R be a µ-measurable function. If
n ≥ 1, then we have ∫

Ω
fndµ ≥

(∫
Ω
fdµ

)n

.

Proof. This follows from Jensen’s inequality, taking φ(x) = xn which is convex by [20].

Lemma 10. [15] Let (Ω,A, µ) be a measure space. Let p, q > 1 with 1/p+1/q = 1. Suppose f, g : Ω → R
are µ-measurable functions such that f ∈ Lp(Ω), g ∈ Lq(Ω), and

0 < m ≤ |f |p

|g|q
≤ M µ-a.e.

Then, we have

∥f∥pp∥g∥qq ≤
(
M

m

)1/(pq)

∥fg∥1.

Now, we can state the main result.

Theorem 11. Let (Ω,A, µ) be a probability measure space. Let p, q > 1 with 1/p + 1/q = 1. Suppose
f, g : Ω → R are µ-measurable functions such that f ∈ Lp(Ω), g ∈ Lq(Ω), and

0 < m ≤ |f |p

|g|q
≤ M µ-a.e.

Let r = min{1/p, 1/q}. Then, for any positive integer n, we have(
1

(p1/pq1/q)n
·
(m
M

)1/(pq)
+ rn

)
(∥f∥pp∥g∥qq)n

≤ (2r)n

(pq)n/2

(
∥f∥pp∥g∥qq

∫
Ω
|f |p|g|qdµ

)n/2

+
1

(pq)2n

∫
Ω

(
q2|f |p∥g∥qq + p2|g|q∥f∥pp

)n
dµ.
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Proof. Note that ∥f∥p, ∥g∥q > 0 since µ(Ω) = 1 > 0 and |f |, |g| are positive µ-a.e. We start by substituting

a =
|f |p

p
∫
Ω |f |pdµ

and b =
|g|q

q
∫
Ω |g|qdµ

in Lemma 7, Equation (4). This gives(
|f |p

p2
∫
Ω |f |pdµ

+
|g|q

q2
∫
Ω |g|qdµ

)n

≥

(
|f ||g|(

p
∫
Ω |f |pdµ

)1/p (
q
∫
Ω |g|qdµ

)1/q
)n

+ rn
(

|f |p

p
∫
Ω |f |pdµ

+
|g|q

q
∫
Ω |g|qdµ

)n

− (2r)n
(

|f |p|g|q

pq
∫
Ω |f |pdµ

∫
Ω |g|qdµ

)n/2

=
1

pn/pqn/q
· (|f ||g|)n((∫

Ω |f |pdµ
)1/p (∫

Ω |g|qdµ
)1/q)n +

(
r

pq

)n

·
(
q|f |p

∫
Ω |g|qdµ+ p|g|q

∫
Ω |f |pdµ

)n(∫
Ω |f |pdµ

∫
Ω |g|qdµ

)n
− (2r)n

(pq)n/2
·
(
|f |p|g|q

∫
Ω |f |pdµ

∫
Ω |g|qdµ

)n/2(∫
Ω |f |pdµ

∫
Ω |g|qdµ

)n .

(6)

Next, we integrate Equation (6) over Ω with respect to µ. On the right-hand side, we have∫
Ω

1

(p1/pq1/q)n
· (|f ||g|)n((∫

Ω |f |pdµ
)1/p (∫

Ω |g|qdµ
)1/q)ndµ+

∫
Ω

(
r

pq

)n

·
(
q|f |p

∫
Ω |g|qdµ+ p|g|q

∫
Ω |f |pdµ

)n(∫
Ω |f |pdµ

∫
Ω |g|qdµ

)n dµ

−
∫
Ω

(2r)n

(pq)n/2
·
(
|f |p|g|q

∫
Ω |f |pdµ

∫
Ω |g|qdµ

)n/2(∫
Ω |f |pdµ

∫
Ω |g|qdµ

)n dµ

=
1

(p1/pq1/q)n
·

∫
Ω |fg|ndµ((∫

Ω |f |pdµ
)1/p (∫

Ω |g|qdµ
)1/q)n +

(
r

pq

)n

·
∫
Ω

(
q|f |p

∫
Ω |g|qdµ+ p|g|q

∫
Ω |f |pdµ

)n
dµ(∫

Ω |f |pdµ
∫
Ω |g|qdµ

)n
− (2r)n

(pq)n/2
·
∫
Ω

(
|f |p|g|q

∫
Ω |f |pdµ

∫
Ω |g|qdµ

)n/2
dµ(∫

Ω |f |pdµ
∫
Ω |g|qdµ

)n
≥ 1

(p1/pq1/q)n

( ∫
Ω |fg|dµ(∫

Ω |f |pdµ
)1/p (∫

Ω |g|qdµ
)1/q

)n

+

(
r

pq

)n

·
(∫

Ω q|f |pdµ
∫
Ω |g|qdµ+

∫
Ω p|g|qdµ

∫
Ω |f |pdµ

)n(∫
Ω |f |pdµ

∫
Ω |g|qdµ

)n
− (2r)n

(pq)n/2
·
∫
Ω

(
|f |p|g|q

∫
Ω |f |pdµ

∫
Ω |g|qdµ

)n/2
dµ(∫

Ω |f |pdµ
∫
Ω |g|qdµ

)n
≥ 1

(p1/pq1/q)n

((
m
M

)1/(pq) (∫
Ω |f |pdµ

)1/p (∫
Ω |g|qdµ

)1/q(∫
Ω |f |pdµ

)1/p (∫
Ω |g|qdµ

)1/q
)n

+

(
r(p+ q)

