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Abstract

This paper defines certain subclasses of analytic functions and various properties including necessary
conditions, distortion result, inclusion properties are investigated. In addition radius problems are
discussed. Several known consequences of our investigations are also pointed out.

1 Introduction

Let A be the class of analytic functions f in the open unit disc U = {z : |z| < 1} and be given by

f(z) = z +

∞∑
k=2

anz
n. (1.1)

Also, we denote by S, S∗, C and K the subclasses of A which contains univalent, starlike, convex and

close-to-convex in U , respectively.

For f, g ∈ A, the convolution (Hadamard product) is defined by

(f ∗ g) (z) = z +

∞∑
k=2

akbkz
n,

with g(z) = z +
∞∑
k=2

bkz
n and f(z) is given by (1.1).
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Using the techniques from convolution theory, the authors [1] introduced an integral operator

ON [(fj , gj , hj) (z)] : AN → A as follows:

FN (z) = ON (fj , gj , hj) (z) =

∫ z

0

N∏
j=1

[fj(t) ∗ gj(t)]αj

(
hj(t)

t

)βj

dt, (1.2)

where fj , gj , hj ∈ A with fj(z) ∗ gj(z) ̸= 0, αj , βj ≥ 0 for j = 1, 2, 3, ..., N .

If f ≺ g, then f(z) = g(w(z)), where ≺ denote subordination and w is a Schwartz function with the

properties w(0) = 0 and |w(z)| < |z|. Further, if the function g is univalent in U , then

f(z) ≺ g(z) ⇔ f(0) = g(0) and f(U) ⊂ g(U).

Let p(z) be analytic in U with p(0) = 1. Then p ∈ P, if Re (p(z)) > 0 in U . Such functions are known

as Caratheodory functions. Now, we generalize the class P as following.

Definition 1.1. Let p1, p2 ∈ P. Then h ∈ Pm (ϕ), m ≥ 2 if and only if

h(z) =

(
m

4
+

1

2

)
p1(z)−

(
m

4
− 1

2

)
p1(z), (1.3)

where pi ≺ ϕ, i = 1, 2 and ϕ is convex univalent function in U .

We choose ϕ(z) =
(
1+Xz
1+Y z

)α
, (α ∈ (0, 1]; −1 ≤ Y < X ≤ 1), in Definition 1.1.

First, we show that ϕ(z) =
(
1+Xz
1+Y z

)α
is convex univalent. Expanding ϕ(z) as

ϕ(z) = 1 + α (X − Y ) z −
[
α (X − Y )− 1

2
α (α− 1) (X − Y )2

]
z2 + ....

Also

ϕ′(z) =

(
1 +Xz

1 + Y z

)α α (X − Y )

(1 +Xz) (1 + Y z)
.

Simple calculations can show that

ℜ
{
ϕ′(z)

}
≥ α |X − Y | 1− |X|α−1

1 + |Y |α+1 > 0, for all z ∈ U .

This shows ϕ(z) is close-to-convex and hence univalent, see [5].

Now, using definition of convexity, we have

(zϕ′(z))′

ϕ′(z)
=
Xαz −XY z2 − αY z + 1

(1 +Xz) (1 + Y z)
.
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Since t(r) = 1− α (X − Y ) r −XY r2 is decreasing in [0, 1) and t(0) = 1. It can easily be seen that

ℜ
(
(zϕ′(z))′

ϕ′(z)

)
≥ 0.

Thus, taking ϕ(z) =
(
1+Xz
1+Y z

)α
in Definition 1.1, we obtain the class Pm [X,Y ;α].

We note the following as special cases:

(i) For m = 2, α = 1, X = 1 and Y = −1, we have the class P. For the class P, we refer to [3].

(ii) Let m = 2 and α = 1. Then the class P2 [X,Y ; 1] = P [X,Y ] is well-known class of Janowski

functions, see [4].

(iii) When we take α = 1, X = 1, Y = −1 this class reduces to the class Pm which was introduced

and studied by Pinchuk [8].

(iv) Pm [X,Y ;α] ⊂ Pm (ρ), ρ =
(
1−X
1−Y

)α
, where ρ is called the order of the function p ∈ Pm [X,Y ;α].

We note that p ∈ P2 (ρ) = P (ρ) implies ℜ(p(z)) > ρ, (0 ≤ ρ < 1). For the class Pm (ρ), we refer to [7]. If

h ∈ Pm (ρ), then we can write

h(z) = (1− ρ) p1(z) + ρ, p1 ∈ Pm.

