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Abstract

In the present paper, we propose and study a new subclass of harmonic multivalent functions in the
open unit disc U = {z : z ∈ C, |z| < 1}, which is characterized by its association with a special
differential operator. This investigation focuses on establishing several fundamental properties of the
introduced subclass including coefficient bounds, convex combination criteria, convolution conditions
and the characterization of its extreme points.

1 Introduction and Preliminaries

Let A denote the family of all functions that are analytic and univalent in open unit disc U = {z : z ∈
C, |z| < 1} and can be expressed in the form

f(z) = z +
∞∑
s=2

asz
s. (1.1)

The subclass S ⊂ A consists of functions that are univalent (i.e., injective) and normalized such that
f(0) = 0 and f ′(0) = 1.

In complex analysis, a complex-valued function f = u+ iv is said to be harmonic if both the real part
u and the imaginary part v are real-valued harmonic functions, that is, they satisfy the Laplace equation
and are twice continuously differentiable. Harmonic functions have been extensively studied and appear
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in various fields such as aerodynamics, engineering, electronics, physics, operations research and different
branches of pure and applied mathematics.

In 1984, Clunie and Sheil-Small [4] introduced a class of harmonic functions denoted by SH. Any
function f in this class can be represented as

f(z) = h(z) + g(z), (1.2)

where h and g are analytic functions in any simply connected domain Ω ⊂ C. Here, h is called analytic
part, while g is referred to as co-analytical part of f(z). According to the theory developed by Clunie
and Sheil-Small [4], a harmonic function f is locally univalent and sense-preserving in Ω if and only if the
condition |h′(z)| > |g′(z)| holds throughout the domain Ω.

The class SH consists of harmonic functions f = h+ g that are sense-preserving in an open unit disc
U and satisfy the normalization condition f(0) = h(0) = fz(0) − 1 = 0. If the co-analytic part g(z) is
identically zero, then the function f reduces to an functions of the class S of analytic univalent functions.

Numerous authors have studied this approach in the context of multivalent function theory, which
emerged as a natural extension of univalent function theory after extensive research on harmonic univalent
functions. These investigations have revealed several new directions in this field. In 2001, Ahuja and
Jahangiri [1] introduced the class SH(p) (p ∈ N = 1, 2, 3, . . . ) consisting of harmonic multivalent (p −
valent) functions of the form f(z) = h(z) + g(z), which are sense-preserving in open unit disc U , where

h(z) = zp +
∞∑
s=2

as+p−1z
s+p−1 and g(z) =

∞∑
s=1

bs+p−1z
s+p−1, |bp| < 1. (1.3)

The class SH(p) converges to the class A(p) of analytic multivalent functions if g(z) = 0, in which case
f(z) = h(z) = zp+

∑∞
s=2 as+p−1z

s+p−1. Since then, many mathematicians and researchers have successfully
completed the study of various remarkable subclasses of harmonic multivalent functions, like El-Ashwah
and Aouf [5], Ezhilarasi et al. [6], Seoudy [10] and Yasar and Yalçın [12].

In geometric function theory, operators are essential tools for generating and analyzing new subclasses
of analytic and harmonic functions. Among these, Integral, differential, and convolution operators are
particularly significant because of their wide-ranging applications in establishing the properties of various
functions.

In 2016, Makinde [8] introduced a Differential Operator, denoted by F l, where l is a non-negative
integer. Using this operator, harmonic multivalent functions can be defined as

F lf(z) = F lh(z) + (−1)lF lg(z), where l ∈ N0 = N ∪ {0} . (1.4)
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The analytic and co-analytical parts of the operator are given by

F lh(z) = zp +

∞∑
s=2

C(s+p−1)las+p−1z
s+p−1, F lg(z) =

∞∑
s=1

C(s+p−1)lbs+p−1z
s+p−1,

where the coefficient C(s+p−1)l is defined as:

C(s+p−1)l =
(s+ p− 1)!

|(s+ p− l − 1)|!
.

Based on this differential operator, we define a class of harmonic multivalent functions, denoted by E l
p(α),

which contains functions of the form given in (1.3) that satisfy the inequality:

Re

[
F l+1f(z)

F lf(z)

]
> pα and 0 ≤ α < 1, z ∈ U, (1.5)

where F lf(z) is defined by (1.4).

