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Abstract

In the present paper, we propose and study a new subclass of harmonic multivalent functions in the
open unit disc U = {z : z € C,|z| < 1}, which is characterized by its association with a special
differential operator. This investigation focuses on establishing several fundamental properties of the
introduced subclass including coefficient bounds, convex combination criteria, convolution conditions
and the characterization of its extreme points.

1 Introduction and Preliminaries

Let A denote the family of all functions that are analytic and univalent in open unit disc U = {2z : z €

C,|z| < 1} and can be expressed in the form

fz) =2+ a2’ (1.1)
s=2

The subclass S C A consists of functions that are univalent (i.e., injective) and normalized such that
f(0) =0 and f/(0) = 1.

In complex analysis, a complex-valued function f = u + v is said to be harmonic if both the real part
u and the imaginary part v are real-valued harmonic functions, that is, they satisfy the Laplace equation

and are twice continuously differentiable. Harmonic functions have been extensively studied and appear

Received: August 16, 2025; Revised: October 9, 2025; Accepted: October 13, 2025; Published: October 22, 2025
2020 Mathematics Subject Classification: 30C45, 30C50.
Keywords and phrases: harmonic multivalent functions, harmonic functions, univalent functions, differential operator.

“Corresponding author Copyright 2025 the Authors


https://orcid.org/0009-0008-4162-9362
https://orcid.org/0009-0006-2599-092X

1152 Kirti Pal and A. L. Pathak

in various fields such as aerodynamics, engineering, electronics, physics, operations research and different

branches of pure and applied mathematics.

In 1984, Clunie and Sheil-Small [!]| introduced a class of harmonic functions denoted by SH. Any

function f in this class can be represented as

f(2) = h(z) + 9(2), (1.2)

where h and g are analytic functions in any simply connected domain {2 C C. Here, h is called analytic
part, while g is referred to as co-analytical part of f(z). According to the theory developed by Clunie
and Sheil-Small [1], a harmonic function f is locally univalent and sense-preserving in (2 if and only if the
condition |h/(z)| > |¢’(z)| holds throughout the domain 2.

The class SH consists of harmonic functions f = h + g that are sense-preserving in an open unit disc

U and satisfy the normalization condition f(0) = h(0) = f,(0) — 1 = 0. If the co-analytic part g(z) is

identically zero, then the function f reduces to an functions of the class S of analytic univalent functions.

Numerous authors have studied this approach in the context of multivalent function theory, which
emerged as a natural extension of univalent function theory after extensive research on harmonic univalent
functions. These investigations have revealed several new directions in this field. In 2001, Ahuja and
Jahangiri [1| introduced the class SH(p) (p € N=1,2,3,...) consisting of harmonic multivalent (p —

valent) functions of the form f(z) = h(z) + g(z), which are sense-preserving in open unit disc U, where

h(z) = 2P + Zasﬂg,lz“p_l and g¢(z) = st+p,125+p_1, |bp| < 1. (1.3)

s=2 s=1

The class SH(p) converges to the class A(p) of analytic multivalent functions if g(z) = 0, in which case
f(2) = h(z) = 2P+3°22, asyp-12°TP~L. Since then, many mathematicians and researchers have successfully
completed the study of various remarkable subclasses of harmonic multivalent functions, like El-Ashwah
and Aouf [5], Ezhilarasi et al. [6], Seoudy [10] and Yasar and Yalgm [12].

In geometric function theory, operators are essential tools for generating and analyzing new subclasses
of analytic and harmonic functions. Among these, Integral, differential, and convolution operators are
particularly significant because of their wide-ranging applications in establishing the properties of various

functions.

