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Abstract

This paper presents a semi-analytical solution to the two-dimensional time-fractional Fisher’s equation
using the Homotopy Analysis Method (HAM). The governing equation models reaction—diffusion
processes with memory effects, incorporating the Caputo fractional derivative to account for anomalous
temporal behavior. The HAM framework is constructed by first selecting an appropriate initial
guess that satisfies both the initial and boundary conditions, followed by the recursive generation
of higher-order approximations. The convergence of the series solution is controlled through the
auxiliary parameter i, whose optimal value is determined at each time level by enforcing consistency
with boundary conditions. The analytical results are validated against numerical simulations,
demonstrating excellent agreement. This study highlights the flexibility and efficiency of HAM in
handling high-dimensional nonlinear fractional partial differential equations and provides a foundation

for extending the method to more complex biological or ecological models.

1 Introduction

The Fisher’s equation, originally introduced to model the spread of advantageous genes in a population, is a
classical reaction—diffusion equation with applications extending into ecology, epidemiology, and chemical
kinetics [1]. While the traditional model captures diffusive and reactive behavior well, it often fails to

represent systems with memory or hereditary effects, particularly in heterogeneous media.

To address this shortcoming, the time-fractional variant of the Fisher’s equation has been increasingly
explored. Time-fractional derivatives, commonly expressed in the Caputo sense, provide a mathematical

framework to model anomalous diffusion and long-range temporal dependencies [10, 11].

Several analytical and numerical studies have been conducted to understand such equations. For

example, Ahmed [1] derived approximate analytical solutions for both one- and two-dimensional cases.
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Zidan et al. [11] and Majeed et al. [9] explored the use of semi-analytical methods for various forms

of fractional Fisher’s equations.

Despite these efforts, obtaining closed-form or convergent solutions to nonlinear time-fractional PDEs
remains challenging. Researchers have proposed numerical methods based on finite difference schemes [7],
spectral approximations [4], and Lie symmetry approaches [2]. Nonetheless, many of these methods are

either computationally intensive or lack analytical insight.

The Homotopy Analysis Method (HAM) offers a powerful alternative by constructing a convergent
series solution independent of small parameters [5, 6]. One of the strengths of HAM lies in the introduction
of an auxiliary parameter h, which allows explicit control over the convergence region of the solution series
[24]. Recent work by Liu and Wu [8] as well as Ishii [3] underscores the utility of analytical approaches in

characterizing the behavior of solutions to fractional Fisher-type equations.

This study aims to derive a semi-analytical solution for the two-dimensional time-fractional Fisher’s
equation using HAM. The goal is to construct a convergent solution that satisfies the initial and boundary
conditions while leveraging the convergence control capabilities of HAM. Our approach contributes to a
growing body of literature by offering a computationally efficient and analytically transparent method for

solving complex fractional reaction—diffusion systems.

2 Governing Equations

Let Q = {(x,y,t) € R30 <2 < 1,0 <y < 1,0 <t< 1} be the solution domain, where the temperature
distribution u(x,y,t) is unknown and to be determined during the solution process. The mathematical

formulation for a moving boundary problem is given by
(CJD?u(xv yat) - Au(x,y,t) - u(x, y7t)(1 - (u(:v,y,t)ﬁ)) = f(:L‘,y,t) 0<a< 17 B > 1. (1)

For a function u(x,y,t), the Caputo fractional derivative of order a € (0, 1] with respect to time is defined

as:
1 Pou(z,y,T) 1
¢ Do t) = Ll d 2
0 tU(.T,y, ) F(l—a)/o oo (t—’l')a T ( )
with an initial condition of

u(z,y,0) = g(z,y) (3)

and the boundary conditions of
u(z,0,t) = ai(x,t), u(z,1,t) =az(z,t). (4)
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3 Application of the Homotopy Analysis Method (HAM)

Consider the differential equation
R[(&,1)] = w(&, 1), (5)

where £ € (z,y). Using homotopy, a basic concept in topology

(1= q) L€, t;q) —uo(§, )] = hgH (€, OR[p(§, ;5 9) — w(&, )], (6)

where £ is an auxiliary linear operator with the property

N - the nonlinear operator related to the original equation (5),

q € [0,1] - the embedding parameter in topology (called the homotopy parameter),
v(&,t; q) - the solution for equation (6) for ¢ € [0, 1],

up(&, t) — the initial guess for u(&,t),

h #£ 0 - the convergence control parameter,

H(&,t) — an auxiliary function that is non-zero almost everywhere.