We also define a related subclass E l
p(α), consisting of functions of the form

fl(z) = h(z) + gl(z), (1.6)

where

h(z) = zp −
∞∑
s=2

|as+p−1| zs+p−1, gl(z) = (−1)l
∞∑
s=1

|bs+p−1| zs+p−1, with |bp| < 1.

The objective of this paper is to derive a sufficient condition for the function f(z) ∈ E l
p(α) from (1.3) and

also derive the necessary and sufficient condition for the function fl(z) ∈ E l
p(α) from (1.6). In addition,

we aim to obtain convolution results, convex combination, and extreme points for functions fl(z) ∈ E l
p(α).

Remark 1.1. The class E l
p(α) comprises the following well-known classes.

1. The class E l
p(α) reduces to the class SH

∗(α) when l = 0 and p = 1. This class SH
∗(α) was

introduced by Jahangiri [7].

2. The class E l
p(α) reduces to the class BH (l, α) when l ̸= 0 and p = 1. This class BH (l, α) was

introduced by Sharma [11].

3. Setting ρ = 0 in the class GH(l, ρ, α) [3] yields the class E l
p(α) for p ̸= 0.
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2 Coefficient Bound

We begin by deriving a sufficient condition and estimating coefficient bounds for harmonic functions
f(z) ∈ E l

p(α).

Theorem 2.1. Let the harmonic multivalent function f(z) = h(z) + g(z) be defined as in equation (1.3).
If the following inequality holds:

∞∑
s=2

(|s+ p− l − 1| − pα)C(s+p−1)l |as+p−1|

+

∞∑
s=1

(|s+ p− l − 1|+ pα)C(s+p−1)l |bs+p−1| ≤ (1− α)p, (2.1)

then function f(z) is sense-preserving in the open unit disc U and belongs to the class E l
p(α), where

0 ≤ α < 1, l ∈ N0 = N ∪ {0}, and C(s+p−1)l =
(s+p−1)!

|(s+p−l−1)|! .

Proof. To prove that harmonic multivalent function f(z) is sense-preserving, it suffices to verify that
|h′(z)| > |g′(z)|.

Now,

∣∣h′(z)∣∣ ⩾ p |z|p−1 −
∞∑
s=2

(s+ p− 1)
∣∣a(s+p−1)

∣∣ |z|s+p−2

⩾ |z|p−1

[
p−

∞∑
s=2

(s+ p− 1)
∣∣a(s+p−1)

∣∣ |z|s−1

]

> p−
∞∑
s=2

(|s+ p− l − 1| − pα)C(s+p−1)l |as+p−1|
(1− α)p

⩾
∞∑
s=1

(|s+ p− l − 1| − pα)C(s+p−1)l |bs+p−1|
(1− α)p

>
∞∑
s=1

(|s+ p− l − 1| − pα)C(s+p−1)l |bs+p−1| |z|s−1

(1− α)p

>
∞∑
s=1

(s+ p− 1)
∣∣b(s+p−1)

∣∣ |z|s+p−2 =
∣∣g′(z)∣∣

>
∣∣g′(z)∣∣ .

Thus, function f(z) is indeed sense-preserving within the open unit disc U . For showing f(z) ∈ E l
p(α) ,

we have to prove that (1.5) is true.
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If

ω =
F l+1f(z)

F lf(z)
=

A1(z)

A2(z)

and using

Re [ω] > pα ⇔ |ω − (1 + α)p| < |ω + (1− α)p| ,

then it will be enough to prove that

|A1(z)− (1 + α)pA2(z)| − |A1(z) + (1− α)pA2(z)| ≤ 0.