In 2016, Makinde [%] introduced a Differential Operator, denoted by F!, where [ is a non-negative

integer. Using this operator, harmonic multivalent functions can be defined as

Fl'f(z) = F'h(z) + (—=1)!Flg(2), where [ € Ng = NU{0}. (1.4)
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The analytic and co-analytical parts of the operator are given by
©© o0
F'h(z) = 22+ Clapptyasip12"P7" Flg(2) = Clappotyibsip12°77,
s=2 o—1

where the coefficient C,,_1y; is defined as:

(s+p—1)!
s+p—1—1|

C(s+p—1)l = |(

Based on this differential operator, we define a class of harmonic multivalent functions, denoted by Eli(oc),

which contains functions of the form given in (1.3) that satisfy the inequality:

FHlf(z)

fre [Ff()

}>pa and0<a<l, zeU, (1.5)

where F!f(z) is defined by (1.4).

We also define a related subclass Fé(a), consisting of functions of the form

fi(z) = h(z) + q(2), (1.6)
where

o [e.9]
h(z) = 2" — Z |as4p—1] 2P gi(z) = (_1)l Z |bs+p—1] 2P, with by < 1.
5=2 s=1

The objective of this paper is to derive a sufficient condition for the function f(z) € E/(a) from (1.3) and
also derive the necessary and sufficient condition for the function fi(z) € ET,ﬁ(oc) from (1.6). In addition,

we aim to obtain convolution results, convex combination, and extreme points for functions f;(z) € Fé(oz).

Remark 1.1. The class Eé(a) comprises the following well-known classes.

1. The class E!(a) reduces to the class Sg*(a) when | = 0 and p = 1. This class Sg*(a) was
introduced by Jahangiri [7].

2. The class El(a) reduces to the class By (l,a) when | # 0 and p = 1. This class By(l,a) was
introduced by Sharma [11].

3. Setting p = 0 in the class Gy(1, p, @) [3] yields the class E/(a) for p # 0.
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2 Coefficient Bound

We begin by deriving a sufficient condition and estimating coefficient bounds for harmonic functions

f(z) € Ezi(a).

Theorem 2.1. Let the harmonic multivalent function f(z) = h(z) + g(2) be defined as in equation (1.3).
If the following inequality holds:

Z (|3 +p—1- 1| - pa) C(s+p—1)l |a8+p*1‘
s=2

+) (ls+p—1—1+pa) Clerpiy Ibssp-1| < (1 — a)p, (2.1)

s=1
then function f(z) is sense-preserving in the open unit disc U and belongs to the class Eli(oz), where

0<a<1,1€Ny=NU{0}, and Cloip 1y = %

Proof. To prove that harmonic multivalent function f(z) is sense-preserving, it suffices to verify that
W' (2)] > 19 (2)].

Now,

o0

W@ Zpll ™ =) (s +p =1 agpn| 12177
s=2
p—1 _ = _ s—1
> 2P p =) (s+p— 1) |agip-1) 2]
s=2

“ (ls+p—1—1] —pa) Clepp_1) |assp
>piz(l p | =) Clsip-1)i@stp-1]

pou (1—a)p
S i (|s+p—1—1] - pa) C(s+p—l)l ’bS-&-p—l’
—~ (I—a)p
- i (Is +p—1 =1 = pa) Clappry [bsip-1 2"
poct (I—a)p
> (54 p—1) bspp| 127772 = |4 (2)]
s=1
> 1g'(2)]-

Thus, function f(z) is indeed sense-preserving within the open unit disc U. For showing f(z) € E}ﬂ(a) ,

we have to prove that (1.5) is true.
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If
_FMUG) A
FIf(z)  Aa(2)

and using

Relw] > pa < |w—(1+a)p| < |w+ (1 —-a)pl,
then it will be enough to prove that
[A1(2) = (1 + a)pAa(2)] — [A1(2) + (1 — a)pAa(2)| < 0.