(v) P2,α [1,−1] = P̃α, and P̃ 1
2

is related to the right-half of the Lemniscate of Bernoulli (see [6])

enclosing the region

D = {w ∈ C : ℜ(w) > 0,
∣∣w2 − 1

∣∣ < 1}.

Also, it is obvious that, in this case |argw| < π
4 .

Definition 1.2. Let f ∈ A and be locally univalent with f ′(z) ̸= 0, z ∈ U . Then f ∈ Vm [X,Y ;α] if and

only if
(zf ′(z))′

f ′(z)
∈ Pm [X,Y ;α] .

We note some of the special cases as follows:

(i) Vm [1,−1; 1] = Vm is the class of functions f with bounded boundary rotation, see [2, 8].

(ii) Vm [X,Y ; 1] = Vm [X,Y ], see [4].
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(iii) V2 [X,Y ;α] = Cα [X,Y ] ⊂ C (ρ) ⊂ C, where C is the well-known class of convex univalent functions

and ρ =
(
1−X
1−Y

)α
.

(iv) Vm [X,Y ;α] ⊂ Vm(ρ), see [7].

The class Rm [X,Y ;α] related with functions of bounded radius rotation is defined by using Alexander

type relation as given below.

Vm [X,Y ;α] =
{
f ∈ A :zf ′ ∈ Rm [X,Y ;α]

}
.

In particular, we note that R2 [1,−1; 1] = S∗, the class of starlike univalent functions.

Definition 1.3. Let f ∈ A. Then f ∈ Km [X,Y ;α] if and only if there exists g ∈ Vm such that

f ′

g′
∈ Pm [X,Y ;α] , z ∈ U .

The class Km [1,−1; 1] = Tm has been introduced and studied in [9]. Also, it can easily be seen that

K2 [1,−1; 1] = K is the familiar class of close-to-convex univalent functions first introduced by Kaplan [5].

2 Main Results

2.1 Necessary Conditions

Theorem 2.1. Let p ∈ P (ρ), 0 ≤ ρ < 1. Then, for z = reiθ, 0 ≤ θ1 < θ2 ≤ 2π, we have

max
p∈P(ρ)

∣∣∣∣∫ θ2

θ1

ℜ
{
zp′(z)

p(z)

}
dθ

∣∣∣∣ ≤ 2 sin−1

{
2 (1− ρ) r

1− |1− 2ρ| r2

}
= π − 2 cos−1

{
2 (1− ρ) r

1− |1− 2ρ| r2

}
.

Proof. We can write, [3], for z = reiθ

∂

∂θ
arg p

(
reiθ

)
=

∂

∂θ
ℜ
{
−i ln p(reiθ)

}
= ℜ

{
reiθp′

(
reiθ

)
p (reiθ)

}
= ℜ

{
zp′(z)

p(z)

}
.
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Consequently, ∫ θ2

θ1

ℜ

{
reiθp′

(
reiθ

)
p (reiθ)

}
dθ = arg p

(
reiθ2

)
− arg p

(
reiθ1

)
.

Hence,

max
p∈P(ρ)

∣∣∣∣∣
∫ θ2

θ1

ℜ

{
reiθp′

(
reiθ

)
p (reiθ)

}
dθ

∣∣∣∣∣ = max
p∈P(ρ)

∣∣∣arg p(reiθ2)− arg p
(
reiθ1

)∣∣∣ .
Since we can write

p(z) = (1− ρ) p1(z) + ρ, p1 ∈ P.

We have well-known [3] result as ∣∣∣∣p1(z)− 1 + r2

1− r2

∣∣∣∣ ≤ 2r

1− r2
.

From this, we have ∣∣∣∣p1(z)− 1 + (1− 2ρ) r2

1− r2

∣∣∣∣ ≤ 2 (1− ρ) r

1− r2
.

Thus the values of p(z) are contained in the circle of Apollonius whose diameter is the line segment from
1+(1−2ρ)r2

1−r2
to 1−(1−2ρ)r2

1−r2
. The circle is centered at the point 1+(1−2ρ)r2

1−r2
and has the radius 2(1−ρ)r

1−r2
. So

|arg p(z)| attains its maximum at points where a ray from the origin is tangent to the circle, that is, when

arg p(z) = ± sin−1

{
2 (1− ρ) r

1− (1− 2ρ) r2

}
,

and this completes the proof.