pq

)n

− (2r)n

(pq)n/2
·
∫
Ω

(
|f |p|g|q

∫
Ω |f |pdµ

∫
Ω |g|qdµ

)n/2
dµ(∫

Ω |f |pdµ
∫
Ω |g|qdµ

)n
=

1

(p1/pq1/q)n

(m
M

)1/(pq)
+ rn − (2r)n

(pq)n/2
·
(∫

Ω |f |p|g|qdµ
∫
Ω |f |pdµ

∫
Ω |g|qdµ

)n/2(∫
Ω |f |pdµ

∫
Ω |g|qdµ

)n .
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Above, we apply Lemma 9 in the second inequality and Lemma 10 in the third inequality. Moreover, the
last equality is due to (p+ q)/(pq) = 1/p+ 1/q = 1. Next, on the left-hand side of Equation (6), we have∫

Ω

(
|f |p

p2
∫
Ω |f |pdµ

+
|g|q

q2
∫
Ω |g|qdµ

)n

dµ =
1

(pq)2n

∫
Ω

(
q2|f |p

∫
Ω |g|qdµ+ p2|g|q

∫
Ω |f |pdµ∫

Ω |f |pdµ
∫
Ω |g|qdµ

)n

dµ

=

∫
Ω

(
q2|f |p

∫
Ω |g|qdµ+ p2|g|q

∫
Ω |f |pdµ

)n
dµ

(pq)2n
(∫

Ω |f |pdµ
∫
Ω |g|qdµ

)n .

Combining these developments, we obtain∫
Ω

(
q2|f |p

∫
Ω |g|qdµ+ p2|g|q

∫
Ω |f |pdµ

)n
dµ

(pq)2n
(∫

Ω |f |pdµ
∫
Ω |g|qdµ

)n +
(2r)n

(pq)n/2
·
(∫

Ω |f |p|g|qdµ
∫
Ω |f |pdµ

∫
Ω |g|qdµ

)n/2(∫
Ω |f |pdµ

∫
Ω |g|qdµ

)n
≥ 1

(p1/pq1/q)n

(m
M

)1/(pq)
+ rn,

or(
1

(p1/pq1/q)n
·
(m
M

)1/(pq)
+ rn

)(∫
Ω
|f |pdµ

∫
Ω
|g|qdµ

)n

≤ (2r)n

(pq)n/2

(∫
Ω
|f |p|g|qdµ

∫
Ω
|f |pdµ

∫
Ω
|g|qdµ

)n/2

+
1

(pq)2n

∫
Ω

(
q2|f |p

∫
Ω
|g|qdµ+ p2|g|q

∫
Ω
|f |pdµ

)n

dµ.

This completes the proof.

For the special case that p = q = 2 and n = 1, Theorem 11 reduces to

(
1

2
4

√
m

M
+

1

2

)
∥f∥22∥g∥22 ≤

1

2

√
∥f∥22∥g∥22 +

∫
Ω
|fg|2dµ+

1

16

(
4∥g∥22

∫
Ω
|f |2dµ+ 4∥f∥22

∫
Ω
|g|2dµ

)
.

With some algebraic manipulation, this is simply equivalent to√
m

M
∥f∥42∥g∥42 ≤ ∥f∥22∥g∥22 + ∥fg∥22,

where 0 <
√
m ≤ |f/g| ≤

√
M for µ-a.e.

By repeating a similar argument, we deduce a complementary identity as shown below.

Theorem 12. Let (Ω,A, µ) be a probability measure space. Let p, q > 1 with 1/p + 1/q = 1. Suppose
f, g : Ω → R are µ-measurable function such that f ∈ Lp(Ω), g ∈ Lq(Ω), and