Now, solve the part |A;(z) — (1 + a)pAa(2)|

<Zp + Z Clotp-1)(1+1) Ustp-1) 2" T+ (=) Z C(s+p—1)(z+1)b(s+p—1)55+p—1)
s=2 s=1
=

—(1+a)p (Zp + Z C(s+p71)la(s+p71)zs+p71 + (—DFt Z C(s+p1)lb(s+p1)zs+pl>

s§=2 s=1

<apl||+ Z ((1 +a)p—|s+p—1-1] )C(erpfl)l la(s+p—1)] Eliasias
s=2

+ Z <(1 + Od)p — ’8 +p— [ — 1‘ )C(s+p71)l ‘b(Ser,l)‘ ‘2‘5—&-13—1 .
s=1

Now, solve the part |A1(2) + (1 — a)pAa(2)|

<zp + D Clapp) @)@ (sip-1)2 P+ (DD :C(s+p—1><l+1>b<s+p—1>fsw_l)
s=2 s=1
=

+(1—ap (Zp + Z Clstp-1ia(sap-1)2" 77+ (=1 Z C(s+p1)lb(s+p1)zs+pl>

s=2 s=1

> (2 —a)pla| = Z ‘(04 —Dp—|s+p—-1-1] ‘C(s—l-p—l)l |agspn| 121777
s=2

=3 [ls+p—1=11 = (1 = p|Clarporyt ospn | 121777

s=1
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Now, implies that
[A1(2) = (1 + a)pAz(2)] — [A1(2) + (1 — a)pAa(z)|

< apl|P|+ Z ((1 +a)p—|s+p—1-1] >C’(s+p,1)l ‘a(sﬂ,,l)‘ ]z\sﬂ’_l
s=2
+ Z ((1 + Oé)p — |S +p—1— 1’ )C(s+p—1)l ‘b(s-l—p—l)‘ ’2‘5—’_1)_1
s=1
(o]
+(a=2)pl1+ 3 (@ = Dp—ls 40— 1= 1| Clapory |ageep| 121777
s=2

+ Z ‘ ls+p—1—-1—-(1- Oé)P‘C(erp—l)z |b(ssp-1y| 12177771
s=1

Now,

o0
:>2Z ‘ s+p—1—-1| - ap‘c(s+p—1)l |a(op—ny| 2P
s=2

+2%° ] ls4p—1—1|+ ap)c(s+p,1)l [bgsrpy| |17 = 21 — a)p 2] < 0.
s=1

Now, we have

Z ‘ |8 +p—1— 1| - O‘p)‘C(S-I—p—l)l |a(s+p—1)‘
s=2

+ 3 |Is+p— 1= 1+ ap) [ Carpor [basp 1| < (1= alp.
s=1

This completes the proof. O

If p=1 in Theorem (2.1), then Corollary (2.2) is obtained.
Corollary 2.2. [11] Let f(z) = h(z) + g(z) be given by (1.2). If

(Is =1l =) Clas| + Y (Is = 1] + @) Ca|bs] < (1 = ),

s=2 s=1

where 0 < a < 1,1 € Ny = NU {0}, and Cg = ‘Si!l“, then the function f(z) is sense-preserving in U and
f(z) € Bg(l,a).

The harmonic multivalent function

o0

@) =2+ 1= Xs2®
5:2(‘3 +p_l_1| _O‘p>C(s+p71)l (2.2)
- d-cjp Y2,

S (Is+p—1=11+ap)Clapry
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where 0 <o <1, 1 € Ng = NU{0}, Cappory = 2y and 322, | X,| + 22, |Vi| = 1, shows that

the coefficient bound given by (2.1) is sharp. The functions of the form (2.2) belongs to the class E(c)
because

ls+p—1—-1] - ap)c(s+p—1)l

i < (1—a)p |@stp—1]

s=2

0o < |3 +p—1- 1’ + ap) C(Ser*l)l b (23)
+ Z (1 — a)p | s+p—1|

s=1

=1+ X+ Vi =2
s=2 s=1

The following theorem demonstrates that condition (2.1) is not only sufficient but also necessary for the

functions f; = h + g, where h and g; are of the form(1.6).

Theorem 2.3. Let the harmonic multivalent function fi(z) = h(z)+ gi(z) be defined as in equation (1.6).
Then fi(z) € @(a) if and only if the following inequality holds:

Z (Is+p—1—1] = ap) Crepp-1y |as+p-1]

=2 . (2.4)
+3 (54 p— 1= 1]+ ap) Cespry Psipal < (1 - a)p,
s=1
where 0 <o <1, 1 € Ng=NU{0} and Cyqp_1y = %.

