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Abstract

In this paper we introduce the notion of an extended interpolative single and multivalued Berinde weak
type F-contraction, and obtain some fixed point theorems for such mappings. An example is given to

illustrate the main result.

1 Introduction and Preliminaries

Definition 1.1. [/] Let (X,d) be a metric space. The mapping S : X — X s called an interpolative

Kannan type contraction, if there are constants o € [0,1) and ¢1 € (0,1) such that
d(Sp, Sq) < ad(p, Sp)**d(q, Sq)' ',
for all p,q € X\Fix(S), where Fiz(S) ={p € X : Sp = p}.

Definition 1.2. [?] Let (X,d) be a metric space. A mapping S : X +— X is said to be an interpolative
Reich-Rus-Cliric type contraction, if there are constants a € [0,1) and c1,¢o € (0,1) such that

d(Sp, Sq) < ad(p,q) d(p, Sp)*d(q, Sg)' =,
for all p,q € X\Fiz(S).

Definition 1.3. [9] Let (X,d) be a metric space. We say that the self-mapping S : X — X is an
interpolative Hardy-Rogers type contraction if there exists o € [0,1) and c1,co,c3 € (0,1) with c1+ca+c3 <
1, such that

o [d(p, Sq) + d(q, Sp) ]!~
2 )

d(Sp, Sq) < ad(p,q)d(p, Sp)d(q, Sq)

for all p,q € X\ Fix(S).
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Notation 1.4. [/] Q will denote the class of all functions F : RT — R satisfying the following properties

(a) F is strictly increasing,
(b) for each sequence {p,} C RT of positive numbers limy, oo pr, = 0 <= limy,_00 F(py) = —00,
(c) there exists m € (0,1) such that lim,,_, o+ p" F(p) = 0.

Example 1.5. [/] The following functions, F : RT — R, belong to

(a) F(p) =In(p* +p), p>0,
(b) F(p) = 5, p>0,
(c) F(p) =In(p), p> 0.

Definition 1.6. [5] Let (X, d) be a metric space. A mapping S : X — X is called an extended interpolative
Ciric-Reich-Rus type F'-contraction if there exists c¢1,co € [0,1) with ¢1 +c2 <1, 7> 0 and F € Q such
that

T+ F(d(Sp, Sq)) < erF(d(p, q)) + c2F'(d(p, Sp)) + (1 — 1 — c2) F'(d(q, Sq)),
for all p,q € X\ Fixz(S) with d(Sp,Sq) > 0.
Definition 1.7. [0] Let (X, d) be a metric space. A mapping S : X + X is called an extended interpolative

Hardy-Rogers type F-contraction, if there exists c1,ca,c3 € [0,1) with ¢ +ca+c¢3 <1, 7 >0, and F € Q
such that

4 F(d(Sp, S0)) < 1 F(d(p. q)) + c2F(d(p, Sp)) + s F(d(q, S9)) + (1— 1 — ey —s)F (d(p’ S9) +dg, Sp)) ,

2
for all p,q € X\ Fiz(S) with d(Sp, Sq) > 0.

Definition 1.8. ([5/, [0]) Let (X, d) be a metric space, and let CB(X) be the collection of all nonempty
bounded and closed subsets of X. The Hausdorff metric induced by the metric d of X is defined as

H(A, B) = max{supd(p, B),supd(q, A)},
peEA qeB

for every A, B € CB(X) with d(p, B) = inf{d(p, q) : ¢ € B}.

Definition 1.9. ( [5], [0]) Let S be a mapping from X to CB(X). If p € Sp, then p € Q is called a fived
point of the multivalued mapping S.
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Definition 1.10. /5] Let (X,d) be a metric space. A mapping S : X — CB(X) is called an extended
interpolative multivalued Ciric-Reich-Rus type F-contraction if there exists c1,co € [0,1) with ¢1 + co < 1,
7 >0 and F € Q such that

7+ H(d(Sp,Sq)) < c1F(d(p,q)) + c2F (d(p, Sp)) + (1 — e1 — c2) F(d(q, Sq)),
for all p,q € X\Fixz(S) with H(Sp,Sq) > 0.