Theorem 2.2. Let g ∈ Vm [X,Y ;α]. Then, for z = reiθ, 0 ≤ θ1 < θ2 ≤ 2π, we have∫ θ2

θ1

ℜ
{
1 +

zg′′ (z)

g′ (z)

}
dθ > − (1− ρ)

(m
2

− 1
)
π,

where m ≥ 2 and ρ =
(
1−X
1−Y

)α
.

Proof. By the definition, we observe that

Vm [X,Y ;α] ⊂ Vm (ρ) , ρ =

(
1−X

1− Y

)α

. (2.1)

It is known [7] that, for g ∈ Vm (ρ) we have g1 ∈ Vm such that

g′(z) =
(
g′1(z)

)1−ρ . (2.2)

Also, for g1 ∈ Vm, Brannan [2] has proved that∫ θ2

θ1

ℜ
{
1 +

zg′′1 (z)

g′1 (z)

}
dθ > −

(m
2

− 1
)

, z = reiθ. (2.3)
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Taking logarithmic differentiation of (2.2), we get

1 +
zg′′ (z)

g′ (z)
= (1− ρ)

[
1 +

zg′′1 (z)

g′1 (z)

]
. (2.4)

Using (2.2) to (2.4), we obtain the required result and the proof is complete.

In particular, when ρ = 0, we obtain a known result [2] for f ∈ Vm.

Theorem 2.3. Let f ∈ Km [1,−1;α]. Then, z = reiθ, 0 ≤ θ1 < θ2 ≤ 2π, we have∫ θ2

θ1

ℜ
{
(zf ′ (z))′

f ′ (z)

}
dθ > −

(m
2

− 1 + α
)
π.

Proof. We can write
f ′ (z)

g′ (z)
= h(z), g ∈ Vm, h ∈ Pm [1,−1;α] = Pα. (2.5)

For h ∈ Pα, we have h(z) ≺
(
1+z
1−z

)α
. Therefore, it follows that we can write

h(z) = pα(z), p ∈ P. (2.6)

Using (2.6) in (2.5) and differentiating logarithmically, we get

(zf ′ (z))′

f ′ (z)
=

(zg′ (z))′

g′ (z)
+ α

zp′ (z)

p (z)
.

Now, the result follows from Theorem 2.1 and Theorem 2.2 with ρ = 0.

From Theorem 2.3, we have the following special cases:

Corollary 2.4. Let f ∈ Tm. Then, for z = reiθ, 0 ≤ θ1 < θ2 ≤ 2π, we have∫ θ2

θ1

ℜ
{
(zf ′ (z))′

f ′ (z)

}
dθ > −m

2
π.

This result has been proved in [9]. Furthermore, for m = 2, we obtain a necessary (and sufficient)

condition for close-to-convex functions which has been proved in [5].

Theorem 2.5. Let FN (z) be defined by the operator (1.2). Also, let gj = z
(1−z)2

, fj ∈ Km [X,Y ;α] and

hj ∈ Rm [X,Y ;α] for all j = 1, 2, 3, ..., N , αj, βj ≥ 0. Then, for z = reiθ, 0 ≤ θ1 < θ2 ≤ 2π and(
1−

∑N
j=1 (αj + βj) = 0

)
, we have

∫ θ2

θ1

ℜ
{
1 +

zF ′′
N (z)

F ′
N (z)

}
dθ > −

 N∑
j=1

(
αj

(m
2

+ α− 1
)
+ βj (1− ρ)

(m
2

− 1
))π,

where ρ =
(
1−X
1−Y

)α
.

http://www.earthlinepublishers.com
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Proof. From (1.2), we have

F ′
N (z) =

N∏
j=1

[
fj(z) ∗

z

(1− z)2

]αj (
H ′

j(z)
)βj , zH ′

j(z) = hj(z). (2.7)

Using convolution property fj(z) ∗ z
(1−z)2

= zf ′j(z) and Alexander relation Hj ∈ Vm [X,Y ;α] ⊂ Vm(ρ),

with ρ =
(
1−A
1−B

)α
, we can write (1.2) as

F ′
N (z) =

N∏
j=1

(
f ′j(z)

)αj
(
H ′

j(z)
)βj . (2.8)

On logarithmic differentiation of (2.8) together with the given condition, we have

1 +
zF ′′

N (z)

F ′
N (z)

=
N∑
j=1

αj

(
1 +

zf ′′j (z)

f ′j (z)

)
+

N∑
j=1

βj

(
1 +

zH ′′
j (z)

H ′
j (z)

)
,

and now using Theorem 2.2 and Theorem 2.3, it follows that∫ θ2

θ1

ℜ
{
1 +

zF ′′
N (z)