When ¢ = 0 due to the property £[0] = 0, equation (3) becomes

p(§,1;0) = uo (&, 1) (8)

When g = 1, with & # 0 and H(&, t) # 0 equation (2) becomes equivalent to the original nonlinear equation
(6) so that we have

e(&, 1) = u(&, 1), 9)

where u(&,t) is the solution to equation (5). As the homotopy parameter ¢ increases from 0 to 1, the
solution (&, t;q) of equation (6) varies (or deforms) continuously from the initial guess ug(,t) to the
solution u(&, t) of the original equation (5). This is why equation (6) is called the zeroth-order deformation

equation.

If £,H(&,t) and h are properly chosen so that the solution ¢(&,t;q) of the zeroth-order deformation
equation (6) always exists for ¢ € [0, 1] and it is analytic at ¢ = 0; the Maclaurin series solution for ¢(&, t; q)
with respect to g, i.e.

(o]
P(6t0) = w(Est) + S (&, )™ (10)
m=1

converges at ¢ = 1. Then, due to equation (9), we have the approximation series

u(éat) :u0(§7t)+ Zum(fat)‘ (11)

m=1
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Substituting the series equation (10) into the zeroth-order deformation equation (6), we have the high-order

approximation equations for u,,(&,t) called the mth-order deformation equation

[’[um(g7 t) - Xmum—l(fv t)] = h?‘[(f, t>Rm(um—1(€7 t))’ (12)
where
m—1 .
Rotni6.0) = it | g — (el tia] —w(e.0)]| (13
and
0, m<l1
Xm = (14)
1, m>1.

For our governing equations, equation (1) — equation (4)

aaumfl(ga t) . OUp—1 (57 t) . 8um71(§7 t)
ot~ Ox? oy?

Rm(umfl (Ea t)) — *umfl(é-v t)(l - (umfl (f? t))ﬁ) - f(é-’ t)' (15)

Now the solution of mth-order deformation equation (12) for m > 1 reads

um (&, 1) = Xmtm—1(§, 1) + R H(E 1) R (um—1(£,1))] + ¢, (16)

where c is the integration constant which is determined by the initial condition ug(&,t) and

I -
JEH(E ) R (um—1(&,1))] = F(a)/o [H(&,7) Ryn (w1 (&, 7))t — 7) Hdr. (17)
Now from equation (16) the values u,,(&,t) for m = 1,2,3,... can be obtained and the series solutions are

thus gained. Finally, the approximate solution is gained by truncating the series as

um(€7t) = ZUZ(éat) (18)

1=0

It is clear from equation (18) that wu,,(&,t) contains the convergence control parameter /i, which determines

the convergence region and rate of the homotopy series solution.

Unlike the conventional Homotopy Analysis Method (HAM) where £ is found by using #-level curves

or by finding minimizing the residual square of the governing equation; we find A by setting

(u(z, 1,t))pam = az(z,t) (19)

for every time step.

http: //www. earthlinepublishers.com



Semi-Analytical Solution of a Two-Dimensional Time-Fractional Fisher’s Equation ... 1197
4 HAM Solutions to Some Examples
Consider equations (1)-(5), equation (18) and equation (19).
Example 1
9(z,y) =0, (20)
al(xvt) = O) (21)
ag(x,t) = 3T sin zsin(1), (22)
r'4
f(z,y,t) =13 (2750‘ + ((—;—a)) sin(x) sin(y) — 37 sin(z) sin(y) (1- 3T sin(x) sin(y)) , (23)
a=025=1. (24)
To effectively use HAM the following properties are used where the initial guess is
And the convergence control parameter 7 is found by setting
(U(ZL‘,l,t))HAM = a2($7t)' (26)
The exact solution is
u(z,y,t) = t37%sin(x) sin(y). (27)

Using the methodology discussed in Section 3, we have the following error analysis for u(z,y,t) when

x =0.75 and y = 0.80

|(u(:1:, Y, t))exact - (u(ajv Y, 75))HAM|
(U(I’ Y, t))exact '