Definition 1.11. [0/ Let (X,d) be a metric space. A mapping S : X — CB(X) is called an extended
interpolative multivalued Hardy-Rogers type F-contraction, if there exists c1, ca,c3 € [0,1) with c1+ca+e3 <
1, 7> 0, and F € Q such that

r 1 H(d(Sp, S)) < 1 F(d(p, @)+ esF (d(p, Sp)) +esF(d(q, Sq))+ (1 -1 —er—c5)F (d@’ 59) +dlg, Sp)) ,

2
for all p,q € X\Fixz(S) with H(Sp,Sq) > 0.

Definition 1.12. [7] Let (X,d) be a metric space. We say T : X — X is an interpolative Berinde weak
operator if it satisfies
d(Tz,Ty) < d(z,y)*d(z,Tx)' ",

where A € [0,1) and a € (0,1), for all z,y € X, z,y ¢ Fix(T).

Alternatively, the interpolative Berinde weak operator is given as follows

Definition 1.13. [7] Let (X,d) be a metric space. We say T : X — X is an interpolative Berinde weak

operator if it satisfies

VI
NI

d(Tz,Ty) < Ad(z,y)2d(z, Tx)?,

where X € [0,1), for all x,y € X, x,y ¢ Fix(T).

2 Main Result

Definition 2.1. Let (X,d) be a metric space. We will call the self mapping T on X an extended
interpolative Berinde weak type F'-contraction if there exists o € (0,1), 7 >0, and F € Q such that

T4+ F(d(Tz,Ty)) < aF(d(z,y)) + (1 — «)F(d(z, Tz)),
for all x,y € X\Fix(T) with d(Tx,Ty) > 0.

Theorem 2.2. An extended interpolative Berinde weak type F'-contraction self mapping on a complete

metric space admits a fized point in X.
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Proof. Let 6y € X. Define the sequence {6, } by 6,, = T"(6y) for each positive integer n. If there exists ng
so that 0, = 0,41, then 6, is a fixed point of T. Suppose that 6, # 0,41 for all n > 0. From Definition
2.1, we have

7+ F(d(0, 0n1)) = 7+ F(A(T(02), T(0n 1))
< aF(d(0pn,0n-1)) + (1 —a)F(d(0,,T6,))
= aF(d(0n,0nh-1)) + (1 — a)F(d(0n, 0pt1))-

A

Suppose that d(6,-1,0,) < d(0,,0,+1) for some n > 1. Then from the above inequality we have, 7 +
F(d(0y,0n+1)) < F(d(0y,0,+1)), which is a contradiction. Therefore, d(6,,60,+1) < d(0p—1,6,) for all
n > 1. Thus, we have, 7 + F(d(0y,0n+1)) < F(d(0p—-1,6r)) . Consequently we have,

F(d(Oy,0nh11)) < F(d(0p-1,0,)) — 7 < --- < F(d(6p,01)) — nT,

for all n > 1. Therefore, d(6,,0n4+1) < d(0p—1,6,) for all n > 1. Now taking limits in the above inequality

as n — oo we get that limy, o F/(d(0y,0n+1)) = —00. From Notation 1.4(b), we have lim,,_,oc d(0y, Ont1) =

0. Put v, = d(0,0,+1), Thus, lim,,_,o v, = 0 Then for any n € N, we have %’i(F(q/n)—F(yo)) < —vﬁm' <

0. Thus, lim,,_, 'yﬁn = 0. So there is N € N, so that, v, < i% for all n > N. Now for any m,n € N with
n

m > n we get
m—1

97179 Z d 91791+1 Z Yn < mz:

?r‘\»—t‘ =

Since the last term of the above 1nequahty tends to zero as m,n — oo, we have d(6,,6,,) — 0 as
m,n — oo, that is {6,} is a Cauchy sequence. Since X is complete, there is § € X such that 6, — 0 as
n — 00. Now we show that 6 is a fixed point of T'. Suppose to the contrary that 8 # T'0.We consider two

cases
Case 1: There is a subsequence {6y, } such that 79, = T6 for all k € N.

In this case
d,T9) = hm d(9nk+1,T9) = hm d(T0,,,T0) =0.

k—o00

Case 2: There is a natural number N such that 70, # T0 for all n > N.