Now, solve the part |A1(z)− (1 + α)pA2(z)|

⇒

∣∣∣∣∣∣∣∣∣∣

(
zp +

∞∑
s=2

C(s+p−1)(l+1)a(s+p−1)z
s+p−1 + (−1)l+1

∞∑
s=1

C(s+p−1)(l+1)b(s+p−1)z̄
s+p−1

)

− (1 + α)p

(
zp +

∞∑
s=2

C(s+p−1)la(s+p−1)z
s+p−1 + (−1)l+1

∞∑
s=1

C(s+p−1)lb(s+p−1)z̄
s+p−1

)
∣∣∣∣∣∣∣∣∣∣

≤ αp |zp|+
∞∑
s=2

(
(1 + α)p− |s+ p− l − 1|

)
C(s+p−1)l

∣∣a(s+p−1)

∣∣ |z|s+p−1

+
∞∑
s=1

(
(1 + α)p− |s+ p− l − 1|

)
C(s+p−1)l

∣∣b(s+p−1)

∣∣ |z̄|s+p−1 .

Now, solve the part |A1(z) + (1− α)pA2(z)|

⇒

∣∣∣∣∣∣∣∣∣∣

(
zp +

∞∑
s=2

C(s+p−1)(l+1)a(s+p−1)z
s+p−1 + (−1)l+1

∞∑
s=1

C(s+p−1)(l+1)b(s+p−1)z̄
s+p−1

)

+ (1− α)p

(
zp +

∞∑
s=2

C(s+p−1)la(s+p−1)z
s+p−1 + (−1)l+1

∞∑
s=1

C(s+p−1)lb(s+p−1)z̄
s+p−1

)
∣∣∣∣∣∣∣∣∣∣

≥ (2− α)p |zp| −
∞∑
s=2

∣∣∣(α− 1)p− |s+ p− l − 1|
∣∣∣C(s+p−1)l

∣∣a(s+p−1)

∣∣ |z|s+p−1

−
∞∑
s=1

∣∣∣ |s+ p− l − 1| − (1− α)p
∣∣∣C(s+p−1)l

∣∣b(s+p−1)

∣∣ |z̄|s+p−1 .
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Now, implies that

|A1(z)− (1 + α)pA2(z)| − |A1(z) + (1− α)pA2(z)|

≤ αp |zp|+
∞∑
s=2

(
(1 + α)p− |s+ p− l − 1|

)
C(s+p−1)l

∣∣a(s+p−1)

∣∣ |z|s+p−1

+
∞∑
s=1

(
(1 + α)p− |s+ p− l − 1|

)
C(s+p−1)l

∣∣b(s+p−1)

∣∣ |z̄|s+p−1

+ (α− 2)p |zp|+
∞∑
s=2

∣∣∣(α− 1)p− |s+ p− l − 1|
∣∣∣C(s+p−1)l

∣∣a(s+p−1)

∣∣ |z|s+p−1

+
∞∑
s=1

∣∣∣ |s+ p− l − 1| − (1− α)p
∣∣∣C(s+p−1)l

∣∣b(s+p−1)

∣∣ |z̄|s+p−1 .

Now,

=⇒2

∞∑
s=2

∣∣∣ |s+ p− l − 1| − αp
∣∣∣C(s+p−1)l

∣∣a(s+p−1)

∣∣ |z|s+p−1

+ 2
∞∑
s=1

∣∣∣ |s+ p− l − 1|+ αp
∣∣∣C(s+p−1)l

∣∣b(s+p−1)

∣∣ |z̄|s+p−1 − 2(1− α)p |zp| ≤ 0.

Now, we have
∞∑
s=2

∣∣∣ |s+ p− l − 1| − αp)
∣∣∣C(s+p−1)l

∣∣a(s+p−1)

∣∣
+

∞∑
s=1

∣∣∣ |s+ p− l − 1|+ αp)
∣∣∣C(s+p−1)l

∣∣b(s+p−1)

∣∣ ≤ (1− α)p.

This completes the proof.

If p = 1 in Theorem (2.1), then Corollary (2.2) is obtained.

Corollary 2.2. [11] Let f(z) = h(z) + g(z) be given by (1.2). If
∞∑
s=2

(|s− l| − α)Csl |as|+
∞∑
s=1

(|s− l|+ α)Csl |bs| ≤ (1− α),

where 0 ≤ α < 1, l ∈ N0 = N ∪ {0}, and Csl =
s!

|s−l|! , then the function f(z) is sense-preserving in U and
f(z) ∈ BH (l, α).

