

(α, β)-Reich Contraction Mapping Theorem in Multiplicative Metric Space

Clement Boateng Ampadu

31 Carrollton Road, Boston, MA 02132-6303, USA

e-mail: profampadu@gmail.com

Abstract

In this paper, we introduce the notion of (α, β) -Reich contraction, and obtain a fixed point theorem for such mappings in the setting of multiplicative metric space. Moreover, we give a Corollary as a consequence of the main result.

1 Introduction and Preliminaries

Theorem 1.1. [1] Let (X, d) be a complete metric space and $T : X \mapsto X$ be a Banach contraction mapping, that is,

$$d(Tx, Ty) \leq kd(x, y)$$

for all $x, y \in X$, where $k \in [0, 1)$. Then T has a unique fixed point.

Theorem 1.2. [2, 3] Let (X, d) be a complete metric space and $T : X \mapsto X$ be a Kannan contraction mapping, that is,

$$d(Tx, Ty) \leq k[d(x, Tx) + d(y, Ty)]$$

for all $x, y \in X$, where $k \in [0, \frac{1}{2})$. Then T has a unique fixed point.

Theorem 1.3. [4] Let (X, d) be a complete metric space and $T : X \mapsto X$ be a Chatterjea contraction mapping, that is,

$$d(Tx, Ty) \leq k[d(x, Ty) + d(y, Tx)]$$

for all $x, y \in X$, where $k \in [0, \frac{1}{2})$. Then T has a unique fixed point.

Definition 1.4. [5] Let X be a nonempty set. A mapping $d : X \times X \mapsto \mathbb{R}$ is said to be a multiplicative metric if it satisfies the following conditions

(a) $d(x, y) \geq 1$ for all $x, y \in X$ and $d(x, y) = 1$ if and only if $x = y$;

Received: October 15, 2025; Accepted: December 1, 2025; Published: December 8, 2025

2020 Mathematics Subject Classification: 47H09, 47H10.

Keywords and phrases: (α, β) Reich contraction mapping, Reich, multiplicative metric space.

Copyright 2026 the Author

- (b) $d(x, y) = d(y, x)$ for all $x, y \in X$;
- (c) $d(x, z) \leq d(x, y) \cdot d(y, z)$ for all $x, y, z \in X$.

The pair (X, d) is called a multiplicative metric space.

Definition 1.5. [6] Let (X, d) be a multiplicative metric space, $x \in X$ and $\epsilon > 1$. Then:

- (a) The multiplicative open ball of radius ϵ with center x is defined by the set

$$B_\epsilon(x) := \{y \in X \mid d(x, y) < \epsilon\}.$$

- (b) The multiplicative closed ball of radius ϵ with center x is defined by the set

$$\overline{B}_\epsilon(x) := \{y \in X \mid d(x, y) \leq \epsilon\}.$$

Definition 1.6. [6] Let (X, d) be a multiplicative metric space, $\{x_n\}$ be a sequence in X and $x \in X$. If for every multiplicative open ball $B_\epsilon(x)$, there exists a natural number N such that $n \geq N \implies x_n \in B_\epsilon(x)$, then the sequence $\{x_n\}$ is said to be multiplicative convergent to x , denoted by $x_n \rightarrow_* x$ as $n \rightarrow \infty$.

Lemma 1.7. [6] Let (X, d) be a multiplicative metric space, $\{x_n\}$ be a sequence in X and $x \in X$. Then

$$x_n \rightarrow_* x \text{ as } n \rightarrow \infty \text{ if and only if } d(x_n, x) \rightarrow_* 1 \text{ as } n \rightarrow \infty.$$

Lemma 1.8. [6] Let (X, d) be a multiplicative metric space and $\{x_n\}$ be a sequence in X . If the sequence $\{x_n\}$ is multiplicative convergent, then the multiplicative limit point is unique.

