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Abstract

This study introduces a new class of probability distributions within the transformed-transformer
(T-X) family framework, using the paralogistic distribution as the baseline generator. The proposed
Paralogistic-X family provides a flexible model capable of capturing various distributional shapes
such as skewness and heavy tails. General expressions for its structural properties including the
density, distribution, quantile function, moments, and entropy measures are developed in terms of the
baseline distribution. A special submodel, the Paralogistic-Burr IIT (PBIII) distribution, is examined
in detail. Maximum likelihood estimation is used for parameter inference, and a simulation study is
conducted to evaluate the estimators’ performance under varying sample sizes. The results confirm
the consistency and efficiency of the estimators across different settings. To assess its practical utility,
the PBIII distribution is applied to real-world datasets and compared with four established competing
distributions. The comparison, based on both graphical tools and model selection criteria such as AIC,
BIC, and log-likelihood, shows that the proposed model offers superior fitting capabilities in the two
cases. The findings highlight the versatility and robustness of the Paralogistic-X family for statistical

modeling.

1 Introduction

In the last decade, generalized T' — X families of distributions have been developed after the work of [5]
using several upper bounds (the transformers) of the probability integrals to produce different flexible
distributions and families of distributions to fit complex lifetime datasets. [5] expressed the cumulative

distribution function (cdf) and probability density function (pdf) of any 7' — X family as

WIF (y;n)]
Gr_x(y; B,m) = / r(t; B)dt = R(W[F(y;n)l; B) (1)
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and

gr-x(y; B,m) = [;;W[F(y;n)]] r(WI[F(y;n)l; 8), (2)

where § > 0 and n > 0 is the parameter vector of the baseline distribution defined by n = i, k = 1,2, ..., m.
W F(y;n)] is the upper bound of (1).

Let r(t) and R(t) define the pdf and cdf of a random variable T' € (¢, d) for —oco < ¢ < d < oo and let
W[F(y;n)] be a function of F(y;n) of random variable X satisfying the conditions:

L. W[F(y;n)] € [e,d],
2. WI[F(y;n)] is differentiable and monotonically increasing, and

3. W[F(y;n)]— cas y — —oo and W[F (y;n)]— d as y — oo.

The conditions for the supports for (¢, W[F(y)]) are presented in [5]. Probability density functions of
some well-known baseline distributions as r(¢; 3) have been transformed G(y; 3) in (1) to new families of

distributions.

Several T'— X families of distributions have been developed in recent years by employing (1). [1]
introduced the generalized Burr X-G family, [20] developed the new generalized Logarithmic-X family of
distributions, [10] proposed the continuous and discrete new T — X? families of distributions and [11]
developed a new five-parameter Weibull-Lomax distribution by extending the Weibull-Lomax distribution
[23] using the Weibull-G family.

This paper focuses on the derivation of the general structural properties of a new Paralogistic—X
family of distributions. The pdf of a less-studied baseline distribution, the paralogistic distribution, is
employed to construct a new T—X family of distributions with flexible submodels for modeling complex

datasets. The motivations for this study are as follows:

1. To give greater credibility to the paralogistic distribution as a viable baseline distribution;
2. To construct and explore a new T—X family of distributions based on the paralogistic baseline;

3. To develop the structural properties of a particular submodel, the Paralogistic-Burr III (PBIII)

distribution; and

4. To apply the PBIII distribution to real lifetime datasets and compare its performance with that of

existing distributions in the literature.

The structure of the paper is as follows. Section 2 introduces the construction of the Paralogistic—X

family as a new generalized class of distributions. Section 3 discusses the structural properties of the
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class. In Section 4, the Paralogistic-Burr III (PBIII) distribution is examined, and some of its statistical
properties are derived. Section 5 applies the PBIII distribution to two real lifetime datasets, comparing its
performance with that of several competing models to evaluate its flexibility. Finally, Section 6 concludes

the paper.

2 Construction of the Paralogistic-X Family and its Submodels

The paralogistic distribution is developed as a submodel of the modified generalized gamma distribution
(MGGD) [15]. The cdf of the MGGD is given as

R(y;¢7k7ﬁ7cag):My>07¢>07k>ovﬁ>07c>0- (3)

Le(ok,B)

where ¢ = (%)" and T¢(¢, k, 8) = [° w @D (w+k)~Ce Pdw is the modified generalized gamma function.
The function v¢(¢, k, 8, ¢) is defined as

ve(, K, B c) = /0 y @Dy + k) "Ce Py =Te(6,k, B) — Te(d, k, B, ), (4)

where I'¢(¢, k, 8, ¢) is the upper incomplete modified generalized gamma function.

f5=0,k=1,(=84+1,6 =1 and ¢ = 1, the cdf of the one-parameter paralogistic distribution is
defined as
R(y;8)=1—-(1+y°)P y>0,3>0. (5)

The MGGD is a generalization of the works of [22], [28], [12], [9], [3] and [2] for which well known
distributions such as Dagum, Singh Maddala, Weibull, exponential, Lomax, paralogistic, Burr III, inverse
Lomax, Burr XII, inverse paralogistic and Rayleigh distributions ( [17], [14], [24], [13], [7], [25] and

[18]) can be derived.

2.1 Paralogistic-X family

Let 7(t) = B2tP~1(1 4+ t#)7~! be the pdf of the one-parameter paralogistic distribution, W [F(y;n)] =

15}%;7)77) and ¢ = 0 in (1), the cdf of the new generalized T — X family is expressed as
B\ —B
F(y;n)
Gy;6,m)=1—|1+ | ——— ,y>0,8>0. 6
( ) 1—F(y;n) ©)
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where F(y;n) defines the cdf of any baseline distribution. The new generalized T'— X family in (6) will

be known as the Paralogistic-X family of distributions.