Relative Error for u(z,y,t) =

(28)
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Table 1: Error analysis of u(x,y,t) when a = 0.2,2 = 0.75 and y = 0.80
t h RE for u(z,y,t)
0.1 | -0.4772267968 | 0.00001750625097
0.2 | -0.4545453524 | 0.0001760078459
0.3 | -0.4396617980 | 0.0006757516595
0.4 | -0.4269004525 | 0.001744962992
0.5 | -0.4140243192 | 0.003613927804
0.6 | -0.3997845570 | 0.006486282271
0.7 | -0.3834472895 0.01050738623
0.8 | -0.3646811798 0.01573529739
0.9 | -0.3435214730 0.02212249429
1.0 | -0.3203255966 0.02951530841
Example 2
%
1 B [(x+y)
= |- —=tanh | = 29
9(z,y) [2 5 tan <4 i )| (29)
7
1 1 B x 1
t)=|=—Ztanh [ = - 4 t
%
1 B | x+1 1
t)=|=-— —tanh [ — — 4 t 31
where
a=0.75,0=2. (33)
To effectively use HAM the following properties are used where the initial guess is
And the convergence control parameter 7 is found by setting
(u(z,1,t))nam = as(z,t) (35)
when o = 1, the exact solution is
1 1 J6; 1 1 5
t)=(=—>tanh (2 - 4)y ] ——t
et = (5 -yt (5 g5+ 0 - 640y 5550)) (36)
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using the methodology discussed in Section 3, we have the following error analysis for u(z,y,t) when
a=1,2=0.25and y = 0.75.

Table 2: Error analysis of u(x,y,t) when o = 1,2 = 0.25 and y = 0.75

t h RE for u(z,y,1t)
0.1 | -3.577207146 | 0.01532350766
0.2 | -3.800004555 | 0.008237957546
0.3 | -3.672126597 | 0.02670271794
0.4 | -3.380436450 | 0.03972295325
0.5 | -3.033638864 | 0.04811163042
0.6 | -2.695600733 | 0.05318164577
0.7 | -2.394324712 | 0.05612387124
0.8 | -2.136694378 | 0.05779039304
0.9 | -1.920001664 | 0.05872125700
1.0 | -1.738344080 | 0.05923713801

The exact solution when 0 < @ < 1 is not known, then the Relative Error will be calculated as follows

) — w1 (2, Y,
Relative Error for u(z,y,t) = [tm(2,9,1) = -1, y, )]
Um(l'ayat)

(37)

Using the methodology discussed in Section 3, we have the following error analysis for u(z,y,t) when
a=0.75,z =0.25 and y = 0.75.

Table 3: Error analysis of u(x,y,t) when o = 0.75, 2 = 0.25 and y = 0.75

t h RE for u(z,y,t)
0.1 | -1.848796662 0.2696549594
0.2 | -2.335536587 | 0.2326842920
0.3 | -2.497715779 0.1650018804
0.4 | -2.470772918 0.1079414949
0.5 | -2.344506490 | 0.06623720107
0.6 | -2.180411366 | 0.03887556120
0.7 | -2.012809237 | 0.02218118065
0.8 | -1.857205507 | 0.01244415453
0.9 | -1.718728552 | 0.006913946042
1.0 | -1.597646902 | 0.003820383035
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5 Analysis and Conclusion

The numerical results obtained using the Homotopy Analysis Method (HAM) for the temperature
distribution u(zx,y,t) show excellent agreement with known or exact solutions. A key innovation in this
study was the use of the boundary condition u(z,1,t) to compute the convergence control parameter h at
each time step. This dynamic, boundary-driven approach led to significantly faster convergence, reduced

computational time, and minimized relative error (RE).

Unlike earlier applications of HAM, which commonly determine A using heuristic h-curves or by
minimizing the average residual error of the discretized solution—often applying a single A value across all
time steps—our method adapts & at each time level based on physical boundary data. This customization

enhances the accuracy and efficiency of the solution process.

This study presents a novel and elegant approach for determining the convergence control parameter
h, one that can be extended to a wide range of linear and nonlinear ordinary and partial differential
equations. We have demonstrated that HAM is not only suitable for one-dimensional problems but is also
a powerful and flexible tool for solving complex two-dimensional moving boundary problems with strong

physical and mathematical consistency.
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