∫
Ω |f |p|g|qdµ < ∞. Let

R = max{1/p, 1/q}. Then, for any positive integer n ≥ 2, we have

(∥f∥pp∥g∥qq)n + (2R)n
(
∥f∥pp∥g∥qq

∫
Ω
|f |p|g|qdµ

)n/2

≤
(
∥fp/q∥q∥gq/p∥p

)n ∫
Ω
|fg|ndµ+Rn

∫
Ω

(
|f |p∥g∥qq + |g|q∥f∥pp

)n
dµ.
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Proof. If ∥f∥p = 0 or ∥g∥q = 0, then the inequality trivially holds. So, let us suppose that both of them
are nonzero. Then, we substitute

a =
|f |p∫

Ω |f |pdµ
and b =

|g|q∫
Ω |g|qdµ

in Lemma 7, Equation (5). Therefore, we have(
|f |p

p
∫
Ω |f |pdµ

+
|g|q

q
∫
Ω |g|qdµ

)n

≤

(
|f ||g|(∫

Ω |f |pdµ
)1/p (∫

Ω |g|qdµ
)1/q

)n

+Rn

(
|f |p∫

Ω |f |pdµ
+

|g|q∫
Ω |g|qdµ

)n

− (2R)n
(

|f |p|g|q∫
Ω |f |pdµ

∫
Ω |g|qdµ

)n/2

=

(
|fg|

(∫
Ω |f |pdµ

)1/q (∫
Ω |g|qdµ

)1/p)n(∫
Ω |f |pdµ

∫
Ω |g|qdµ

)n +Rn ·
(
|f |p

∫
Ω |g|qdµ+ |g|q

∫
Ω |f |pdµ

)n(∫
Ω |f |pdµ

∫
Ω |g|qdµ

)n
− (2R)n ·

(
|f |p|g|q

∫
Ω |f |pdµ

∫
Ω |g|qdµ

)n/2(∫
Ω |f |pdµ

∫
Ω |g|qdµ

)n .

(7)

In the second equality, we apply the assumption 1/p + 1/q = 1. Next, we integrate Equation (7) over Ω

with respect to µ. On the left-hand side, we have∫
Ω

(
|f |p

p
∫
Ω |f |pdµ

+
|g|q

q
∫
Ω |g|qdµ

)n

dµ ≥
( ∫

Ω |f |pdµ
p
∫
Ω |f |pdµ

+

∫
Ω |g|qdµ

q
∫
Ω |g|qdµ

)n

=

(
1

p
+

1

q

)n

= 1,

where we apply Lemma 9 in the first inequality. Then on the right-hand side of Equation (7), we have

∫
Ω

(
|fg|

(∫
Ω |f |pdµ

)1/q (∫
Ω |g|qdµ

)1/p)n(∫
Ω |f |pdµ

∫
Ω |g|qdµ

)n dµ+Rn

∫
Ω

(
|f |p

∫
Ω |g|qdµ+ |g|q

∫
Ω |f |pdµ

)n(∫
Ω |f |pdµ

∫
Ω |g|qdµ

)n dµ

− (2R)n
∫
Ω

(
|f |p|g|q

∫
Ω |f |pdµ

∫
Ω |g|qdµ

)n/2(∫
Ω |f |pdµ

∫
Ω |g|qdµ

)n dµ

≤

((∫
Ω |f |pdµ

)1/q (∫
Ω |g|qdµ

)1/p)n ∫
Ω |fg|ndµ(∫

Ω |f |pdµ
∫
Ω |g|qdµ

)n +Rn ·
∫
Ω

(
|f |p

∫
Ω |g|qdµ+ |g|q

∫
Ω |f |pdµ

)n
dµ(∫

Ω |f |pdµ
∫
Ω |g|qdµ

)n
− (2R)n ·

(∫
Ω |f |pdµ

∫
Ω |g|qdµ

∫
Ω |f |p|g|qdµ

)n/2(∫
Ω |f |pdµ

∫
Ω |g|qdµ

)n .

Note that the second inequality is due to Lemma 9. Combining these facts, we obtain(∫
Ω
|f |pdµ

∫
Ω
|g|qdµ

)n

≤

((∫
Ω
|f |pdµ

)1/q (∫
Ω
|g|qdµ

)1/p
)n ∫

Ω
|fg|ndµ

+Rn

∫
Ω

(
|f |p

∫
Ω
|g|qdµ+ |g|q

∫
Ω
|f |pdµ

)n

dµ− (2R)n
(∫

Ω
|f |pdµ

∫
Ω
|g|qdµ

∫
Ω
|f |p|g|qdµ

)n/2

.

This completes the proof.
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Remark 13. Both Theorems 11 and 12 can be generalised to any finite positive measure space (not only
probability space) by introducing the factor µ(Ω) appropriately in Lemma 9. We leave this straightforward
extension to interested readers.

Remark 14. There are two significant differences between the assumptions in Theorems 11 and 12. First,
we do not assume boundedness conditions on the ratio |f |p/|g|q in Theorem 12 since we do not use Lemma
10. Second, in Theorem 12, we suppose that n ≥ 2 to ensure the convexity argument on Lemma 9.