The corresponding pdf, survival, hazard and reversed hazard functions to (6) are expressed as

B B\ —p—1
F(y;
[+ |2#m]

B2 f (s [ (ysm)] llf}l’(%

9(y; B,m) = = Fln) 7 (7)
By B
Gly: B.1) = <1+ %] ) 0
and
5 By 1
BQf(y;n)[F(y;n)}1[1%@’(% (1+ f}%;ﬂn)] )
h(y; B,n) = .

(1= F(y;n)

2.2 Series expansion of the pdf of the Paralogistic-X family

The expansion of the pdf of the Paralogistic-X family plays an important role in the derivations of the

general forms of the properties of the family. The useful series expansions that will be useful for simplifying

-2 =3 (7) -y

1=0

ey =3 (” i 1) (—1)ia,

where |z| > 0 and n > 0 is a positive interger.

the pdf are given as

and

In (7), the pdf of the Paralogistic-X family is defined as

8
B2 f(y; m)[F (y;m)] llFéﬂy(;%) (1 +

1—F(y;n)

g(y; Bin) =

(14

By series expansion,

F(y;n) v
1L=F(y;m) |

B\ —B-1 [e’e) .
F(y;n) _ B+i\, .
I—F(y;n)] ) _;< i )( )
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The pdf in (7) becomes

00 (i+1)
Bti | Flyin) -
(y; B,m) = B )’ ] Flysm)([F(ysm][L = Fy:m)]) ™
9(y; B,m) %( ) Ry v ([F (y;m yin o
WEZC“”) D@ O = Fym) O f (o).

=0
If F(y;n) = 1— F(y;n), then (9) becomes
9(y; B,n) = B <ﬁ :r Z) (=)7L — F(y; )P (y; )] =D £y p),
i=0

Substituting [1 — F(y; n)]P0+D-1 = PRy (B(Hjl)_l)(—l)j [F(y;n))? into the above expression, the pdf of

the Paralogistic-X family is expressed in series expansion as

gy B.n) =52 (5“) <”B(i+ b~ 1)( DFIF (y; )}~ CEDFY £y ). (10)

2

3 Structural Properties of the Paralogistic-X Family

This section considers the derivations of the general forms of the properties of the Paralogistic-X family in
terms of the pdf and cdf of any baseline distribution. The properties include quantile function, noncentral
(raw) moments, incomplete moments, moment generating function, probability weighted moments, order

statistic, entropies and mean deviations.

3.1 Quantile function
Quantile function is used to obtain random numbers which are used in simulation study. For 0 < g¢ < 1,

the quantile function for a random variable X following the Paralogistic-X family is obtained by inverting
(6) as

Hence,

ysz”( ST 6?”61>=F“%«u—qr%—1ré+1rﬁa 1
1+[1-q) 7 —1]

where F~1(q) defines the quantile function of the baseline distribution with cdf, F'(z).
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If g =0.51in (11), then the median of the Paralogistic-X family is defined as

yos = F! <(((05)_‘1’ ~1)7h 1)_1>- (12)

3.2 Noncentral (raw), incomplete and probability weighted moments
3.2.1 Noncentral (raw) moment

Let Y be a random variable following the pdf in (7), the r'* (r = 1(1)m, m is a positive integer) raw

moments of the Paralogistic-X family is obtained as
oo
pr = E(X7) =/ y"g(y; B,m)dz. (13)
0

Substituting the series expansion in (10) into (13), the 7** raw moments of the proposed family is expressed

as

0 N (O L i O R O T et}
2,7=0

3.2.2 Incomplete moment

The 7" incomplete moments for a random variable Y following the pdf in (7) is obtained as

t r _ 1 > r .
i=BOT/Y > 1) = o / ¥ g(y; B,m)dz. (15)

Substituting (10) into (15), the 7** incomplete moments for the Paralogistic-X family is given as

i S ) (D
R O i-j=0 J
+ 1-F(t;n) (16)

/ y"[F(y; )}~ COEDED £y da.
t

3.2.3 Probability weighted moments

The probability weighted moments, PW M,.; ,,, for a random variable Y following the pdf in (7) is obtained

as

http: //www. earthlinepublishers.com
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PW M,y m(Y) = E[Y"G(Y)G™(Y)] = /OOO Y G (y; B,m)G™ (y; B,m)g(y; B,m)d. (17)

Substituting (6), (7) and (8) into (17), the PW M,.; ,,, for the Paralogistic-X family is given as

o . ﬁ
PW M) = 5 [ o Flyn)l P (1~ Pz %]
ENGAE B\ —B(m+1)-1 (18)
- Fy;n) Fy;n) N
[1 <1+ 1—F(y;n)]> ] <1+ 1—F(y;n)]> o

After some algebraic evaluations, (18) becomes

PW M, (Y 52213 3 < >< m+ki+1)+i>(—1)"+j /Ooony(y;n)

k=0 i=0

F(y;n) .
1—F(y;n) -

B(i+1)
[F(y;n)(1 = F(y; )]~ ]

Further algebraic evaluations gives probability weighted moments, PW M,.; ,,,, of the Paralogistic-X family

as

PW M,y (YY) = 2 zl: f: (i) (B(m - k;r 1)+ z) (5@ +j1) - 1>

k=01,j=0 (19)

(1)t /0 s ) E (s )] Py,

If il =m =0, then

PW M, 00(Y) = Bzzz()( m+kj+1)+z’><5(i+.1)—l>

k=01,7=0 J

(—1)Ftits /OO y" (s m)[F (y; )] P dg
0

gives the 7" raw moments of the proposed family. If m = 0, then

PWM,,0(Y) = E[Y"'GY(Y)] = 5 Z Z ( > ( Bk + 1) ) <5(i + }) - 1)

k=01,7=0 J

(—1)rHath / P s ) [ s ) EEHD
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gives the 7" raw moments of the proposed family.