The harmonic multivalent function

f(z) = z +
∞∑
s=2

(1− α)p(
|s+ p− l − 1| − αp

)
C(s+p−1)l

Xsz
s

+
∞∑
s=1

(1− α)p(
|s+ p− l − 1|+ αp

)
C(s+p−1)l

Yszs,

(2.2)
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where 0 ≤ α < 1, l ∈ N0 = N ∪ {0} , C(s+p−1)l =
(s+p−1)!

|(s+p−l−1)|! and
∑∞

s=2 |Xs|+
∑∞

s=1 |Ys| = 1, shows that
the coefficient bound given by (2.1) is sharp. The functions of the form (2.2) belongs to the class E l

p(α)

because
∞∑
s=2

(
|s+ p− l − 1| − αp

)
C(s+p−1)l

(1− α)p
|as+p−1|

+

∞∑
s=1

(
|s+ p− l − 1|+ αp

)
C(s+p−1)l

(1− α)p
|bs+p−1|

= 1 +
∞∑
s=2

|Xs|+
∞∑
s=1

|Ys| = 2.

(2.3)

The following theorem demonstrates that condition (2.1) is not only sufficient but also necessary for the
functions fl = h+ gl, where h and gl are of the form(1.6).

Theorem 2.3. Let the harmonic multivalent function fl(z) = h(z)+ gl(z) be defined as in equation (1.6).
Then fl(z) ∈ E l

p(α) if and only if the following inequality holds:

∞∑
s=2

(|s+ p− l − 1| − αp)C(s+p−1)l |as+p−1|

+

∞∑
s=1

(|s+ p− l − 1|+ αp)C(s+p−1)l |bs+p−1| ≤ (1− α)p,

(2.4)

where 0 ≤ α < 1, l ∈ N0 = N ∪ {0} and C(s+p−1)l =
(s+p−1)!

|(s+p−l−1)|! .

Proof. For this theorem, we just need to show “only if” part. Since E l
p(α) ⊆ E l

p(α), we observe that the
condition (1.5) is equivalent for the functions fl(z) of the form (1.6),

Re



zp −
∑∞

s=2C(s+p−1)(l+1)

∣∣a(s+p−1)

∣∣ zs+p−1 + (−1)2l+1
∑∞

s=1C(s+p−1)(l+1)

∣∣b(s+p−1)

∣∣ z̄s+p−1

zp −
∑∞

s=2C(s+p−1)l

∣∣a(s+p−1)

∣∣ zs+p−1 + (−1)2l
∑∞

s=1C(s+p−1)l

∣∣b(s+p−1)

∣∣ z̄s+p−1

−
αp
(
zp −

∑∞
s=2C(s+p−1)l

∣∣a(s+p−1)

∣∣ zs+p−1 + (−1)2l
∑∞

s=1C(s+p−1)l

∣∣b(s+p−1)

∣∣ z̄s+p−1
)

zp −
∑∞

s=2C(s+p−1)l

∣∣a(s+p−1)

∣∣ zs+p−1 + (−1)2l
∑∞

s=1C(s+p−1)l

∣∣b(s+p−1)

∣∣ z̄s+p−1


≥ 0,

Re



(1− αp)−
∑∞

s=2 (|s+ p− l − 1| − αp)C(s+p−1)l

∣∣a(s+p−1)

∣∣ zs−1

1−
∑∞

s=2C(s+p−1)l

∣∣a(s+p−1)

∣∣ zs−1 + z̄
z

∑∞
s=1C(s+p−1)l

∣∣b(s+p−1)

∣∣ z̄s−1

−
z̄
z

{∑∞
s=1 (|s+ p− l − 1|+ αp)C(s+p−1)l

∣∣b(s+p−1)

∣∣ z̄s−1
}

1−
∑∞

s=2C(s+p−1)l

∣∣a(s+p−1)

∣∣ zs−1 + z̄
z

∑∞
s=1C(s+p−1)l

∣∣b(s+p−1)

∣∣ z̄s−1


≥ 0. (2.5)
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The above equation (2.5) must be true for all values of z on the positive real axis, where 0 ≤ |z| < r < 1.
Now, we get



(1− αp)−
∑∞

s=2 (|s+ p− l − 1| − αp)C(s+p−1)l

∣∣a(s+p−1)