Definition 1.9. [6] Let (X, d) be a multiplicative metric space and $\{x_n\}$ be a sequence in X . The sequence $\{x_n\}$ is called multiplicative Cauchy, if for all $\epsilon > 1$, there exists $N \in \mathbb{N}$ such that $d(x_n, x_m) < \epsilon$ for $m, n \geq N$.

Lemma 1.10. [6] Let (X, d) be a multiplicative metric space and $\{x_n\}$ be a sequence in X . Then $\{x_n\}$ is a multiplicative Cauchy sequence if and only if $d(x_n, x_m) \rightarrow_* 1$ as $n, m \rightarrow \infty$.

Definition 1.11. [6] Let (X, d) be a multiplicative metric space. The multiplicative metric space X is said to be complete if and only if every Cauchy sequence $\{x_n\}$ in X for all $n \in \mathbb{N}$ converges in X .

Definition 1.12. [6] Let (X, d) be a multiplicative metric space. A point $x \in X$ is said to a multiplicative limit point of $S \subseteq X$ if and only if $(B_\epsilon(x) - \{x\}) \cap S \neq \emptyset$ for every $\epsilon > 1$.

Definition 1.13. [6] Let (X, d) be a multiplicative metric space. We call a set $S \subseteq X$ multiplicative closed in (X, d) , if S contains all of its multiplicative limit points.

Definition 1.14. [6] Let (X, d) be a multiplicative metric space. A self-mapping f is said to be a multiplicative Banach contraction if

$$d(fx, fy) \leq d(x, y)^\lambda$$

for all $x, y \in X$ where $\lambda \in [0, 1)$.

Definition 1.15. [6] Let (X, d) be a multiplicative metric space. A self-mapping f is said to be a multiplicative Kannan contraction if

$$d(fx, fy) \leq (d(fx, x) \cdot d(fy, y))^\lambda$$

for all $x, y \in X$ where $\lambda \in [0, \frac{1}{2})$.

Definition 1.16. [6] Let (X, d) be a multiplicative metric space. A self-mapping f is said to be a multiplicative Chatterjea contraction if

$$d(fx, fy) \leq (d(fx, y) \cdot d(fy, x))^\lambda$$

for all $x, y \in X$ where $\lambda \in [0, \frac{1}{2})$.

Definition 1.17. [7] Let X be a nonempty set, f be a self-mapping on X , and $\alpha, \beta : X \mapsto [0, \infty)$ be two mappings. We say that f is a cyclic (α, β) -admissible mapping if

$$x \in X, \alpha(x) \geq 1 \implies \beta(fx) \geq 1$$

and

$$x \in X, \beta(x) \geq 1 \implies \alpha(fx) \geq 1.$$

Definition 1.18. [8] Let (X, d) be a multiplicative metric space, and let $\alpha, \beta : X \mapsto [0, \infty)$ be two mappings. The mapping $f : X \mapsto X$ is said to be a multiplicative (α, β) -Banach contraction if

$$\alpha(x)\beta(y) \cdot d(fx, fy) \leq d(x, y)^\lambda$$

for all $x, y \in X$, where $\lambda \in [0, 1)$.

Theorem 1.19. [8] Let (X, d) be a complete multiplicative metric space and $f : X \mapsto X$ be a multiplicative (α, β) -Banach contraction mapping. Suppose that the following conditions hold:

(a) there exists $x_0 \in X$ such that $\alpha(x_0) \geq 1$ and $\beta(x_0) \geq 1$;

(b) f is cyclic (α, β) -admissible mapping;

(c) one of the following conditions holds:

[(i)] f is continuous;

[(ii)] if $\{x_n\}$ is a sequence in X such that $x_n \rightarrow_* x \in X$ as $n \rightarrow \infty$ and $\beta(x_n) \geq 1$ for all $n \in \mathbb{N}$, then, $\beta(x) \geq 1$.