3.3 Moment generating function

The moment generating function (My (t)) for a random variable Y with pdf in (7) is obtained as

My (1) = B(e™) = /0 " g(y; Bom)da, t > 0. (20)

Inputting (10) in (20) gives
My(t)= 523 (5 +) (5“ oo 1)(—1)1*3‘ / B[RS fdr (21)
i,j=0

which defines the generalized moment generating function for a random variable Y.

3.4 Order statistic

Let Y,,,n = 1(1)m be the n'" order statistic where Y7, Y5, ..., Y;, define a random sample of m variables,

then pdf of n' order statistic for Paralogistic-X family can be obtained as

n!

(n—r)!(r—1)!

Replacing G(y; 8,7n) with 1 — G(y; 3,7) in (22) gives

Grn(y; B1) = Gy B L= Gly: B,m)]™ " g(y; Bom)- (22)

n!

Grn (Y3 B,m) = = 7,)!(7, i [1-G(y: B.0)]" " [Gy: B,m)]" gly; B.m)

- (n—r r—1) 'Z (r_ 1) ) (Gl B,m)] " (s Bom).

Substituting (8) and (10) into the above expression give

. "'/32 S (7Y Ly | Fm) ’
gr,n(y76777) - ( 7“ _ 1 ! < ) f(y’n) 1— F(y;n)]
F( ) 8 B(n+z+1 r)—1
yin . . -
<1+ 1—F(y717)] ) [F(y;n)(1 = F(yin))] L
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After some algebraic simplifications, the n'" order statistics of the Paralogistic-X family is given as

- n:ﬁi_1'§i<r—1>< n+i+j1—r)+j><ﬁ(j+k1)—1>

1=0 j,k=0

(23)
(=194 flysm) [F(yim)] 700

3.5 Rényi and Shannon entropies

The entropies have been used in lifetime modelling to obtain information about the variation of randomness
associated with random variables defining failure times of phenomena. These measures have made

important contributions in many scientific fields where lifetime modelling is significant.

The Rényi entropy [19] for a random variable Y following the pdf in (7) is obtained as

Ir(p) = f i p)ZOQ (/OOO g”(y;ﬁ,n)dy>,p >0,p# 1. (24)

Substituting (7) into (24) gives

Tap) = = log < s

By expansion of

(14

it is seen that

[621“(1/; mIF (y;n)] ™! llFl(vy(%

B\ ~(B+)p oo . Bi
F(y;n) _ B+Dp+i—=1\, i Flyn)
1—F(y;77)] ) _§< i >( ) (1—F(y;n)> ’

Tnlp) = = lox (ﬂ; (Ve e [ e
B(p+i)
F(y;n) -
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Letting F(y;n) = 1 — F(y;n),

Iz(p) = a i p)log (52;)2; <(5 + 1);; +1i— 1) (~1)i /000 Py — Fly;n)] "

B(p+i)
1- F(y ,77)]

F(y;n)
1 > 1 i—1 ; 0o - N
= a=7 log (BQP Zz; ((ﬁ + )i + >(_1) /0 Pyl — F(y;n)]ﬁ(’)* )—p

(F(y;n)~" (’]*i)‘”dy> :

(F(y;m)~"° dy)

With some algebraic manipulations, the Rényi entropy for the Paralogistic-X family can be defined as

Ir(p) = = log <52p 3 ( B+1) p~|—z - 1> (B(p +.¢) _p)(_l)iﬂ,

i,j=0 J (26)
| s eer iy,
0
The Shannon entropy [21] for the Paralogistic-X family can be obtained as
Hslg(y; 6,n)] = E[-log(g(Y))] = —/O 9(y; B,m)log (g(y; B,n))dz. (27)

Substituting (7) into (26) gives,

Hslg(y; B,m)] = E

— log
1 — F(y;n)

8
<52f(y; m[F(y;n)] ! [%] (1 *

Hence, the Shannon entropy for the Paralogistic-X family is given as

Hslg(y; B,n)] = —2log B — E[log f(y;n)] — (8 — 1) E[log F(y;n)]

8
F(y;n) (28)
log (H(l_mm)) )]

+(B—1DE[log(1 - F(y;n)] - E

http: //www. earthlinepublishers.com
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3.6 Mean deviations

Mean deviations (MD) about the mean and median [27] are measures of the variations in a value in a
data set from the mean and median. The mean deviations about the mean (u) and median (M) for any

random variable Y following the pdf defined in (7) are defined as

I I
MD, = BQY =) = [y = ooy =260 ~2 [ vatw)a,

M M
MDy = E(Y = M) = [y~ Moty =2 [ ygl)dy.
0 0
Substituting (6) and (10) into the above equations, the mean deviations of the Paralogistic-X family

ShE]) R0,

1,j=0

become

MDMZQ,ull— <1+

(—1)"* /0# o f (y; n)[F(y; m)] D Hdy

and

N (B (BlA+1)—1 ijM = —B(i+1)—147
MDMZM—QﬁQi;O< Z. )(< j) )(—1>+ | et F e @0

3.7 Parameter Estimation

The maximum likelihood estimates (MLEs) of the parameters (/3,7) of the Paralogistic-X family will be
determined for aan n uncensored dataset. Let x1,x1, ..., , be n observed values from the Paralogistic-X
family and © = (3,71)7 be the (v x 1) parameter vector. The total log-likelihood function for Q = (3,1)7