∣∣ rs−1

1−
∑∞

s=2C(s+p−1)l

∣∣a(s+p−1)

∣∣ rs−1 +
∑∞

s=1C(s+p−1)l

∣∣b(s+p−1)

∣∣ r̄s−1

−
∑∞

s=1 (|s+ p− l − 1|+ αp)C(s+p−1)l

∣∣b(s+p−1)

∣∣ r̄s−1

1−
∑∞

s=2C(s+p−1)l

∣∣a(s+p−1)

∣∣ rs−1 +
∑∞

s=1C(s+p−1)l

∣∣b(s+p−1)

∣∣ r̄s−1


≥ 0. (2.6)

We observe that, if condition (2.1) is not satisfied for the numerator in (2.6) when r −→ 1, it results in
negative value. This is contradicting the condition for fl(z) ∈ E l

p(α) and hence the proof is completed.

3 Convolution

In this part, we establish the closure property of the class E l
p(α) under convolution. In this part, we

establish the closure nature of the class E l
p(α) under convolution. For harmonic multivalent functions

fl(z) = zp −
∞∑
s=2

|as+p−1| zs+p−1 + (−1)l
∞∑
s=1

|bs+p−1| z̄s+p−1

and

Fl(z) = zp −
∞∑
s=2

|as+p−1| zs+p−1 + (−1)l
∞∑
s=1

|bs+p−1| z̄s+p−1.

The convolution relation for fl(z) and Fl(z) is defined as

(fl ∗ Fl)(z) = fl(z) ∗ Fl(z)

= zp −
∞∑
s=2

|as+p−1As+p−1| zs+p−1 + (−1)l
∞∑
s=1

|bs+p−1Bs+p−1| z̄s+p−1. (3.1)

Theorem 3.1. Let 0 ≤ α1 ≤ α2 < 1, l ∈ N0 = N ∪ {0}. If fl(z) ∈ E l
p(α2) and Fl(z) ∈ Ē l

p(α1), then
fl(z) ∗ Fl(z) belongs to E l

p(α2) ⊂ E l
p(α1).

Proof. We aim to obtain the coefficient for fl∗Fl, that satisfies the necessary condition defined in Theorem

http://www.earthlinepublishers.com
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2.3. Now Fl(z) ∈ E l
p(α1), we see that |As+p−1| ≤ 1 and |Bs+p−1| ≤ 1. Now,

∞∑
s=2

(
|s+ p− l − 1| − α1p

)
C(s+p−1)l

(1− α1)p
|as+p−1| |As+p−1|

+

∞∑
s=1

(
|s+ p− l − 1|+ α1p

)
C(s+p−1)l

(1− α1)p
|bs+p−1| |Bs+p−1|

≤
∞∑
s=2

(
|s+ p− l − 1| − α1p

)
C(s+p−1)l

(1− α1)p
|as+p−1|

+

∞∑
s=1

(
|s+ p− l − 1|+ α1p

)
C(s+p−1)l

(1− α1)p
|bs+p−1|

≤
∞∑
s=2

(
|s+ p− l − 1| − α2p

)
C(s+p−1)l

(1− α2)p
|as+p−1|

+
∞∑
s=1

(
|s+ p− l − 1|+ α2p

)
C(s+p−1)l

(1− α2)p
|bs+p−1|

≤ 1.

Because 0 ≤ α1 ≤ α2 < 1 and fl(z) ∈ E l
p(α2), so fl(z) ∗ Fl(z) ∈ E l

p(α2) ⊂ E l
p(α1). Therefore proof of the

theorem is complete.