Then f has a fixed point. Furthermore, if $\alpha(x) \geq 1$ and $\beta(x) \geq 1$ for all fixed point $x \in X$, then f has a unique fixed point.

Definition 1.20. [8] Let (X, d) be a multiplicative metric space, and let $\alpha, \beta : X \mapsto [0, \infty)$ be two mappings. The mapping $f : X \mapsto X$ is said to be a multiplicative (α, β) -Kannan contraction if

$$\alpha(x)\beta(y) \cdot d(fx, fy) \leq (d(fx, x) \cdot d(fy, y))^\lambda$$

for all $x, y \in X$, where $\lambda \in [0, \frac{1}{2})$.

Definition 1.21. [8] Let (X, d) be a multiplicative metric space, and let $\alpha, \beta : X \mapsto [0, \infty)$ be two mappings. The mapping $f : X \mapsto X$ is said to be a multiplicative (α, β) -Chatterjea contraction if

$$\alpha(x)\beta(y) \cdot d(fx, fy) \leq (d(fx, y) \cdot d(fy, x))^\lambda$$

for all $x, y \in X$, where $\lambda \in [0, \frac{1}{2})$.

Theorem 1.22. [8] Let (X, d) be a complete multiplicative metric space and $f : X \mapsto X$ be a multiplicative (α, β) -Kannan contraction mapping. Suppose that the following conditions hold:

(a) there exists $x_0 \in X$ such that $\alpha(x_0) \geq 1$ and $\beta(x_0) \geq 1$;

(b) f is cyclic (α, β) -admissible mapping;

(c) one of the following conditions holds:

[(i)] f is continuous;

[(ii)] if $\{x_n\}$ is a sequence in X such that $x_n \rightarrow_* x \in X$ as $n \rightarrow \infty$ and $\beta(x_n) \geq 1$ for all $n \in \mathbb{N}$, then, $\beta(x) \geq 1$.

Then f has a fixed point. Furthermore, if $\alpha(x) \geq 1$ and $\beta(x) \geq 1$ for all fixed point $x \in X$, then f has a unique fixed point.

Theorem 1.23. [8] Let (X, d) be a complete multiplicative metric space and $f : X \mapsto X$ be a multiplicative (α, β) -Chatterjea contraction mapping. Suppose that the following conditions hold:

(a) there exists $x_0 \in X$ such that $\alpha(x_0) \geq 1$ and $\beta(x_0) \geq 1$;

(b) f is cyclic (α, β) -admissible mapping;

(c) one of the following conditions holds:

[(i)] f is continuous;

[(ii)] if $\{x_n\}$ is a sequence in X such that $x_n \rightarrow_* x \in X$ as $n \rightarrow \infty$ and $\beta(x_n) \geq 1$ for all $n \in \mathbb{N}$, then, $\beta(x) \geq 1$.

Then f has a fixed point. Furthermore, if $\alpha(x) \geq 1$ and $\beta(x) \geq 1$ for all fixed point $x \in X$, then f has a unique fixed point.

Theorem 1.24. [9] Let (X, d) be a complete metric space and let $f : X \mapsto X$ be a Reich type single-valued (a, b, c) -contraction, that is, there exists nonnegative numbers a, b, c with $a + b + c < 1$ such that

$$d(f(x), f(y)) \leq ad(x, y) + bd(x, f(x)) + cd(y, f(y))$$

for each $x, y \in X$. Then T has a unique fixed point.

2 Main Result

Definition 2.1. Let (X, d) be a multiplicative metric space, and let $\alpha, \beta : X \mapsto [0, \infty)$ be two mappings. The mapping $f : X \mapsto X$ will be called a multiplicative (α, β) -Reich contraction if

$$\alpha(x)\beta(y) \cdot d(fx, fy) \leq (d(fx, x) \cdot d(fy, y) \cdot d(x, y))^\lambda$$

for all $x, y \in X$, where $\lambda \in [0, \frac{1}{3})$.