Proof. For this theorem, we just need to show “only if” part. Since Fé(a) - E]ﬁ (), we observe that the
condition (1.5) is equivalent for the functions fi(z) of the form (1.6),

[ 2P = 332 Clatp-1)(41) |0(sp-1) | 2P + (=1 3522 Clapp-1ya41) [Dsp-1)| 277

2P =322 Clasp1yt |stp-1)| 2P+ (=12 3032 Cagpyt [bsap-1y] 257271

ap (Zp — 2 o2s Clsp-1)i ‘a(8+p71)| 2Pl (—1)2 Y Clsyp-1) |b(s+p71)‘ zstp—l)

2 =322 Clagp—1) |a(sap—1)| 2571+ (=12 3222 ) Clotperyt [B(stp—1)| 227

(1—ap) = X2, (Is+p—1 1] — ap) Clsypiy |agssp-n| 2° 7
1= 3732 Clagp-yt [agssp—1)] 2571+ 232521 Clatp—yi [berp-n | 27

— % {Zgil (Is+p—1—1]+ap) _C’(s—&—p—l)l ’b(s—l—p—l)’ 25_1}
1= 3225 Clotp-1yt |a(stp-1)| 27 + 2 220 Clop-1yt [Dsp-1)| 271 |
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The above equation (2.5) must be true for all values of z on the positive real axis, where 0 < |z] < r < 1.
Now, we get

(1—ap)— Z?i2 ([s+p—1—-1]—ap) C(s+p—1)l ‘a(s—O—p—l)‘ T
1= 32325 Clsapny [aqsip—1) | 7571+ 32021 Clspyt [b(stp-1)| 772

B 321 (s +p = 1= 1+ p) Clarpyt [Dap—p| 77
1= 32520 Clappyt |agsap-1) | 771+ 22521 Clorp—1)1 |Dsp-1)| o]

We observe that, if condition (2.1) is not satisfied for the numerator in (2.6) when r — 1, it results in

negative value. This is contradicting the condition for fi(z) € Fé(a) and hence the proof is completed. [

3 Convolution

In this part, we establish the closure property of the class ETQ(a) under convolution. In this part, we

establish the closure nature of the class Fé(a) under convolution. For harmonic multivalent functions

e e}
h(z) = 2" = Z |@s4p1 P4 (—1)l Z |bs4p—1] zstp—1
5=2 ——1

and

> (o]
Fi(z) =27 = asip1| 27 4+ (=)D [bogpa| 2577
s=2 —1
The convolution relation for f;(z) and Fj(z) is defined as

(fix F)(2) = fi(2) * Fi(2)

o0 00
=2 - Z |as+P*1As+p*1| Z5tP-l + (—1)l Z |bs+p7135+p71| AN (3,1)

s=2 s=1

Theorem 3.1. Let 0 < oy < ap < 1,1 € Ng = NU{0}. If fi(2) € ETZ)(OQ) and Fi(z) € E},(al), then
f1(2) * Fi(2) belongs to Fé(ag) C Ejf,(aﬂ.

Proof. We aim to obtain the coefficient for f;* Fj, that satisfies the necessary condition defined in Theorem

http: //www. earthlinepublishers.com
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2.3. Now Fi(z) € E}(a1), we see that [Ag 1| < 1 and [Bsyp1]| < 1. Now,

0 (\s +p—1-1— 0411?>C(s+p—1)z
g (1—oa)p

. i (|S+p— [ — 1| + Oélp)c(s—l—p—l)l

|as+p—1| ‘As-l—p—l |

’bs+p—1’ |Bs+p—1’