4 Convex Combination

In this part, we establish the closure property under convex combination for the class E l
p(α). We consider

harmonic multivalent functions fli(z) defined for i = 1, 2, 3, · · · ,m by

fli(z) = zp −
∞∑
s=2

|as+p−1,i| zs+p−1 + (−1)l
∞∑
s=1

|bs+p−1,i| z̄s+p−1. (4.1)

Theorem 4.1. Let the functions fli(z), for i = 1, 2, 3, . . . ,m, be given by (4.1) and suppose that fli(z) ∈
E l
p(α) for each i. Consider a new function ti(z) defined as a linear convex combination of these functions:

ti(z) =
m∑
i=1

cifli(z),

where the coefficients satisfy 0 ≤ ci ≤ 1 and
∑m

i=1 ci = 1. Under these conditions, the function ti(z)

also belongs to the class E l
p(α).
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Proof. By the definition of ti(z), we formulate as follows:

ti(z) = zp −
∞∑
s=2

(
m∑
i=1

ci |as+p−1,i|

)
zs+p−1 + (−1)l

∞∑
s=1

(
m∑
i=1

ci |bs+p−1,i|

)
z̄s+p−1.

Moreover, given that fli(z) belongs to E l
p(α) for each i = 1, 2, 3, . . . ,m, then

∞∑
s=2

(
|s+ p− l − 1| − αp

)
C(s+p−1)l

(
m∑
i=1

ci |as+p−1,i|

)

+

∞∑
s=1

(
|s+ p− l − 1|+ αp

)
C(s+p−1)l

(
m∑
i=1

ci |bs+p−1,i|

)

=

m∑
i=1

ci

( ∞∑
s=2

(|s+ p− l − 1| − αp)C(s+p−1)l |as+p−1,i|

+
∞∑
s=1

(|s+ p− l − 1|+ αp)C(s+p−1)l |bs+p−1,i|

)

≤
m∑
i=1

ci(1− α)p

≤ (1− α)p.

Hence, by Theorem (2.3), we conclude that ti(z) ∈ E l
p(α). This completes the proof.

5 Extreme Points

In this part, we evaluate the extreme points for the class E l
p(α).

Theorem 5.1. Let the harmonic multivalent function fl be defined as in (1.6). Then, fl ∈ E l
p(α), if and

only if it can be expressed in the form

fl(z) =
∞∑
s=1

[
Xs+p−1hs+p−1(z) + Ys+p−1gls+p−1(z)

]
, (5.1)

where

hp(z) = zp, hs+p−1(z) = zp − (1− α)p(
|s+ p− l − 1| − αp

)
C(s+p−1)l

zs+p−1, l = 2, 3, 4, · · · ,

and
gls+p−1(z) = zp + (−1)l

(1− α)p(
|s+ p− l − 1|+ αp

)
C(s+p−1)l

z̄s+p−1, l = 1, 2, 3, · · · ,
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and the coefficients Xs+p−1 and Ys+p−1 are non-negative and satisfy the normalization condition:
∞∑
s=1

[Xs+p−1 + Ys+p−1] = 1, where Xs+p−1 ≥ 0, and Ys+p−1 ≥ 0.

Specifically, the functions hs+p−1(z) and gls+p−1(z) serve as the extreme points of the class E l
p(α).

Proof. The function fl(z) form (5.1), we have

fl(z) =

∞∑
s=1

[
Xs+p−1hs+p−1(z) + Ys+p−1gls+p−1(z)

]
=

∞∑
s=1

Xs+p−1

zp − ∞∑
s=2

(1− α)p(
|s+ p− l − 1| − αp

)
C(s+p−1)l

zs+p−1


+

∞∑
s=1

Ys+p−1

zp + (−1)l
∞∑
s=1

(1− α)p(
|s+ p− l − 1|+ αp

)
C(s+p−1)l

z̄s+p−1


= zpXp −

∞∑
s=2

 (1− α)p(
|s+ p− l − 1| − αp

)
C(s+p−1)l

Xs+p−1z
s+p−1

+ (−1)l
∞∑
s=1

 (1− α)p(
|s+ p− l − 1|+ αp

)
C(s+p−1)l

Ys+p−1z
s+p−1.

Therefore,

∞∑
s=2

(
|s+ p− l − 1| − αp

)
C(s+p−1)l |as+p−1|

(1− α)p

+ (−1)l
∞∑
s=1

(
|s+ p− l − 1|+ pα

)
C(s+p−1)l |bs+p−1|

p(1− α)

=
∞∑
s=2

Xs+p−1 +
∞∑
s=1

Ys+p−1

= 1−Xp

≤ 1.

By Theorem 2.3, this implies that fl ∈ E l
p(α) .

