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Abstract

This article explores the connection between Fourier series and various zeta functions, including the
Riemann zeta function and its generalizations. Specifically, we derive recurrence formulas for even
and odd values of zeta functions using Fourier expansions, extending these results to the Hurwitz zeta
function.

1 Introduction

The treatment of Fourier series is a fundamental tool for analyzing certain fixed values of functions.
Formally, for a function f of period T , we have a description in the basis {sin(2πnT ), cos(2πnT )} with n ∈ N
and in the basis {ei

2πn
T } where n ∈ Z. These expansions turn out to be [1]

f(x) ∼ a0
2

+
∞∑
n=1

an cos

(
2πn

T
x

)
+ bn sin

(
2πn

T
x

)
,

where

an =
2

T

∫ T

−T
f(x) cos

(
2πn

T
x

)
dx

and

bn =
2

T

∫ T

−T
f(x) sin

(
2πn

T
x

)
dx.

For the case of the complex expansion, it holds that

f(x) ∼
∑
n∈Z

cne
i 2πn

T
x,

where

cn =
1

T

∫ T

−T
f(x)e−i 2πn

T
xdx.
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In this article, we first employ the classical approach to establish new and existing connections with certain
values of the Riemann zeta function, which is defined as follows:

ζ(s) =
∞∑
n=1

1

ns
.

Section 2 is devoted to an analysis of this function. Section 3 then proposes an extension using the Hurwitz
zeta function. The article concludes in Section 4.

2 Riemann Zeta Analysis

2.1 First approach

In the article [2], an initial recurrence formula is presented for the even values of the zeta function. A
formal statement of this result is given below, along with a detailed proof.

Proposition 2.1 (Recurrence for Even Zeta Values). By considering the Fourier series of the function
f(x) = x2n for x ∈ (−π, π), a recurrence formula for the even values of the Riemann zeta function can be
obtained as follows:

ζ(2n) = n
π2n(−1)n+1

(2n+ 1)!
+

n−1∑
k=1

(−1)k+n+1π2(n−k)

(2n− 2k + 1)!
ζ(2k), ζ(2) =

π2

6
.

Proof. To carry out this deduction, note that when performing the expansion in the Fourier basis
{sin(nx), cos(nx)}, the odd terms will vanish. On the other hand, we have

a0 =
2

π

∫ π

0
x2ndx = 2

π2n

2n+ 1
.

For the am coefficients, we use the parity of the function f and obtain

am =
2

π

∫ π

0
x2n cos(mx)dx.

Performing 2n times integrations by parts and taking into account that cos(πm) = (−1)m and sin(πm) = 0,
we get

am = 2

n∑
k=1

(−1)m+k+1π
2n−2k

m2k

(2n)!

(2n− 2k + 1)!
.

Thus, by evaluating the function at x = π and using the definition of the zeta function, we obtain

π2n =
π2n

2n+ 1
+ 2

n∑
k=1

(−1)k+1π2n−2k (2n)!

(2n− 2k + 1)!
ζ(2k).

Rearranging the equality and extracting the value of ζ(2n), we obtain the first expression, where the initial
value refers to the Basel problem. ■

http://www.earthlinepublishers.com



Fourier Series and Recurrence Relations for Zeta Functions 127

With this result, it is possible to generate all even values of ζ(x) analytically. This obtained form has a
certain relationship with the known form for even values of the zeta function, given by Bernoulli numbers,
as follows [4]:

ζ(2n) = |B2n|
(2π)2n

2(2n)!
.

2.2 Second approach

It is possible to generate small variations around the definition of the zeta function for arguments greater
than 1, in the following ways [7, 9]:

ζ(x) =
∞∑
n=1

1

nx
,

∞∑
n=1

1

(2n)x
=

ζ(x)

2x
,

∞∑
n=1

1

(2n− 1)x
=

(
2x − 1

2x

)
ζ(x),

∞∑
n=1

(−1)n+1

nx
=

(
2x−1 − 1

2x−1

)
ζ(x)

and
∞∑
n=1

(−1)n+1

(2n)x
=

(
2x−1 − 1

22x−1

)
ζ(x).

However, for the form
∞∑
n=1

(−1)n+1

(2n− 1)x
,

there is no direct relationship with the zeta function. Therefore, we can proceed to use the Hurwitz zeta
function, or define a new function, as follows:

ζ̂(x) =
∞∑
n=1

(−1)n+1

(2n− 1)x
.

The next proposition follows Proposition 1 of [3]. The objective is to make a generalization of these results
in the next section.

Proposition 2.2 (Recurrence for Alternating Odd Zeta Values). A recurrence formula can be derived for
the alternating odd zeta function involving odd numbers. If we consider the function f(x) = x2n−1 over
the interval (−π, π), we derive the following recurrence formula:

ζ̂(2n− 1) =
π2n−1(−1)n+1

22n(2n− 1)!
+

n−1∑
k=1

(−1)k+n+1π2(n−k)

(2n− 2k + 1)!
ζ̂(2k − 1), ζ̂(1) =

π

4
.

To the best of our knowledge, this is a new addition to the existing literature on this topic.
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Proof. For the deduction of this formula, the idea is analogous to the first formulation. Initially, we observe
that the function to be treated is odd, so an = 0. Then we get

bm =
2

π

∫ π

0
x2n−1 sin(mx)dx.