Example 15. Let p = q = 2 and n = 2. Consider Ω = (0, 1) and µ the Lebesgue measure. Choose
f(x) = xα and g(x) = (1 − x)β with α, β > −1/2. Note that R = 1/2. We compute the following
expressions involved in Theorem 12:

∥f∥22 =
∫ 1

0
x2αdx =

1

2α+ 1
, ∥g∥22 =

∫ 1

0
(1− x)2βdx =

1

2β + 1
,∫ 1

0
x2α(1− x)2βdx = B(2α+ 1, 2β + 1), ∥f2/2∥2 = ∥f∥2 =

1√
2α+ 1

,

∥g2/2∥2 = ∥g∥2 =
1√

2β + 1
,

∫ 1

0
(xα(1− x)β)2dx = B(2α+ 1, 2β + 1),∫ 1

0

(
x2α

2β + 1
+

(1− x)2β

2α+ 1

)2

dx =
1

(2β + 1)2(4α+ 1)
+

2B(2α+ 1, 2β + 1)

(2α+ 1)(2β + 1)
+

1

(2α+ 1)2(4β + 1)
.

Plugging all these into the inequality, we have (
1

(2α+ 1)(2β + 1)

)2

+
B(2α+ 1, 2β + 1)

(2α+ 1)(2β + 1)

≤ B(2α+ 1, 2β + 1)

(2α+ 1)(2β + 1)
+

1

4

(
1

(2β + 1)2(4α+ 1)
+

2B(2α+ 1, 2β + 1)

(2α+ 1)(2β + 1)
+

1

(2α+ 1)2(4β + 1)

)
,

or simply

4

(2α+ 1)2(2β + 1)2
≤ 1

(2β + 1)2(4α+ 1)
+

2B(2α+ 1, 2β + 1)

(2α+ 1)(2β + 1)
+

1

(2α+ 1)2(4β + 1)
. (8)

As a numerical example, substituting α = β = 1/4 into Equation (8) gives

4

(3/2)4
≤ 1

(3/2)2(2)
+

2(π/8)

(3/2)2
+

1

(3/2)2(2)
.

Approximately, the left-hand side is 0.7901 while the right-hand side is 0.7935 up to four significant digits.

4 Hardy-type Derivative Inequalities using Cauchy-Schwarz’s
Inequality

The techniques developed in the preceding sections rely primarily on Hölder’s inequality and its variants.
We now demonstrate how the Cauchy-Schwarz inequality, a special case of Hölder’s inequality, can yield
derivative-type estimates with optimal constants.
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Theorem 16. Let f : [0,∞) → R be an absolutely continuous function with f(0) = 0. Let w : [0,∞) →
[0,∞] be a Lebesgue measurable function. For x ≥ 0, we define

W (x) =

∫ ∞

x
yw(y)dy ∈ [0,∞].

Then, for every measurable derivative f ′ (µ-a.e. defined), we have∫ ∞

0
w(y)(f(y))2dy ≤

∫ ∞

0
(f ′(x))2W (x)dx.

Proof. Since f(0) = 0 and f is absolutely continuous, the fundamental theorem of calculus implies that
f(y) =

∫ y
0 f ′(x)dx for each y ≥ 0. Applying Cauchy-Schwarz’s inequality to the integral on the right-hand

side gives

(f(y))2 =

(∫ y

0
f ′(x)dx

)2

≤
(∫ y

0
12dx

)(∫ y

0
(f ′(x))2dx

)
= y

∫ y

0
(f ′(x))2dx

for each fixed y ≥ 0. Next, we multiply both sides by the nonnegative weight w(y) and integrate in y over
[0,∞). This gives ∫ ∞

0
w(y)(f(y))2dy ≤

∫ ∞

0
yw(y)

(∫ y

0
(f ′(x))2dx

)
dy. (9)

The right-hand side is nonnegative. So, we can apply Fubini-Tonelli’s theorem to change the order of
integrations and deduce∫ ∞

0
yw(y)

(∫ x

0
(f ′(x))2dx

)
dy =

∫ ∞

0
(f ′(x))2

(∫ ∞

x
yw(y)dy

)
dx =

∫ ∞

0
(f ′(x))2W (x)dx. (10)

Combining Equations (9) and (10), the proof is complete.

Although the above result is only stated on the real half-line with Lebesgue measure, it can be regarded
as a one-dimensional illustration of how Hölder’s inequality yields derivative-type estimates in the general
measure-space framework.

Corollary 17. Let α > 0. Let f : [0,∞) → R be a differentiable function such that f(0) = 0. Then, we
have ∫ ∞

0
e−αx2

(f(x))2dx ≤ 1

2α

∫ ∞

0
e−αx2

(f ′(x))2dx. (11)

Proof. This easily follows from Theorem 16 by taking w(x) = e−αx2 . We note that

W (x) =

∫ ∞

x
yw(y)dy =

∫ ∞

x
ye−αy2dy =

[
− 1

2α
e−αy2

]y=∞

y=x

=
1

2α
e−αx2

.

This completes the proof.