F ′
N (z)

}
dθ =

∫ θ2

θ1

ℜ

 N∑
j=1

αj

(
1 +

zf ′′j (z)

f ′j (z)

) dθ
+

∫ θ2

θ1

ℜ

 N∑
j=1

βj

(
1 +

zH ′′
j (z)

H ′
j (z)

) dθ
> −

 N∑
j=1

αj

(m
2

+ α− 1
)
+

N∑
j=1

βj (1− ρ)
(m
2

− 1
)π

= −

 N∑
j=1

{
αj

(m
2

+ α− 1
)
+ βj (1− ρ)

(m
2

− 1
)}π.

This completes the proof.

Corollary 2.6. Let αj = 0 for all j. Then FN , defined by (1.2), in Theorem 2.5, satisfies the necessary

condition as ∫ θ2

θ1

ℜ
{
1 +

zF ′′
N (z)

F ′
N (z)

}
dθ > −

N∑
j=1

βj (1− ρ)
(m
2

− 1
)
π,

where z = reiθ, 0 ≤ θ1 < θ2 ≤ 2π and ρ =
(
1−X
1−Y

)α
.

Corollary 2.7. If we take
∑N

j=1 βj = 1 in Corollary 2.6, then∫ θ2

θ1

ℜ
{
1 +

zF ′′
N (z)

F ′
N (z)

}
dθ > − (1− ρ)

(m
2

− 1
)
π.

Moreover, when ρ = 0, this gives necessary condition for FN ∈ Vm. Also, FN is close-to-convex for

2 ≤ m ≤ 2(2−ρ)
1−ρ .

Earthline J. Math. Sci. Vol. 15 No. 6 (2025), 1051-1062
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2.2 Distortion Result

Theorem 2.8. Let f ∈ Km [1,−1;α]. Then, z = reiθ

(1− r)
m
2
+α−1

(1 + r)
m
2
+α+1

≤
∣∣f ′(z)∣∣ ≤ (1 + r)

m
2
+α−1

(1− r)
m
2
+α+1

. (2.9)

The equality is attained for the function f0 ∈ Km [1,−1;α] defined by

f ′0(z) =
(1 + δ1z)

m
2
+α−1

(1− δ2z)
m
2
+α+1

, |δ1| = |δ2| = 1.

Proof. The proof is immediate when we use the distortion theorem for g ∈ Vm, see [8], and for h = pα,

p ∈ P given as ( see [3]):
1− r

1 + r
≤ |p(z)| ≤ 1 + r

1− r
.

Special cases:

(i) for f ∈ Km [1,−1; 1] implies f ∈ Tm and in this case (2.9) reduces to the following bounds

(1− r)
m
2

(1 + r)
m
2
+2

≤
∣∣f ′(z)∣∣ ≤ (1 + r)

m
2

(1− r)
m
2
+2

.

We can obtain the bounds (2.9) for other permissable values m ≥ 2, α ∈ (0, 1] and f ∈ Km [1,−1;α]. By

taking m = 2 and α = 1, we obtain distortion result for the class K of close-to-convex functions and it is

sharp, see [3].

(ii) When m = 2, f ∈ Km [1,−1;α] is strongly close-to-convex and have

(1− r)α

(1 + r)α+2 ≤
∣∣f ′(z)∣∣ ≤ (1 + r)α

(1− r)α+2 .

2.3 Inclusion Property

The following lemma is required to investigate our result.

Lemma 2.9. [10] Let u = u1 + iu2 and v = v1 + iv2, and let ψ (u, v) be a complex valued function

satisfying conditions:

(i) ψ (u, v) is continuous in a domain D ⊂ C2.

http://www.earthlinepublishers.com



Properties of Generalized Strongly Close-to-convex Functions 1059

(ii) (0, 1) ∈ D and ψ (1, 0) > 0.

(iii) ℜ (ψ (iu2, v1)) ≤ 0, whenever (iu2, v1) ∈ D and v1 ≤ −1
2

(
1 + u22

)
.

If h(z) = 1 + c1z + c2z
2 + ... = 1 +

∑∞
n=1 cnz

n is a function, analytic in U such that

(
h(z), zh′(z)

)
∈ D and ℜ

{
ψ
(
h(z), zh′(z)

)}
> 0, for z ∈ U ,

then ℜ (h(z)) > 0 in U .