In this case, from Definition 2.1, we have

T+ F(d(0ny1,T6)) = 7 + F(d(T6,,T0))
< aF(d(0n,0)) + (1 — a)F(d(0y, 0psr)).

http: //www. earthlinepublishers.com
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Letting m — oo in the above inequalty, we get that lim, . F(d(0,41,70)) = —oo and so
limy, 00 d(0p+1,70) = 0. Therefore,

d(6,T6) = lim d(0,41,7) = lim d(T6,,T6) = 0.

n—oo

Thus, d(0,T0) =0, and so § = T, and the proof is finished. O

Definition 2.3. Let (X,d) be a metric space. We will call the multivalued mapping T : X — CB(X) an
extended interpolative multivalued Berinde weak type F-contraction if there exists o € (0,1), 7 > 0, and
F € Q such that

T4+ F(H(Tz,Ty)) < aF(d(z,y)) + (1 — «)F(d(z, Tz)),

for all z,y € X\Fiz(T) with H(Tx,Ty) > 0.

Theorem 2.4. Let (X,d) be a complete metric space, and T be an extended interpolative multivalued
Berinde weak type F-contraction. Assume in addition that

(H): F(inf A) = inf F(A).

Then T has a fixed point.

Proof. Choose two arbitrary points g € X and 6y € Ty. If 6y € Ty or 6, € TH; we have nothing to
prove. Let 6y ¢ Ty and 01 ¢ T0,. Then Ty # T6,. Now

% + F(d(01,T61)) < 7+ F(H(T0o,T61))
< aF(d(6o,61)) + (1 — a)F(d(6o, Tb))
< aF(d(6o,61)) + (1 — ) F(d(6p, 61))

= F(d(6p,01)).
From the above inequality and using (H), we can conclude that there is 6 € T'0; so that
g + F(d(01,62)) < F(d(6o,61)).
Continuing this process, we obtain a sequence {6, } in X such that 6,4, € T0,, 0, ¢ T, and,
%+ F(d(6,0n41)) < F(d(0n-1,6,).

If there is ng so that 0,, = 0y,,+1, then 6,, is a fixed point of 7. So we assume that 6,, # 6,41 for all
n > 0. Consequently,

F(d(&n,ﬂmrl)) < F(d(ﬂn,l,Hn)) -
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for all n > 1. Similar to Theorem 2.2, we find that {6,} is a Cauchy sequence. Since X is complete,
there is # € X such that 6,, — 6. Now we show that 6 is a fixed point of T. Assume to the contrary that
0 ¢ T6. We consider two cases.

Case 1: There is a subsequence {6y, } such that 79, = T0 for all k € N.

In this case
d(0,7T0) = lim d(@nk+1,T9) = lim H(T@nk,TG) =0.

Case 2: There is a natural number N such that 70, # T0 for all n > N.

In this case we have
T+ F(d(0p+1,70)) =7+ F(H(T0,,T0))
< aF(d(0,,0)) + (1 —a)F(d(bn,Ont1))-

Now letting n — oo in the above inequality, we find that lim, , F(d(6p+1,70)) = —oo and so
limy, 00 d(0p4+1,76) = 0. Therefore,

d(6,70) = Tim_d(6p11,T9) < lim H(T6,,T6) = 0.

n—oo
Thus, d(0,70) = 0 and hence § = T, and the proof is finished. O
Example 2.5. Let X = {—1,0,1} be endowed with the metric
ifd=v
Zf (0, U) € {(17 _1)7 (_L 1)}

otherwise.

d(0,v) =

= ol O

Clearly (X,d) is complete. Take T(0) = T(—1) =0 and T'(1) = —1. First, letting @ =0 and v =1, we
have

F(d(T,Tv)) = F(d(0,~1)) = F(1) and F(d(6,v)) = F(d(0,1)) = F(1).

Thus, we cannot find T > 0 such that 7 + F(d(T0,Tv)) < F(d(0,v)), that is, Theorem 1.9 [5] is not
applicable. On the other hand, let 6,v € X\ Fix(T) with d(T0,Tv) > 0. Hence, 6,v € {(1,-1),(—1,1)}.

Without loss of generality take (6,v) = (1,—1). Choose o = 3, 7 = xln( 3 ), and F(t) = In(t). Observe

we have T+ F(d(T0,Tv)) = §Zn<§) and aF(d(0,v)) + (1 —a)F(d(0,T0)) = ln(%) . It follows that T is

an extended interpolative Berinde weak type F-contraction. Here, T admits a fixved point (u = 0).
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