1S

1(Q) =2nlog B+ Y log[f(y;n)] + (B8 —1)_ log[F(y;n)]
=1 =1
L[ _Flin) ’
1—F(y;n) ) |

Earthline J. Math. Sci. Vol. 15 No. 6 (2025), 1165-1191
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The partial derivatives to (31) with respect to Q = (3,1)” are given by

818(;2) = 2; + ilogF(yi;n) - i}log (1 — F(yi;m)]
. - N (32)
S (525 )
and
—B+1) Z (F(yi3m))~OF (ys;m) /O (33)

NG
i=1 _ . 1 _Fyism)
(1— F(yi;m))Pt (1 + (1—F(yi;n)> )

The nonlinear expressions in (32) and (33) are equated to zero to obtain the estimators for the parameters

in Q = (B8,7)T. These equations are solved by iterative methods such as Newton-Raphson type algorithms.

4 Paralogistic-Burr III Distribution as a Special Model

In the subsequent sections, we derive several new models from the proposed Paralogistic—X family.
Particular attention is given to a specific submodel, the Paralogistic-Burr III (PBIII) distribution,
which is discussed in detail. Some of its statistical properties are explored comprehensively. Parameter
estimation is performed using the maximum likelihood estimation (mle) technique, and a simulation
study is conducted to assess the performance of the estimators under different sample sizes. Finally,
the practical applicability of the PBIII distribution is demonstrated through its application to real-world

datasets, where its performance is compared with that of existing competing models.

4.1 Some new submodels

Several new submodels can be generated from the general formulation in (6) by selecting appropriate

baseline distributions. Below are illustrative examples of such submodels:

1. When the cdf of the exponential distribution is given by F(y) = 1 — e~%, the resulting distribution

http: //www. earthlinepublishers.com
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is referred to as the Paralogistic-Exponential (PExp) distribution, with cdf as
8\ P
G(y;ﬁ,5)=1—<l+<e‘sy—1) ) , y>0,8,0>0.

2. If the Weibull distribution is used with cdf as F'(y) =1 — e=9°  the resulting distribution is termed
the Paralogistic-Weibull (PWeib) distribution:

-8
G(y7/6767¢):1_<1+(e6y¢_1>5> ) y>07 /8757¢>0

3. Substituting the Burr XII cdf given as F(y) = 1 — (1 +y°)~% into (6) yields the Paralogistic-Burr
XII (PBXII) distribution:

8\ B
G(y;ﬁ,a,@—l—<1+(<1+y5>¢—1)> . y>0,8,66>0.

4. If the Lomax distribution, expressed as F(y) = 1 — (1 + dy)~?, is used, the resulting model is the

Paralogistic-Lomax (PLom) distribution:
8\ P
G(y;ﬁ,&cé):l—(1+((1+5y)¢—1) > ; y>0,8,6¢>0.

These derivations highlight the flexibility of the proposed Paralogistic—-X family in generating a wide
array of submodels by choosing different baseline distributions. A key novelty of this work lies in the use
of the paralogistic distribution, a baseline that has received relatively limited attention in the literature.
Its incorporation into the T—-X framework introduces new distributional forms with enhanced flexibility
and modeling power, particularly for skewed and heavy-tailed data. In the following section, we focus on
a particularly important submodel, the Paralogistic-Burr III (PBIII) distribution. This model is studied

in detail, including its structural properties, parameter estimation, and applications to real-life datasets.

4.2 Paralogistic-Burr III distribution

The cdf and pdf of the Burr III distribution [7] are expressed, respectively, by F(y) = (1 +y°)~¢ and
fly) = 3¢y 071 (1 + y=9)~?1 where y > 0, § > 0, ¢ > 0. Inserting the cdf and pdf of the Burr III
distribution into (6) and (7), the cdf of the Paralogistic-Burr III (PBIII) distribution is given as

Ay \\7
G(y7/3)67¢):1_ 1+ 1_(1+y_5)_¢ ay>075757¢>0 (34)

Earthline J. Math. Sci. Vol. 15 No. 6 (2025), 1165-1191
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Alternatively, equation (36) can be written as

-8\ —8
Gly; 8,0,6) =1 — (1 + ((1 +y %)% — 1) ) . (35)

The corresponding pdf of the PBIII distribution is given as
9(y; 8,6,0) = B0y (1 +y ) (L+y2)0 = )P A+ (1 +y ) = 1))
The hazard function of the PBIII distribution is expressed as

h(y; 8,6,¢) = 826y (1 +y ") (1 +y7")0 = 1)1+ (L+y70)0 = 1))~

15
|

10
N
/

0.0

Figure 1: Plots of the PBIII PDF g¢(y) and hazard function h(y).

Figure 1 presents the plots for the pdf and hazard function of the PBIII distribution. The important
statistical properties of the PBIII distribution are presented as follows.

(i) Quantile function

The quantile function of the Burr III distribution be defined as

Yo = F () = (w5 —1)77. (36)

=

Substuting v = (((1 — q)_% —1)"% +1)7tin (11) into (38) gives the quantile function of the PBIII

http: //www. earthlinepublishers.com
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distribution which is expressed as
_ _1 _1 1 1
yg=F )= ((1—q) 7 =1)7F +1)» —1)75. (37)
Table 1 presents the quantiles of the PBIII distribution at combinations of parameter values.