Theorem 2.10. Let f ∈ V2 [X,Y ;α] ⊂ C (ρ) with ρ =
(
1−X
1−Y

)α
. Then f ∈ S∗ (ρ1), where

ρ1 =
(2ρ− 1) +

√
(1− 2ρ)2 + 8

4
,

with ρ =
(
1−X
1−Y

)α
.

Proof. Let
zf ′ (z)

f (z)
= (1− ρ1)h(z) + ρ1.

Then

zf ′ (z) = f(z) [(1− ρ1)h(z) + ρ1]

and so is
(zf ′ (z))′

f ′ (z)
=
zf ′ (z)

f (z)
+

(1− ρ1) zh
′(z)

(1− ρ1)h(z) + ρ1
.

That is [
(zf ′ (z))′

f ′ (z)
− ρ

]
=

[
(1− ρ1)h(z) +

(1− ρ1) zh
′(z)

(1− ρ1)h(z) + ρ1
+ ρ1 − ρ

]
.

We construct the functional ψ (u, v) of Lemma 2.9 by taking u = u1+iu2 = h(z) and v = v1+iv2 = zh′(z).

The first two conditions are obviously easy to verify. We proceed to check the condition (iii).

ℜψ (iu2, v1) = ℜ
{
(1− ρ1) iu2 +

(1− ρ1) v1
(1− ρ1) iu2 + ρ1

+ ρ1 − ρ

}
= (ρ1 − ρ) +

ρ1 (1− ρ1) v1

(1− ρ1)
2 u22 + ρ21

≤ (ρ1 − ρ)−
ρ1 (1− ρ1)

(
1 + u22

)
2
{
(1− ρ1)

2 u22 + ρ21

} , for v1 ≤ −
(
1 + u22

)
2

≤ 0,

Earthline J. Math. Sci. Vol. 15 No. 6 (2025), 1051-1062
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when ρ1 is calculated in terms of ρ as,

ρ1 =
(2ρ− 1) +

√
(1− 2ρ)2 + 8

4
, with ρ =

(
1−X

1− Y

)α

.

Thus condition (iii) is satisfied and applying Lemma 2.9, ℜ (h(z)) > 0 in U . Consequently, f ∈ S∗ (ρ1).

As a special case, for ρ = 0 and so f ∈ S∗ (1
2

)
in U . Furthermore, for A = 0, B = −1 and α = 1

implies ρ = 1/2, we get ρ1 = 1√
2
.

2.4 Radius Problem

Theorem 2.11. Let f ∈ Km [1,−1, α]. Then f maps |z| < r1 onto a convex domain, where

r1 =
2

(m+ 2) +
√
(m+ 2)2 − 4

; (m ≥ 2) .

Proof. Since f ∈ Km [1,−1, α], we can write

f ′(z) = g′(z)hα(z), g ∈ Vm, h ∈ P.

Logarithmic differentiation and some simple computation leads us to

(zf ′ (z))′

f ′ (z)
=

(zg′ (z))′

g′ (z)
+ α

zh′ (z)

h (z)
.

It is known [8] that, for g ∈ Vm,

ℜ
{
(zg′ (z))′

g′ (z)

}
≥ r2 −mr + 1

1− r2
, z = reiθ, 0 ≤ r < 1,

and ∣∣∣∣zh′ (z)h (z)

∣∣∣∣ ≤ 2r

1− r2
, for h ∈ P, (see [3]).

Therefore using these inequalities in the following

ℜ
{
(zf ′ (z))′

f ′ (z)

}
≥ ℜ

{
(zg′ (z))′

g′ (z)

}
− α

∣∣∣∣zh′ (z)h (z)

∣∣∣∣ ,
this implies that

ℜ
{
(zf ′ (z))′

f ′ (z)

}
≥ r2 −mr + 1

1− r2
− 2αr

1− r2

=
r2 − (m+ 2α) r + 1

1− r2
.

http://www.earthlinepublishers.com
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The right hand side is positive for r ≤ r1, where

r1 =
(m+ 2α)−

√
(m+ 2α)2 − 4

2

=
2

(m+ 2α) +
√
(m+ 2α)2 − 4

.

Special cases:

(i) For α = 1 implies f ∈ Tm, then we obtain radius of convexity given in [9] as

r1 =
2

(m+ 2) +
√
(m+ 2)2 − 4

.

(ii) Let m = 2. Then f ∈ K and this gives us well known [3] radius of convexity for close-to-convex

functions. That is, in this case r1 = 1/
(
2 +

√
3
)
. This radius is best possible for the Koebe function being

the extremal one.
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