Integrating by parts, we obtain

bm = 2

n∑
k=1

(−1)m+k+1π
2n−2k

m2k−1

(2n− 1)!

(2n− 2k + 1)!
.

Thus, evaluating at the point x = π/2, we have

π2n−1

22n−1
= 2

n∑
k=1

(−1)k+1π2n−2k (2n− 1)!

(2n− 2k + 1)!
ζ̂(2k − 1).

Finally, we only need to rearrange the expression, extracting the term ζ̂(2n− 1), to obtain the recurrence
formula mentioned at the beginning. ■

Again, due to the form given by the recurrence formula, there is an association with Euler numbers,
as follows [5]:

ζ̂(2n+ 1) = (−1)n
E2n

2(2n)!

(π
2

)2n+1
.

3 Extension using Hurwitz Zeta Function

Looking at the different formulas obtained, it is possible to make a generalization using the Hurwitz zeta
function, which is defined as [6]

ζ(s, a) =
∞∑
n=0

1

(n+ a)s
.

In this case, we should consider the even and odd parts of the previously defined function, as follows:

G(s, a) = ζ(s, a) + ζ(s,−a)

and

G(s, a) = ζ(s, a)− ζ(s,−a).

It should be noted that these functions must converge for s > 1. Furthermore, there is a special case for
G(1, a), which converges considering the series of the sum.

Proposition 3.1 (Recurrence Relations for Hurwitz Zeta Extensions). For the Hurwitz zeta function
extensions, the following recurrence relations hold:
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Part 1: For f(x) = x2neiax with |x| ≤ π, evaluating at x = π and taking the average yields

sin(πa)

π
(−1)nG(2n+ 1, a) +

n−1∑
k=0

(
(−1)kπ2(n−k)

(2n− 2k − 1)!

(
sin(πa)G(2k + 1, a)

(2n− 2k)π
+

cos(πa)G(2k + 2, a)

π2

))

=
π2n

(2n)!
cos(πa) +

sin(πa)

πa

(−1)n+1

a2n

+
n−1∑
k=0

(
(−1)k+1π2(n−k)

(2n− 2k − 1)!a2k

(
sin(πa)

(2n− 2k)πa
+

cos(πa)

(πa)2

))
.

Part 2: For f(x) = x2n+1eiax in the same domain, evaluating at x = π yields

n∑
k=0

(
(−1)kπ2(n−k)

(2n− 2k)!

(
sin(πa)G(2k + 2, a)

π
− cos(πa)G(2k + 1, a)

2n− 2k + 1

))

=
π2n+1

(2n+ 1)!
sin(πa)

n∑
k=0

(
(−1)kπ2(n−k)

(2n− 2k)!a2k+1

(
cos(πa)

(2n− 2k + 1)
− sin(πa)

πa

))
.

Proof. Part 1: Initially, it is possible to find a Fourier series expansion for the function f(x) = x2neiax

with |x| ≤ π. In this case, we proceed analogously to the real cases and obtain, for the complex series,

cm = (−1)m+n π2(n−m)

(a−m)2n−1

sin(πa)

π
(2n)!

+

n−1∑
k=0

(
(−1)k+m π2(n−k)

(a−m)2k+1

(2n)!

(2n− 2k − 1)!

(
sin(πa)

(2n− 2k)π
+

cos(πa)

(a− n)π2

))
.

Evaluating again at the endpoint x = π and taking the average yields the recurrence form.

Note that, in the case n = 0, we obtain the first initial condition

G(1, a) =
π

tan(πa)
− 1

a
.

Part 2: Performing the same process for the function f(x) = x2n+1eiax in the same domain, we get

cm = i
n∑

k=0

(
(−1)k+m+1 π2(n−k)

(a−m)2k+1

(2n+ 1)!

(2n− 2k)!

(
cos(πa)

(2n− 2k + 1)
− sin(πa)

(a− n)π

))
.

Again, evaluating at x = π, we obtain the second necessary recurrence formula.

Taking n = 0 and using the previous result for G(1, a), we obtain the second initial term

G(2, a) = π2 +

(
π

tan(πa)

)2

− 1

a2
.

■
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In this way, all values for G(2k, a) and G(2k − 1, a) for k = 1, 2, . . . can be generated.

Note that these results provide a generalization of the values obtained in the first approach of [2].
The drawback is the emergence of a ’conjugate’ function, which requires a system of equations to solve for
the even values of the desired function. It is worth noting that, for the second approach, it would remain
to use our Fourier series and perform the approximation for x = π/2, which could be an interesting result
for future work.

4 Conclusions

In this article, we gave recursive formulas that allow reducing problems of numerical bounding of the given
series to solving linear systems. The result can be obtained analytically, through symbolic programming,
which allows obtaining functions G(2k + 2, a) and G(2k + 1, a), with k ∈ N and a ∈ C. The remaining
question is whether there exists a closed formula for G(2k + 2, s) and G(2k + 1, a) that involves special
numbers, such as Euler numbers or Bernoulli numbers. A good generalization in an associated way is the
result obtained at [8].
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