Table 1: Quantile values for PBIII distribution

(0.7,3.0,0.5) | (5.0,0.8,14.0) | (6.0,0.2,0.4) | (3.0,1.5,8.0) | (0.9,0.8,0.9)
0.1 | 0.02032186 | 1.381978 0.4389873 | 1.548551 | 0.04692977
0.2 | 0.03618052 | 1.518528 1.5570301 1.701445 | 0.16190295
0.3 | 0.05164806 | 1.644823 3.2545591 1.821672 | 0.36784451
0.4 | 0.06779923 | 1.778321 6.7413920 | 1.932325 | 0.72127466
0.5 | 0.08557811 | 1.930564 | 15.0133670 | 2.043796 | 1.34203660
0.6 | 0.10620795 | 2.116137 | 38.7288806 | 2.164782 | 2.51092215
0.7 | 0.13182411 | 2.361218 | 129.2388349 | 2.307279 | 5.01475087
0.8 | 0.16711515 | 2.727856 | 379.8201492 | 2.495974 | 11.84475270
0.9 | 0.22795051 | 3.440451 | 379.8202471 | 2.810713 | 44.62486650

Table 1 presents selected quantile values of the PBIII distribution under five different combinations of
parameter values. It highlights how the distribution’s shape and spread are highly sensitive to parameter
changes. For some parameter sets, the quantiles increase gradually, indicating a relatively light-tailed
behavior. In contrast, parameter values (6.0, 0.2, 0.4) exhibits extremely increase for higher quantiles,
showing heavy-tailed characteristics and strong skewness. Other combinations produce moderate but
steadily increasing pattern of quantiles, reflecting a wider spread. In general, the table demonstrates
the flexibility of the PBIII distribution in modeling diverse data behaviors, ranging from light-tailed to

heavy-tailed cases, depending on the parameter values.

(i) Moments

The pdf and survival function of the Burr III distribution are defined as

Fyid,¢) =8¢y 1 +y )y >0

and
F(f%ﬁvd) =1- (1 +y_6)_¢'
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Substituting the f(y;3,9) and F(y;3,) into (14) gives

pr = 6760

4,7=0

0

(P (B0 D)y

/ yr—6—1(1 o (1 + y—d)—¢)j—(ﬁ(i+1)+1)(1 + y—é)—qﬁ—ldy

Using series expansion and further evaluations of the integrand in (40) gives

o :BZ(b Z

B<¢(k+ 1)

1,5,k=0 (

]

r

T

Equation (41) gives the ** raw moments of the PBIII distribution.

B + Z) (5(2' +j1) - 1) (j - (5@2‘ 1)+ 1)) (—1)i+i+k

(38)

The raw moments for » = 1,2,3,4,5 and related statistics are computed for some sets of parameter
values of the PBIII distribution and presented in Table 2.

Table 2: First four raw moments and related measures of PBIII distribution

(0.5,0.8,0.6) | (0.8,4.0,1.3) | (0.7,1.9,0.3) | (5,6.4,0.9) | (3,2.7,1)
E(X) | 0.05303267 | 0.02612847 | 0.027837802 | 0.01553630 | 0.12786139
E(X?) | 0.02774262 | 0.01996596 | 0.014474696 | 0.01467527 | 0.10876932
E(X3) | 0.01873979 | 0.01609442 | 0.009727933 | 0.01389816 | 0.09428802
E(X%) | 0.01414059 | 0.01345512 | 0.007318086 | 0.01319390 | 0.08299503
E(X%) | 0.01135185 | 0.01154770 | 0.005863368 | 0.01255322 | 0.07398179
SD | 0.15789288 | 0.13886418 | 0.117045943 | 0.12014113 | 0.30400787
CV | 297727593 | 5.31467021 | 4.204568405 | 7.73293123 | 2.37763613
CS | 3.71524534 | 5.43927888 | 5.339722403 | 7.62449202 | 2.01969015
CK | 17.07080901 | 31.87736886 | 33.569167881 | 59.28504417 | 5.22610848

Table 2 summarizes the first four raw moments and related measures of the PBIII distribution under

five sets of parameter values. The computed means are small signifying concentration near the lower
tail, while higher-order moments increase steadily, reflecting sensitivity to parameter variation. Standard
deviations and large coefficients of variation show substantial relative dispersion. From the table, it is
evident that the distribution is consistently right-skewed and leptokurtic, suggesting heavy-tailed behavior
which indicates the fit of the distribution for extreme values. These characteristics demonstrate the
flexibility of the PBIII distribution for modeling data exhibiting high variability, skewness, and heavy

tails, particularly in applications such as finance, reliability, and environmental studies.
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4.2.1 Simulation study

In this section, the Monte-Carlo simulation study for the PBIII distribution is to determine the asymptotic
properties of maximum likelihood estimators of unknown parameters given as Q = (J, ¢, ). Some sets
of parameter values for parameter vector, €2, at n = 25,50, 100, 200,400 samples generated from a large
N = 2000 samples. This enables the true sampling distribution of data be randomly generated using the
PBIII quantile function.

Four sets of true parameter values are presented for the simulation study, which are; Set I. § =
06,0 = 1.7, =108, Set II: § = 1.3,¢ = 1.0, = 0.5, Set III: 6 = 1.5,¢ = 0.3, = 4.2 and Set IV:
0 = 25,¢ = 1.7, = 1.0. Three quantities are computed in the simulation study to determine the
behaviour of the maximum likelihood estimates as sample size (n) increases. These quantities are

i

(i) Average(Q2

_ 1

N

| X

(ii) Bias(2 NZ

1 o .
(iiiy RMSE(Q) = NZ(QZ—
=1

Table 3 gives simulation results for the PBIII distribution across four sets of parameter values for
varying sample sizes. For all parameters values of §, ¢, 8, the average estimates approach the true values as
n increases, with corresponding decreases in bias and RMSE, indicating the consistency of the estimators.
At small samples (such as n = 25,50), estimates exhibit noticeable bias, particularly for 3, but this
diminishes rapidly with larger n. For all parameter value sets, § and ¢ demonstrate stable convergence with
modest error, while 8 shows relatively higher initial variability before stabilizing at n > 200. Generally,
the simulation validates the reliability of the proposed estimation method for the PBIII distribution, with

efficiency improving markedly as sample size increases.