Earthline J. Math. Sci. Vol. 16 No. 2 (2026), 179-198



190 Christophe Chesneau

Remark 18. In fact, the constant 1/(2α) in Corollary 17 is optimal; that is, it cannot be replaced by a
smaller value. To illustrate this, consider the test function f(x) = x for x ≥ 0. Clearly, f(0) = 0 and
f ′(x) ≡ 1. We can evaluate the two integrals appearing in Equation (11) explicitly. On one hand, we
obtain ∫ ∞

0
e−αx2

(f(x))2dx =

∫ ∞

0
x2e−αx2

dx =
1

2
α−3/2Γ

(
3

2

)
=

1

2
α−3/2 ·

√
π

2
=

1

4

√
πα−3/2,

where Γ(·) is the gamma function [4]. On the other hand, we find∫ ∞

0
e−αx2

(f ′(x))2dx =

∫ ∞

0
e−αx2

dx =
1

2

√
π

α
.

It follows that equality holds in Equation (11).

In light of the preceding developments, it is natural to investigate whether similar operator-type
inequalities can be formulated for bilinear expressions involving two functions. By carefully applying
the Hölder inequality in this context and leveraging the symmetry of the underlying kernel, we obtain the
following new result, which offers a further extension of the inequalities discussed above.

Theorem 19. Let a, b ∈ R ∪ {±∞} with a < b. Let f, g : [a, b] → R be absolutely continuous functions
such that f(a) = 0 and g(b) = 0, where we adopt the conventions f(−∞) = limx→−∞ f(x) and g(∞) =

limx→∞ g(x). Suppose f ′, g′ ∈ L2([a, b]) (which exist µ-a.e.). Then, we have∣∣∣∣∫ b

a
f(x)g(x)dx

∣∣∣∣ ≤ 1√
3

(∫ b

a
(b− x)3|f ′(x)|2

)1/2(∫ b

a
(x− a)|g′(x)|2dx

)1/2

. (12)

Proof. If either of the two integrals on the right-hand side of Equation (12) diverge, then we are done.
So, let us consider the case where both are finite. Because f and g are absolutely continuous with
f(a) = g(b) = 0, we can write

f(x) =

∫ x

a
f ′(t)dt and g(x) = −

∫ b

x
g′(s)ds

by the fundamental theorem of calculus. Using Fubini’s theorem, we have∫ b

a
f(x)g(x)dx = −

∫ b

a

∫ x

a

∫ b

x
f ′(t)g′(s)dtdsdx

= −
∫ b

a

∫ b

t

∫ s

t
f ′(t)g′(s)dxdsdt

= −
∫ b

a

∫ b

t
(s− t)f ′(t)g′(s)dsdt.

Therefore we obtain ∣∣∣∣∫ b

a
f(x)g(x)dx

∣∣∣∣ =
∣∣∣∣∣
∫∫

{(s,t):a≤t≤s≤b}
(s− t)f ′(t)g′(s)dsdt

∣∣∣∣∣ .
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Applying Cauchy-Schwarz’s inequality gives

∣∣∣∣∫ b

a
f(x)g(x)dx

∣∣∣∣ ≤
(∫∫

{(s,t):a≤t≤s≤b}
(s− t)2|f ′(t)|2dsdt

)1/2(∫∫
{(s,t):a≤t≤s≤b}

|g′(s)|2dsdt

)1/2

. (13)

We examine each integral above separately. We have∫∫
{(s,t):a≤t≤s≤b}

(s− t)2|f ′(t)|2dsdt =
∫ b

a
|f ′(t)|2

(∫ b

t
(s− t)2ds

)
dt

=
1

3

∫ b

a
(b− t)3|f ′(t)|2dt

(14)

and ∫∫
{(s,t):a≤t≤s≤b}

|g′(s)|2dsdt =
∫ b

a
|g′(s)|2

(∫ s

a
dt

)
ds

=

∫ b

a
(s− a)|g′(s)|2ds.

(15)

Substituting Equations (14) and (15) into Equation (13), the proof is complete.

Let us see a demonstration below involving the beta function.

Example 20. Let [a, b] = [0, 1]. For α, β > 1/2, define f(x) = xα and g(x) = (1 − x)β . Note that
f(0) = g(1) = 0 as desired. Moreover, f ′(x) = αxα−1 and g′(x) = −β(1−x)β−1. By Theorem 12, we have∣∣∣∣∫ 1

0
xα(1− x)βdx

∣∣∣∣ ≤ 1√
3

(∫ 1

0
(1− x)3|f ′(x)|2dx

)1/2(∫ 1

0
x|g′(x)|2dx

)1/2

. (16)

The left-hand side of Equation (16) is exactly B(α+1, β+1) by definition. Now, we look at each integral
involved on the right-hand side of Equation (16). We have∫ 1

0
(1− x)3|f ′(x)|2dx = α2

∫ 1

0
(1− x)3x2α−2dx = α2B(2α− 1, 4)

and ∫ 1

0
x|g′(x)|2dx = β2

∫ 1

0
x(1− x)2β−2dx = β2B(2, 2β − 1).