~ (1-a1)p
< i <|8+P— 1 _a1p>0(s+pil)l Astp—1]
5 (1—a)p o
0 (\s+p—l—1!+a1p)0(s+p—1)z
—i—; d—a)p s+p—1
- i <|S+P— [ 1] —042P>C(s+p—1)z .
Bl (1—a2)p o
o0 (|s +p—1l-1+ agp)C(Hp,l)l
+ 2. (1= a2)p s+p—1
<1

Because 0 < a3 < ag <1 and fi(2) € Fé(ag), so fi(z) * Fi(z) € El(a2) C E!(c1). Therefore proof of the

theorem is complete. O

4 Convex Combination

In this part, we establish the closure property under convex combination for the class Fé(a). We consider

harmonic multivalent functions fi,(z) defined for i =1,2,3,--- ,m by
o0 o0
fulz) = 2 = sy P (C' Y e (4.)
s=2 s=1

Theorem 4.1. Let the functions fi,(z), fori=1,2,3,...,m, be given by (4.1) and suppose that fi,(z) €

Fé(a) for each i. Consider a new function t;(z) defined as a linear convex combination of these functions:

m

ti(z) =Y cifi(2),

=1

where the coefficients satisfy 0 < ¢; <1 and > ", ¢; = 1. Under these conditions, the function t;(z)
also belongs to the class fé(a).

Earthline J. Math. Sci. Vol. 15 No. 6 (2025), 1151-1164
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Proof. By the definition of t;(z), we formulate as follows:

oo m 00 m
ti(z) = =3 ( Ci ’a8+p1,i|> ALY <Z ci |bs+p1ﬂ.|> Zotp—1
1

s=2 \i= s=1 \i=1

Moreover, given that f,(z) belongs to F]l)(a) for each 1 = 1,2,3,...,m, then

Z ( ’S +p— l— 1| - Oép) C(s+p—1)l (Z Ci |as+p1,i‘>

s=2 =1
+ Z ( |S +p— [ — 1| + ap) C(s+p—1)l (Z C; |bs+p1ﬂ‘|)
s=1 =1
=> ¢ (Z (Is+p—1—1—ap) Cisip1y|astp—1,
=1 s=2

+ Z (’8 +p—1— 1‘ + ap) C(erpfl)l |b8+p—1,i’>

s=1

Hence, by Theorem (2.3), we conclude that t;(z) € Eé(a). This completes the proof. O

5 Extreme Points

In this part, we evaluate the extreme points for the class ET@(a).

Theorem 5.1. Let the harmonic multivalent function f; be defined as in (1.6). Then, f; € Eilﬂ(a), if and
only if it can be expressed in the form

filz) = Z [Xs+p—1hs+p—1(z) + Y9+p_1gls+p71(z):| ) (5.1)
s=1
where
1—
hp(z) = Zpa hs—i—p—l(z) =2P - ( a)p Zs+p_17 [ = 273747 Tty
(Is+p=1=1/=ap)Crurp1y
and

(1—a)p

Gy (2) = 2P + (—1)
o (Is+p=1=1/+0ap)Crurp1y

25+p_17 [ = 172737"' )

http: //www. earthlinepublishers.com
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and the coefficients Xsip—1 and Ysyp_1 are non-negative and satisfy the normalization condition:

o0

> [Kepp14Yerpal =1, where Xoyp1 >0, and Yigp 1 >0.
s=1

Specifically, the functions hsyp-1(2) and gi,,, ,(z) serve as the extreme points of the class ETQ(a).

Proof. The function fj(z) form (5.1), we have

[e.e]

fl(z) = Z [Xs-i-p—lhs—i-p—l(z) + sz-i-p—lnger,l(Z)]

s=1

[e.9]

- (1-a)
= Z Xsp-1 |2 — Z P AL
s=1 s=2 (‘3 +p—1- 1| - O‘p>C(s+p71)l

+ Z Yoppo1 |27 + (—1) Z P zstp—l
s=1 s=1 ( ls+p—1—1|+ ap) Clsyp-1)
o0
1—
—x, -} (1—ap Xy g2 !

s=2 (!S +p—1-1] - OéP) Clstp-1)1

ad 1—a)p _
EDS i-o) Vopaz 7L
s=1 ( ’3 +p— [ — 1‘ + Oép) C(s+p—1)l

Therefore,

(Is+p—1=1=ap)Closp1yt lasp-1]

2 (1—a)p

s=2
o (Is+p=1=1/4pa)Clasp 1yt ooty
+ (=) :
— p(l— )
o [o@)
= Z Xs+p—1+ Z Ysip-1
s=2 s=1
—1-X,
<1.