4.3 Parameter estimation

Let X~ PBIII distribution with a random sample of complete observations given as x1,zs,...,x, . The

corresponding total log-likelihood function is
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Table 3: Simulation study results for the PBIII distribution

ol 4 | Set I | Set 11 |
| | Av(Q)  Bias(Q) RMSE(Q)| Av(Q)  Bias(Q) RMSE(Q) |
25 | 0.581713 -0.018287  0.375565 | 0.818575 -0.481425  0.718718
50 | 0.584726 -0.015274  0.316005 | 0.822321 -0.477679  0.652822
5 | 100 | 0.603362 0003362  0.267844 | 0.842094 -0.457906  0.601910

200 | 0.617512  0.017512 0.224793 | 0.878003 -0.421997  0.546001
400 | 0.618226  0.018226  0.190038 | 0.932975 -0.367025  0.487422
800 | 0.615808 0.015808  0.150183 | 1.027880 -0.272120  0.400010

25 | 1.780376 0.080376  0.512471 | 1.493276 0.493276  0.718198
50 | 1.744973 0.044973  0.342526 | 1.449948 0.449948  0.617729
100 | 1.726460 0.026460  0.291496 | 1.401711 0.401711 0.543495
¢ 200 | 1.705457 0.005457  0.244160 | 1.353173 0.353173  0.478623
400 | 1.693653 -0.006347  0.200818 | 1.302163 0.302163  0.421260
800 | 1.688815 -0.011185  0.159820 | 1.213402 0.213402 0.331742

25 | 1.323371 0.523371 2.120285 | 0.953922  0.453922 0.960600
50 | 1.029981 0.229981 0.662590 | 0.806030 0.306030  0.518458
100 | 0.908036 0.108036  0.312063 | 0.734161 0.234161 0.342063
g 200 | 0.848523 0.048523  0.199660 | 0.687029 0.187029  0.265462
400 | 0.825720 0.025720  0.148974 | 0.648411 0.148411 0.213618
800 | 0.811362 0.011362 0.110691 | 0.601604 0.101604  0.162979

ol 4 | Set 111 | Set IV |
| | Av(Q)  Bias(Q) RMSE(Q)| Av(Q)  Bias(Q) RMSE(Q) |

25 | 0.914689 0.014689  0.589527 | 2.886853 0.386853  2.076241
50 | 0.878732 -0.021268  0.436084 | 2.908595 0.308595 1.735216
100 | 0.892739 -0.007261  0.407306 | 2.775802 0.275802 1.446074
200 | 0.899281 -0.000719  0.208620 | 2.746958  0.246958 1.203202
400 | 0.900802  0.000802 0.144522 | 2.663545 0.163545 0.883404
800 | 0.901138 0.001138  0.101818 | 2.593582  0.093582 0.603627

25 | 0.566102 0.166102 0.395337 | 1.667401 -0.032599  0.390254
50 | 0.515792  0.115792 0.314933 | 1.650831 -0.049169  0.308279
100 | 0.457750 0.057750  0.210530 | 1.652180 -0.047820  0.252849
¢ 200 | 0.424467 0.024467  0.122971 | 1.657997 -0.042003  0.217038
400 | 0.410178 0.010178  0.069959 | 1.670248 -0.029752  0.162890
800 | 0.405189 0.005189  0.045340 | 1.684267 -0.015733  0.114847

25 | 1.040561 0.340561 1.089626 | 1.600392 0.600392 2.215453
50 | 0.905457 0.205457  0.717811 | 1.242741 0.242741 0.803303
100 | 0.782590 0.082590  0.308885 | 1.103239 0.103239  0.452424
200 | 0.727273  0.027273  0.177066 | 1.035056 0.035056  0.253369
400 | 0.708810 0.008810  0.059218 | 1.012863 0.012863  0.180747
800 | 0.704186 0.004186  0.037396 | 1.004198 0.004198  0.127941
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log[g(yi)] = 2nlog(B) + nlog() + nlog(¢) — (5 +1) > log(y:)
=1

¢—1) Zlog(l +y;7%) — (B+1) Zlog +y;7%)? 1) (40)

+ ilog(l +((1+y70)? - 1))_5)] :

=1

The first partial derivatives of £, with respect to d, ¢, and  are obtained as

9loglg( " y;* logy;
Ologlolyall _ 1 _ g4, Yi 108Yi _ 4541
25 Z = (0= 1) 3 H o3+ 1)
E:ﬁyz 1+y (L 4y, %)? —1)=Plogy; Zy N1 log y;

((1+y °)¢ —1)7F )¢—1)

Ologlg(y)] _n N~ 5y (14 y;°)%log(1+3;°)
206 o +;1 gl 47 -6+ Z; (1+4;%)% 1)
= B4y )4y ) = )P og(1 4 470) |
2 L+ ()P - 1) - "
PIORI)] 20 4 5™ og(1 4470~ 1)~ D lo(1 + (14570 - 1))
=1 1=1
L) Z”: (L+9°)7 =) Plog((L+4;°)* —1) _

— T+ ((1+y %) —1)-8

The system of nonlinear equations in (41) is solved numerically by using the AdequacyModel package
in R programming language. The solution vector, ) = (5, é, B) gives the maximum likelihood estimates
(mles) of the parameters of the PBIII distribution.