Putting these all together, we obtain the inequality

B(α+ 1, β + 1) ≤ αβ√
3

√
B(2α− 1, 4)B(2, 2β − 1).

As a numerical illustration, the left-hand side equals 0.1667 while the right-hand side equals 0.2041, up to
4 significant digits.

Earthline J. Math. Sci. Vol. 16 No. 2 (2026), 179-198



192 Christophe Chesneau

5 Minkowski-Clarkson Relations and Variants

While Sections 2, 3, and 4 focused on refinements of Hölder-type inequalities, we now investigate
relationships between Minkowski’s and Clarkson’s inequalities. These results are fundamental in
understanding the structure and uniform convexity properties of Lp spaces. We start by recalling the
famous Minkowski inequality, introduced by Hermann Minkowski in 1896.

Lemma 21. (Minkowski’s inequality, [9]) Let (Ω,A, µ) be a measure space, and let p ≥ 1. Suppose
f1, . . . , fn : Ω → R are µ-measurable functions such that fj ∈ Lp(Ω) for each j ∈ {1, . . . , n}. Then, we
have ∥∥∥∥∥∥

n∑
j=1

fj

∥∥∥∥∥∥
p

≤
n∑

j=1

∥fj∥p.

To facilitate our study, we use several classical inequalities stated below.

Lemma 22. (Jensen’s discrete inequality, [11]) Let Ω ⊆ R be an interval. Suppose λ1, . . . , λn > 0 with∑n
j=1 λj = 1. Let φ : Ω → R be a continuous function. Let x1, . . . , xn ∈ Ω. If φ is concave, then we have

φ

 n∑
j=1

λjxj

 ≥
n∑

j=1

λjφ(xj).

On the other hand, if φ is convex, then the inequality is reversed.

Lemma 23. Let x1, . . . , xn ≥ 0. If k ∈ (0, 1], then

n∑
j=1

xkj ≤ n1−k

 n∑
j=1

xj

k

.

Proof. First we observe that the function x 7→ xk defined on [0,∞) is concave if k ∈ (0, 1] [20]. So, we
apply Jensen’s discrete inequality with coefficients λj = 1/n. As f is concave, we get

1

n

n∑
j=1

xkj ≤

 1

n

n∑
j=1

xj

k

⇒
n∑

j=1

xkj ≤ n1−k

 n∑
j=1

xj

k

.

This completes the proof.

Now, we can present our next main result.

Theorem 24. Let (Ω,A, µ) be a measure space, and let p ≥ 1. Suppose f1, . . . , fn ∈ Lp(Ω). Then, we
have ∥∥∥∥∥∥

n∑
j=1

fj

∥∥∥∥∥∥
p

≤
n∑

j=1

∥fj∥p ≤ n1−1/p

 n∑
j=1

∥fj∥pp

1/p

.

http://www.earthlinepublishers.com



Refinements and Extensions of Classical Integral Inequalities: ... 193

Proof. Note that 1/p ∈ (0, 1] because p ≥ 1. The former inequality is basically the Minkowski’s inequality,
while the latter is trivial by applying Lemma 23 with xj =

∫
Ω |fj |pdµ for each j ∈ {1, . . . , n}.

While this result is not technically demanding, it possesses certain applicability and offers new insight
into its relationship with other inequalities, as we shall see below.

Example 25. Let α1, · · · , αn > 0. Consider Ω = [0,∞] and µ the Lebesgue measure. For each j, take
fj(x) = e−xxαj > 0 on [0,∞]. Then, we have∫ ∞

0
fp
j (x)dx =

∫ ∞

0
e−pxxαjpdx =

1

pαjp+1

∫ ∞

0
e−yyαjpdy =

1

pαjp+1Γ(αjp+ 1).

Note that the second equality above is yielded from the change of variable y = px. Thus applying Theorem
24, we obtain∫ ∞

0

e−x
n∑

j=1

xαj

p

dx

1/p

≤
n∑

j=1

(
1

pαjp+1Γ(αjp+ 1)

)1/p

≤ n1−1/p

 n∑
j=1

1

pαjp+1Γ(αjp+ 1)

1/p

.

For further instance, if we take p = 2 and αj = j, then we deduce that√∫ ∞

0
e−2x

(
xn+1 − 1

x− 1

)2

dx ≤
n∑

j=1

√
1

22j+1
Γ(2j + 1) ≤

√√√√n

n∑
j=1

1

22j+1
Γ(2j + 1).

When n = 2, Theorem 24 specialises to

∥f + g∥p ≤ ∥f∥p + ∥g∥p ≤ 21−1/p
(
∥f∥pp + ∥g∥pp

)1/p
.

To further refine the two-function case, we make use of Clarkson’s inequality, established by John Clarkson
in 1936. It is stated below.