By Theorem 2.3, this implies that f; € Fé(a) )
Conversely, suppose f; € F},(a) and define

( s+p—1-1| - 0417) Cls+p-1)1
(I—a)p

Xs+p—1 = |as+p—1| , 0< Xs+p—1 <1, s=234,...

Earthline J. Math. Sci. Vol. 15 No. 6 (2025), 1151-1164
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(\5 +p—1-1]+ ap>C(s+p71)l
(1 —a)p

}/S+p71 = ‘bs+p71|a 0 < }/8+p71 < 1; s = 1a2a3547 s

and

o0 o0
X,—1- <z KXoy + Zysﬂ”) .
s=2 s=1

So, f; can be expressed as

e o0
fz) = 2 =3 agepoa| 27 4 (<) [y | 25
s=2 —1

= (1-a)
_ Z D Xs+pilzs+p—1
s=2 (’3 +p_l - 1‘ _ap>c(s+p—1)l
> l—«
EDY (1 —cp Yy yettr]

s=1 (‘S +p—1- 1’ + Oép)c(s+p—1)z

= Xphy(2) + Z Xotp-1hstp-1(2) + Z Yoip-190ssp-1(2)

s=2 s=1

oo o0
= Z Xstp-1hstp-1(2) + Z Ytp—10is4, 1 (2)-
s=1 s=1

This completes the proof of Theorem (5.1). O

6 Integral Operator

In this part, we examine the generalized Bernardi-Libera-Livingston integral operator [2| introduce by
Bernardi in 1969 for the class ETé(a).

Theorem 6.1. Let the function fi(z), as defined in equation (1.6), belong to the class Fé(a). For any
real number d such that d > —p, define the operator Lq|[fi(2)] as follows [2]:

Lq[fi(2)] = dtp /0 "yl £i(t)dt.

2P

Under these conditions, the transformed function Lq[fi(z)] also belongs to the class Ejé(a).

http: //www. earthlinepublishers.com
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Proof. From definition of Ly [fi(z)], we formulate as follows:

d+p _
Lalf(2) = 2 ["10Y foya

Z 0
_dEp 7 | N stp—1 4 (1) S b Fs+p—1
T t t Z|as+p71|t +(-1) Z| s+p—1|

s=2 s=1
p+d -1 p+d +p—1
S # bS sTPe
Zd+s+p |asp-1]2 Zd+5+p |bsp-1] 2

o0
- Z |As+p—1] AL (_1)l Z | Bstp—1] zoel

=2 s=1

Now, we compare above equation with (1.6), then we get

_ p+d
d+8+p_1 |a5+p71|7
_ptd
d+stp—1 il

|as4p—1] = [Asp-1| =

|bs+p71| = |Bs+p71| =

In the order to show Ly [fi(2)] € @(a), we have to prove that condition (2.4) is satisfied. Now consider

il <|S+p_l_1’_ap>c(s+p71)l p+d

a _ Zerpfl
g (I1—-a)p d+s+p71‘s+p i
+i<|s+p—l—1|+o<p)0(s+p_1)z p+d \b .
pot (I—-a)p d+s+p—1""7"
<i<|5+P—l—1|—04p)0(s+p—1)1| |
= Gstp—1
g (1—a)p

g (\3+p—l—1’+ap>c(s+p71)l )
t2 (1-a)p ootp-1l

s=1

<1

Since fi(z) € Fé(a), it follows from Theorem 2.3 that Ly [fi(2)] € Fé(a). This completes the proof. [
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