Theorem 2.2. Let (X, d) be a complete multiplicative metric space and $f : X \mapsto X$ be a multiplicative (α, β) -Reich contraction mapping. Suppose that the following conditions hold:

(a) there exists $x_0 \in X$ such that $\alpha(x_0) \geq 1$ and $\beta(x_0) \geq 1$;

(b) f is cyclic (α, β) -admissible mapping;

(c) one of the following conditions holds:

[(i)] f is continuous;

[(ii)] if $\{x_n\}$ is a sequence in X such that $x_n \rightarrow_* x \in X$ as $n \rightarrow \infty$ and $\beta(x_n) \geq 1$ for all $n \in \mathbb{N}$, then, $\beta(x) \geq 1$.

Then f has a fixed point. Furthermore, if $\alpha(x) \geq 1$ and $\beta(x) \geq 1$ for all fixed point $x \in X$, then f has a unique fixed point.

Proof. Starting from a point $x_0 \in X$ in condition (a), we get $\alpha(x_0) \geq 1$ and $\beta(x_0) \geq 1$. We will construct the iterative sequence $\{x_n\}$, where $x_n = fx_{n-1}$ for all $n \in \mathbb{N}$. Since f is cyclic (α, β) -admissible mapping, we have

$$\alpha(x_0) \geq 1 \implies \beta(x_1) = \beta(fx_0) \geq 1$$

and

$$\beta(x_0) \geq 1 \implies \alpha(x_1) = \alpha(fx_0) \geq 1.$$

By a similar method, we get

$$\alpha(x_n) \geq 1 \text{ and } \beta(x_n) \geq 1$$

for all $n \in \mathbb{N}$. This implies that

$$\alpha(x_{n-1})\beta(x_n) \geq 1$$

for all $n \in \mathbb{N}$. From the (α, β) Reich multiplicative contractive condition of f , we have

$$\begin{aligned} d(x_n, x_{n+1}) &= d(fx_{n-1}, fx_n) \\ &\leq \alpha(x_{n-1})\beta(x_n) \cdot d(fx_{n-1}, fx_n) \\ &\leq (d(fx_{n-1}, x_{n-1}) \cdot d(fx_n, x_n) \cdot d(x_{n-1}, x_n))^\lambda \end{aligned}$$

for all $n \in \mathbb{N}$. Thus we have

$$d(x_n, x_{n+1}) \leq d(x_{n-1}, x_n)^h$$

for all $n \in \mathbb{N}$, where $h = \frac{2\lambda}{1-\lambda}$. Let $m, n \in \mathbb{N}$ such that $m < n$, then we get

$$\begin{aligned} d(x_m, x_n) &\leq d(x_m, x_{m+1}) \cdot d(x_{m+1}, x_{m+2}) \cdots d(x_{n-1}, x_n) \\ &\leq d(x_0, x_1)^{h^m + h^{m+1} + \cdots + h^{n-1}} \\ &\leq d(x_0, x_1)^{\frac{h^m}{1-h}}. \end{aligned}$$

Letting $m, n \rightarrow \infty$ we get $d(x_m, x_n) \rightarrow_* 1$, and so the sequence $\{x_n\}$ is multiplicative Cauchy. From the completeness of X , there exists $z \in X$ such that $x_n \rightarrow_* z$ as $n \rightarrow \infty$. Now we assume that f is continuous. Hence we obtain

$$z = \lim_{n \rightarrow \infty} x_{n+1} = \lim_{n \rightarrow \infty} fx_n = f\left(\lim_{n \rightarrow \infty} x_n\right) = fz.$$