Lemma 26. (Clarkson’s inequality, [8]) Let (Ω,A, µ) be a measure space, and let p ≥ 2. Suppose f, g ∈
Lp(Ω). Then, we have

∥f + g∥pp + ∥f − g∥pp ≤ 2p−1
(
∥f∥pp + ∥g∥pp

)
.

Remark 27. In fact, this inequality can easily be extended to n functions in a cyclic form. Suppose
f1, f2, . . . , fn ∈ Lp(Ω). By adopting the convention fn+1 := f1, we have

n∑
j=1

(
∥fj + fj+1∥pp + ∥fj − fj+1∥pp

)
≤ 2p

n∑
j=1

∥fj∥pp.

From our main finding and this inequality, we deduce the following immediately.

Corollary 28. Let (Ω,A, µ) be a measure space, and let p ≥ 2. Suppose f, g ∈ Lp(Ω). Then, we have

∥f + g∥p + ∥f − g∥p ≤ 22(1−1/p)
(
∥f∥pp + ∥g∥pp

)1/p
.
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Proof. We consider Theorem 24 for the case n = 2. Substituting f by f + g and g by f − g, we have(∫
Ω
|f + g|pdµ

)1/p

+

(∫
Ω
|f − g|pdµ

)1/p

≤ 21−1/p

(∫
Ω
(|f + g|p + |f − g|p)dµ

)1/p

.

Applying Clarkson’s inequality on the right-hand side gives(∫
Ω
|f + g|pdµ

)1/p

+

(∫
Ω
|f − g|pdµ

)1/p

≤ 2(1−1/p)2(1−1/p)

(∫
Ω
(|f |p + |g|p)dµ

)1/p

as desired.

We note that the classical Clarkson inequality describes the uniform convexity of Lp spaces in the
unweighted setting. We next present a weighted and mixed-exponent variant Clarkson-type inequality,
where a measurable weight function modifies the argument in a nontrivial way.

Lemma 29. [11] Let a, b ∈ R. If p ≥ 2, then we have

|a|p + |b|p ≤ (|a|2 + |b|2)p/2.

Theorem 30. Let (Ω,A, µ) be a measure space, and let p ≥ 2. Suppose f, g : Ω → R and w : Ω → (0,∞)

are µ-measurable functions such that wf + g, f − wg ∈ Lp(Ω). Then, we have

∥wf + g∥pp + ∥f − wg∥pp ≤ 2p/2−1∥w2 + 1∥p/2p (∥f∥p2p + ∥g∥p2p).

Proof. We consider the substitution a = (wf + g)/2 and b = (f − wg)/2 in Lemma 29. We first compute
the sum of squares which appears on the right-hand side, as follows:

|a|2 + |b|2 = 1

4
(|wf + g|2 + |f − wg|2) = 1

4
(w2 + 1)(|f |2 + |g|2).

Hence, we have

|a|p + |b|p ≤
(
(w2 + 1)(|f |2 + |g|2)

4

)p/2

. (17)

Applying the Jensen’s discrete inequality with coefficients {1/2, 1/2} on the right-hand side of Equation
(17) (since the function x 7→ xp/2 is convex by [20]), we see that(

(w2 + 1)(|f |2 + |g|2)
4

)p/2

=

(
w2 + 1

2

)p/2( |f |2 + |g|2

2

)p/2

≤ 1

2p/2
(w2 + 1)p/2

1

2
(|f |p + |g|p)

= 2−p/2−1(w2 + 1)p/2(|f |p + |g|p).

Now, merging this and Equation (17), plugging in a = (wf + g)/2 and b = (f − wg)/2, then multiplying
both sides by 2p, we have

|wf + g|p + |f − wg|p ≤ 2p/2−1(w2 + 1)p/2(|f |p + |g|p).
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Integrating this over Ω with respect to µ, we get∫
Ω
|wf + g|pdµ+

∫
Ω
|f − wg|pdµ ≤ 2p/2−1

∫
Ω
(w2 + 1)p/2(|f |p + |g|p)dµ.

Finally, applying the Hölder’s inequality with exponents {2, 2} to each term, we obtain∫
Ω
(w2 + 1)p/2|f |pdµ ≤

(∫
Ω
(w2 + 1)pdµ

)1/2(∫
Ω
|f |2pdµ

)1/2

,∫
Ω
(w2 + 1)p/2|g|pdµ ≤

(∫
Ω
(w2 + 1)pdµ

)1/2(∫
Ω
|g|2pdµ

)1/2

.

Combining all these developments, we obtain the desired result.

Let us see an example.