5 Applications and Results

This section considers empirical illustration of the proposed family by the application of the
Paralogistic-BIII (PBIII) distribution as a submodel to two uncensored datasets. This is to authenticate
the applicability and adaptability of the PBIII distribution over the competing lifetime distributions in

the analysis of the datasets. The performance of these models is compared based on some discrepancy
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criteria such as the Akaike information criterion (AIC), consistent Akaike information criterion (CAIC),
Bayesian information criterion (BIC), Hannan-Quinn information criterion (HQIC), Cramer von Mises
(W*), Anderson-Darling (A*) and Kolmogorov-Smirov (KS) tests. The smaller the values of these
discrepancy statistics, the better fit of the data is achieved.

5.1 Applications

The competing distributions that will be applied to two real-life datasets are; Kumaraswamy Burr 111
(KBIII) [6], modified Burr 11T (MBIII) [1], New Extended Burr III (NEBIII) [8] and Burr IIT (BIII) [7]

distributions. The datasets and the tables of computations are presented.

Data 1: Monthly Road Accidents Dataset.

The first dataset consists of monthly cases of road accidents on Oyo-Ibadan Express Road, Oyo State,
Nigeria (2004-2014). The dataset was previously analyzed by [26]. The road accidents data are: 15, 4,
7,12,6, 8, 5,6, 5,4, 7 11, 10, 6, 15, 13, 5, 7, 11, 9, 4, 6, 4, 14, 8, 4, 10, 5, 6, 4, 10, 7, 5, 9, 19, 16, 8, 7,
16, 9, 4, 6, 12, 10, 7, 11, 18, 20, 7, 16, 12, 13, 5, 7, 8, 12, 9, 11, 19, 21, 7, 6, 10, 8, 8, 14, 16, 12, 18, 10,
18, 21,8, 12, 18, 12, 22, 11, 20, 17, 19, 13, 27, 20, 11, 12, 19, 18, 15, 19, 23, 25, 22, 26, 13, 23, 26, 26, 14,
16, 23, 26, 24, 25, 24, 13, 22, 24, 28, 25, 25, 20, 23, 22, 30, 29, 19, 31, 25, 26, 25, 21, 27, 19, 22, 24, 28,
25, 18, 23, 18, 29.

Table 4: Parameter estimates and discrepancy statistics for the distributions

Model ) 10} 8 v —2LL AIC CAIC BIC HQIC w* A* KS
(std. error) (std. error) (std. error) (std. error) (p-value)
PBIII 0.14079 1.54049 13.72976 896.1082 902.1082 902.2957 910.7566 905.6226 0.27017 1.76814  0.09733
(0.13790)  (0.59428)  (14.44969) ; (0.1639)
KBIII 0.46347 1.70830 114.60231 11.45261 898.7083 906.7083 907.0233 918.2395 911.3941 0.29448 1.95290  0.12004
(0.12320)  (1.01351)  (181.84330)  (6.79461) (0.0446)
MBIII 1.93623 29.81964 100.55039 - 926.0830 932.0830 932.2705 940.7314 935.5973 0.54690 3.52387  0.11996
(0.16589)  (30.00329)  (47.90910) (0.0448)
NEBIII 0.17259 1.40271 15.27103 915.5525 921.5525 921.7400 930.2009 925.0668 0.42302 2.77796 0.11790
(0.19082)  (0.54740)  (18.28643) (0.0510)
BIII 1.73357 51.19311 932.0818 936.0818 936.1748 941.8474 938.4247 0.65990 4.21031  0.12833
(0.10778)  (11.61818) (0.0259)

Table 4 presents parameter estimates, their standard errors, and various discrepancy statistics for
the fitted distributions. While the other competing distributions show wider variability in estimates,
the PBIII distribution achieves stable parameters relative to its complexity. Across all model selection
criteria, the PBIII distribution consistently provides the best trade-off between goodness-of-fit and
parsimony. Goodness-of-fit tests further confirm this result that the PBIII distribution displays the
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smallest Anderson-Darling and Cramér-von Mises statistics. The corresponding Kolmogorov-Smirnov
statistic with its non-significant p-value illustrates no evidence to reject the PBIII distribution as a

plausible model for the data.

(a) Histogram and estimated densities (b) Empirical vs PBIII CDF
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Figure 2: (a) Histogram and fitted densities (b) Empirical vs PBIII cdfs (c) PP plot (d) Kaplan Meier vs
S(y) for Data 1.

The graphical assessments provide multiple lines of statistical evidence supporting the adequacy of the
PBIII distribution. The histogram and fitted density indicate that the PBIII model effectively captures
both the central tendency and variability of the data, outperforming competing distributions. The

close alignment between the empirical and theoretical CDFs demonstrates that the PBIII distribution
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accurately represents the observed distribution across the entire range. Furthermore, the P-P plot
shows points lying near the diagonal, indicating that the model fits well across all quantiles without
systematic deviations. The Kaplan—Meier curve closely follows the PBIII survival function, confirming
that the model also captures the tail behavior appropriately. Collectively, these results establish PBIII
distribution as the most suitable model for Data 1, exhibiting superior parameter stability, discrepancy

measures, and overall fit compared to alternative distributions.

Data 2: Fracture Toughness of Alumina (Al2O3) Dataset.