Next, we will assume that condition $[(ii)]$ holds. Hence, $\beta(z) \geq 1$. Then we have

$$\begin{aligned} d(fz, z) &\leq d(fz, fx_n) \cdot d(fx_n, z) \\ &\leq \alpha(z)\beta(x_n) \cdot d(fz, fx_n) \cdot d(fx_n, z) \\ &\leq (d(fz, z) \cdot d(fx_n, x_n) \cdot d(z, x_n))^\lambda \cdot d(fx_n, z) \\ &= (d(fz, z) \cdot d(x_{n+1}, x_n) \cdot d(z, x_n))^\lambda \cdot d(x_{n+1}, z). \end{aligned}$$

Letting $n \rightarrow \infty$ in the above inequality we get $d(fz, z) \leq d(fz, z)^\lambda$, which implies that $d(fz, z) = 1$, that is $fz = z$. This shows that z is a fixed point of f . Now we show that z is the unique fixed point of f . Assume that y is another fixed point of f . From the hypothesis, we find that $\alpha(z) \geq 1$ and $\beta(y) \geq 1$, and hence we have

$$\begin{aligned} d(z, y) &= d(fz, fy) \\ &\leq \alpha(z)\beta(y) \cdot d(fz, fy) \\ &\leq (d(fz, z) \cdot d(fy, y) \cdot d(z, y))^\lambda \\ &= (d(z, z) \cdot d(y, y) \cdot d(z, y))^\lambda \\ &= d(z, y)^\lambda. \end{aligned}$$

This shows that $d(z, y) = 1$, and so $z = y$. Therefore z is the unique fixed point of f . This completes the proof. \square

Corollary 2.3. *Let (X, d) be a complete multiplicative metric space, and $f : X \mapsto X$ be a multiplicative Reich contraction mapping. Then f has a unique fixed point. Moreover, for any $x \in X$, the iterative sequence $\{f^n x\}$ converges to the fixed point.*

Proof. Setting $\alpha(x) = 1$ and $\beta(x) = 1$ for all $x \in X$ in the above theorem, we get the result. \square

References

- [1] Banach, S. (1922). Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales. *Fundamenta Mathematicae*, 3, 133–181. <https://doi.org/10.4064/fm-3-1-133-181>
- [2] Kannan, R. (1968). Some results on fixed points. *Bulletin of the Calcutta Mathematical Society*, 60, 71–76. <https://doi.org/10.2307/2316437>
- [3] Kannan, R. (1969). Some results on fixed points. II. *The American Mathematical Monthly*, 76, 405–408. <https://doi.org/10.1080/00029890.1969.12000228>
- [4] Chatterjea, S. K. (1972). Fixed point theorems. *Comptes Rendus de l'Académie Bulgare des Sciences*, 25, 727–730.
- [5] Bashirov, A. E., Kurpinar, E. M., & Özyapıcı, A. (2008). Multiplicative calculus and its applications. *Journal of Mathematical Analysis and Applications*, 337, 36–48. <https://doi.org/10.1016/j.jmaa.2007.03.081>
- [6] Özavsar, M., & Çevikel, A. C. (2012). Fixed points of multiplicative contraction mappings on multiplicative metric spaces. *arXiv:1205.5131v1* [math.GM].
- [7] Alizadeh, S., Moradlou, F., & Salimi, P. (2014). Some fixed point results for (α, β) -(ψ, ϕ) contractive mappings. *Filomat*, 28(3), 635–647. <https://doi.org/10.2298/FIL1403635A>
- [8] Yamaod, O., & Sintunavarat, W. (2014). Some fixed point results for generalized contraction mappings with cyclic (α, β) -admissible mapping in multiplicative metric spaces. *Journal of Inequalities and Applications*, 2014, 488.
- [9] Reich, S. (1972). Fixed points of contractive functions. *Bollettino della Unione Matematica Italiana*, 5, 26–42.

This is an open access article distributed under the terms of the Creative Commons Attribution License (<http://creativecommons.org/licenses/by/4.0/>), which permits unrestricted, use, distribution and reproduction in any medium, or format for any purpose, even commercially provided the work is properly cited.