Example 31. Let Ω = [0, 1] and µ the Lebesgue measure. Take p = 2. Fix parameters α, β, γ ≥ 0 and
set f(x) = xα(1−x)β , g(x) = (1−x)β , w(x) = xγ for x ∈ [0, 1]. Then f, g ∈ L4([0, 1]) for all α, β > −1/4.
Put m := γ + α. For p = 2, the left-hand side of Theorem 30 becomes

∥wf + g∥22 + ∥f − wg∥22 =
∫ 1

0
(1− x)2β(1 + xm)2dx+

∫ 1

0
(1− x)2β(xα − xγ)2dx

=

∫ 1

0
(1− x)2β(1 + 2xm + x2m + x2α − 2xα+γ + x2γ)dx

= B(1, 2β + 1) + 2B(m+ 1, 2β + 1) +B(2m+ 1, 2β + 1)

+B(2α+ 1, 2β + 1)− 2B(α+ γ + 1, 2β + 1) +B(2γ + 1, 2β + 1).

(18)

The right-hand side in Theorem 30 for p = 2 equals

∥w2 + 1∥2(∥f∥24 + ∥g∥24)

=

(∫ 1

0
(x2γ + 1)2

)1/2(∫ 1

0
x4α(1− x)4βdx+

∫ 1

0
(1− x)4βdx

)1/2

=

√(
1

4γ + 1
+

2

2γ + 1
+ 1

)(√
B(4α+ 1, 4β + 1) +

√
B(1, 4β + 1)

)
.

(19)

Hence Equation (18) is bounded above by Equation (19). As a numerical demonstration, take α = β =

γ = 1/2. Then the left-hand side is roughly 0.9167 while the right-hand side is 1.160 up to 4 significant
digits.

6 Weighted Generalised Schweitzer’s Inequality

Our final result extends Schweitzer’s classical inequality to a weighted setting in Lp spaces. The original
version, proven by P. Schweitzer in 1914, is stated below [23].
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Let a, b ∈ R with b > a, and let m,M ∈ (0,∞). Suppose f : [a, b] → (0,∞) satisfies m ≤ f(x) ≤ M

for all x ∈ [a, b]. Then, we have(∫ b

a
f(x)dx

)(∫ b

a

1

f(x)
dx

)
≤ (b− a)2(m+M)2

4mM
.

Here is the result.

Theorem 32. Let (Ω,A, µ) be a measure space. Let m,M ∈ (0,∞). Suppose f, g : Ω → R are
µ-measurable functions such that |f | ≥ m and |g| ≤ M for µ-a.e. Let w : Ω → (0,∞) be a µ-measurable
function. Then, we have(∫

Ω
w
√

|fg|dµ
)(∫

Ω

w√
|fg|

dµ

)
≤ 1

4mM

(
M

∫
Ω
w

√∣∣∣∣fg
∣∣∣∣dµ+m

∫
Ω
w

√∣∣∣∣ gf
∣∣∣∣dµ
)2

,

provided that the four integrals involved converge.

Proof. First, because |f | ≥ m > 0 and |g| ≤ M , µ-a.e., (|f | − m)(M − |g|) ≥ 0 µ-a.e. Expanding this
inequality gives

|fg|+mM ≤ M |f |+m|g| µ-a.e.

Multiplying both sides by the positive factor w/
√

|fg| (note that w ≥ 0 and |f |, |g| > 0 µ-a.e.) gives

w
√
|fg|+ mMw√

|fg|
≤ Mw

√∣∣∣∣fg
∣∣∣∣+mw

√∣∣∣∣ gf
∣∣∣∣.

Next, we integrate this over Ω with respect to µ, which yields∫
Ω
w
√
|fg|dµ+mM

∫
Ω

w√
|fg|

dµ ≤ M

∫
Ω
w

√∣∣∣∣fg
∣∣∣∣dµ+m

∫
Ω
w

√∣∣∣∣ gf
∣∣∣∣dµ. (20)

Applying the classical AM-GM inequality to the left-hand side, we see that

2

√∫
Ω
w
√
|fg|dµ

√
mM

∫
Ω

w√
|fg|

dµ ≤
∫
Ω
w
√
|fg|dµ+mM

∫
Ω

w√
|fg|

dµ. (21)

Finally, combining Equations (20) and (21) together with some further simplification, we obtain the desired
result.

Remark 33. When |f | ≡ |g| and w ≡ 1, Theorem 32 reduces to the classical Schweitzer inequality.

Example 34. Consider Ω = [0, 1] and µ the Lebesgue measure. Choose m = 1/2 and M = 2. Define
functions (all positive µ-a.e.): f(x) = 1 + x, g(x) = 2 − x, and w(x) = 1 + sin(2πx). We note that the
assumptions in Theorem 32 are met. Thus we have

1

4

(
2

∫ 1

0
(1 + sin(2πx))

√
1 + x

2− x
dx+

1

2

∫ 1

0
(1 + sin(2πx))

√
2− x

1 + x
dx

)2

≥
(∫ 1

0
(1 + sin(2πx))

√
2 + x− x2dx

)(∫ 1

0

1 + sin(2πx)√
2 + x− x2

)
.

Numerically, we know that the left-hand side equals 1.291, while the right-hand side equals 0.9997, up to
4 significant digits.
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