The second dataset consists of 119 observations on fracture toughness of Alumina (Al2O3)(in the units of
MPa m!/2). The dataset was analyzed by [16]. The data are: 5.5, 5, 4.9, 6.4, 5.1, 5.2, 5.2, 5, 4.7, 4, 4.5,
4.2, 4.1, 4.56, 5.01, 4.7, 3.13, 3.12, 2.68, 2.77, 2.7, 2.36, 4.38, 5.73, 4.35, 6.81, 1.91, 2.66, 2.61, 1.68, 2.04,
2.08, 2.13, 3.8, 3.73, 3.71, 3.28, 3.9, 4, 3.8, 4.1, 3.9, 4.05, 4, 3.95, 4, 4.5, 4.5, 4.2, 4.55, 4.65, 4.1, 4.25, 4.3,
4.5, 4.7, 5.15, 4.3, 4.5, 4.9, 5, 5.35, 5.15, 5.25, 5.8, 5.85, 5.9, 5.75, 6.25, 6.05, 5.9, 3.6, 4.1, 4.5, 5.3, 4.85,
5.3, 5.45, 5.1, 5.3, 5.2, 5.3, 5.25, 4.75, 4.5, 4.2, 4, 4.15, 4.25, 4.3, 3.75, 3.95, 3.51, 4.13, 5.4, 5, 2.1, 4.6, 3.2,
2.5, 4.1, 3.5, 3.2, 3.3, 4.6, 4.3, 4.3, 4.5, 5.5, 4.6, 4.9, 4.3, 3, 3.4, 3.7, 4.4, 4.9, 4.9, 5.

Table 5: Parameter estimates and discrepancy statistics for the distributions

Model § 0] B ¥ —2LL AIC CAIC BIC HQIC w* A* KS
(std. error) (std. error) (std. error) (std. error) (p-value)
PBIIT 0.27128 1.54399 16.73081 - 337.7828 343.7828 343.9915 352.1202 347.1684 0.09877 0.61392  0.07295
(0.27089)  (0.62714)  (17.86739) - (0.550)
KBIII 17.39709 8.34571 0.04833 8.34571 619.7286 627.7286 628.0794 638.8451 632.2426 1.11623 6.32951  0.41075
(0.01201)  (1.74826)  (0.00443)  (1.74826) (i2.2¢-16)
MBIII 4.43752 248.11313 492.48411 - 381.8647 387.8647 388.0734 396.2021 391.2502 0.72999 4.32389  0.14560
(0.25613)  (117.21777) (182.96399) - (0.0129)
NEBIIT 0.17680 1.21141 37.63235 - 356.8376 362.8376 363.0463 371.1750 366.2231 0.36010 0.26100  0.08319
(0.10409)  (0.14035)  (23.38497) . (0.3823)
BIII 3.05779 51.86600 - - 419.5353 423.5353 423.6387 429.0935 425.7923 1.36491 7.65754  0.19633
(0.11989)  (11.17552) - - (0.0002)

Table 5 presents the estimated parameters and associated discrepancy statistics for the five Burr
III-type distributions fitted to Data 2. The PBIII model demonstrates superior performance, with

favorable goodness-of-fit and discrepancy statistics over the four competing distributions for Data 2.

The graphical assessments reinforce the findings reported in Table 5. The PBIII density closely follows
the observed histogram, the fitted cdf aligns with the empirical cdf, the P—P plot demonstrates points
near the line and the PBIII survival function is in close agreement with the Kaplan—Meier estimate.
In contrast, alternative models such as KBIII and BIII distributions exhibit poorer consistency with
the data, highlighting their relative inadequacy. Collectively, these numerical and graphical evaluations
indicate that the PBIII distribution provides the best-fitting model for capturing the distributional and

survival behavior of Data 2. The PBIII distribution consistently outperformed the four competing models
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Figure 3: (a) Histogram and fitted densities (b) Empirical vs PBIII cdfs (c) PP plot (d) Kaplan Meier vs
S(y) for Data 2.

when fitted to both datasets. Model selection criteria, including AIC, BIC, CAIC, and HQIC, as well as
the log-likelihood, highlighting PBIII distribution as the model that achieves both statistical robustness
and parsimony. This was further corroborated by the Kolmogorov—Smirnov (KS) statistic, which yielded
the smallest value and a high p-value, reflecting strong agreement between the empirical and theoretical
distributions. Graphical assessments reinforced these findings: the histogram and fitted density closely
followed the observed data patterns, the empirical and fitted cdfs were in close alignment, and the P—P plot
exhibited minimal deviation from the diagonal, demonstrating consistent fit across quantiles. Additionally,
the PBIII survival function closely tracked the Kaplan—Meier estimate, highlighting the model’s suitability

for representing both the distributional and survival characteristics of the datasets.
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6 Conclusion

In this paper, we introduced a new class of probability distributions referred to as the Paralogistic-X
family, within the transformed-transformer (7-X) framework, using the less-studied paralogistic
distribution as the baseline generator. The proposed family was shown to be highly flexible and capable
of modeling a wide range of data patterns due to its ability to accommodate varying shapes of skewness,
kurtosis, and tail behavior. The general forms of key structural properties of the family, including the
quantile function, moments, moment generating function, entropy measures, and order statistics were
derived. A specific submodel, the Paralogistic-Burr III (PBIII) distribution, was examined in detail, and
its parameters were estimated via the method of maximum likelihood. A simulation study confirmed
the consistency and efficiency of the maximum likelihood estimators across different sample sizes. The
practical applicability of the proposed submodel was demonstrated using two real-world datasets. In
both cases, the PBIII distribution provided superior fits compared to four existing Burr III-type models.
These findings highlight the versatility, robustness, and statistical efficiency of the Paralogistic-X family,
positioning it as a valuable tool for modeling real-life data across various disciplines related to lifetime

data analyses.
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