Conversely, suppose fl ∈ E l
p(α) and define

Xs+p−1 =

(
|s+ p− l − 1| − αp

)
C(s+p−1)l

(1− α)p
|as+p−1| , 0 ≤ Xs+p−1 ≤ 1, s = 2, 3, 4, . . . ,
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Ys+p−1 =

(
|s+ p− l − 1|+ αp

)
C(s+p−1)l

(1− α)p
|bs+p−1| , 0 ≤ Ys+p−1 ≤ 1, s = 1, 2, 3, 4, . . .

and

Xp = 1−

( ∞∑
s=2

Xs+p−1 +
∞∑
s=1

Ys+p−1

)
.

So, fl can be expressed as

fl(z) = zp −
∞∑
s=2

|as+p−1| zs+p−1 + (−1)l
∞∑
s=1

|bs+p−1| z̄s+p−1

= zp −
∞∑
s=2

 (1− α)p(
|s+ p− l − 1| − αp

)
C(s+p−1)l

Xs+p−1z
s+p−1

+ (−1)l
∞∑
s=1

 (1− α)p(∣∣∣s+ p− l − 1
∣∣∣+ αp

)
C(s+p−1)l

Ys+p−1z
s+p−1

= Xphp(z) +
∞∑
s=2

Xs+p−1hs+p−1(z) +
∞∑
s=1

Ys+p−1gls+p−1(z)

=

∞∑
s=1

Xs+p−1hs+p−1(z) +

∞∑
s=1

Ys+p−1gls+p−1(z).

This completes the proof of Theorem (5.1).

6 Integral Operator

In this part, we examine the generalized Bernardi-Libera-Livingston integral operator [2] introduce by
Bernardi in 1969 for the class E l

p(α).

Theorem 6.1. Let the function fl(z), as defined in equation (1.6), belong to the class E l
p(α). For any

real number d such that d > −p, define the operator Ld [fl(z)] as follows [2]:

Ld [fl(z)] =
d+ p

zp

∫ z

0
t(d−1)fl(t)dt.

Under these conditions, the transformed function Ld [fl(z)] also belongs to the class E l
p(α).
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Proof. From definition of Ld [fl(z)], we formulate as follows:

Ld [fl(z)] =
d+ p

zp

∫ z

0
t(d−1)fl(t)dt

=
d+ p

zp

∫ z

0
t(d−1)

[
tp −

∞∑
s=2

|as+p−1| ts+p−1 + (−1)l
∞∑
s=1

|bs+p−1| t̄s+p−1

]

= zp −
∞∑
s=2

p+ d

d+ s+ p− 1
|as+p−1| zs+p−1 + (−1)l

∞∑
s=1

p+ d

d+ s+ p− 1
|bs+p−1| z̄s+p−1

= zp −
∞∑
s=2

|As+p−1| zs+p−1 + (−1)l
∞∑
s=1

|Bs+p−1| z̄s+p−1.

Now, we compare above equation with (1.6), then we get

|as+p−1| = |As+p−1| =
p+ d

d+ s+ p− 1
|as+p−1| ,

|bs+p−1| = |Bs+p−1| =
p+ d

d+ s+ p− 1
|bs+p−1| .

In the order to show Ld [fl(z)] ∈ E l
p(α), we have to prove that condition (2.4) is satisfied. Now consider,

∞∑
s=2

(
|s+ p− l − 1| − αp

)
C(s+p−1)l

(1− α)p

p+ d

d+ s+ p− 1
|as+p−1| zs+p−1

+
∞∑
s=1

(
|s+ p− l − 1|+ αp

)
C(s+p−1)l

(1− α)p

p+ d

d+ s+ p− 1
|bs+p−1| z̄s+p−1

≤
∞∑
s=2

(
|s+ p− l − 1| − αp

)
C(s+p−1)l

(1− α)p
|as+p−1|

+
∞∑
s=1

(
|s+ p− l − 1|+ αp

)
C(s+p−1)l

(1− α)p
|bs+p−1|

≤ 1.

Since fl(z) ∈ E l
p(α), it follows from Theorem 2.3 that Ld [fl(z)] ∈ E l

p(α). This completes the proof.
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