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Abstract

In this paper, we prove the approximation of homomorphisms and derivations related to the following
functional equation:

f(2x+ y) + f(2x− y) = f(x+ y) + f(x− y) + 2f(2x)− 2f(x).

The results are obtained in random Banach algebras by means of the direct method and the fixed point
method.

1 Introduction

Starting with Ulam’s question on stability posed in 1940 [13], and following the first response to this
question by Hyers [7] in Banach spaces, together with the extension of Hyers’ result by Aoki [4] and
Rassias [12], the study of stability has become a central topic in mathematics due to its importance and
wide range of applications.

With the development of random norms, which are regarded as generalizations of classical norms in
normed vector spaces, this concept is used to describe situations in which the exact determination of the
norm of an element is not possible because of randomness or uncertainty. This framework is particularly
useful in the analysis of vector spaces where traditional norms are inadequate, allowing the study of
functions and functional equations in a more flexible and realistic mathematical setting.

The study of Ulam stability in various random spaces has attracted considerable attention from
researchers, leading to many valuable results and new conclusions. Several important contributions in
this area can be found in the literature (see [1–3,9, 10, 12]).

In this paper, we study the stability of the additive functional equation

f(2x+ y) + f(2x− y) = f(x+ y) + f(x− y) + 2f(2x)− 2f(x). (1.1)
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Furthermore, we investigate the homomorphism and derivation associated with the above functional
equation in random Banach algebras, under the assumption that the function is odd. Using both the
direct method and the fixed point method, we obtain several valuable results and meaningful conclusions.

2 Preliminaries

Definition 2.1. [2] A function T : [0, 1]× [0, 1] → [0, 1] is called a triangular norm (briefly, a t-norm) if
T satisfies the following conditions:

(a) T (x, 1) = x for all x ∈ [0, 1],

(b) T (x, y) = T (y, x),

(c) T (x, T (y, z)) = T (T (x, y), z),

(d) y ≥ z ⇒ T (x, y) ≥ T (x, z).

Definition 2.2. [2] A random normed space (briefly, RN-space) is a triple (X,µ, T ), where X is a vector
space, T is a continuous t-norm, and µ is a function from X into D+ such that the following conditions
hold:

(RN1) µx(t) = ε0(t) for all t > 0 if and only if x = 0,

(RN2) µαx(t) = µx

(
t

|α|

)
for all x ∈ X and α ̸= 0,

(RN3) µx+y(t+ s) ≥ T
(
µx(t), µy(s)

)
for all x, y ∈ X and t, s ≥ 0.

Definition 2.3. [2] Let (X,µ, T ) be an RN-space.

1) A sequence {xn} in X is said to be convergent to x in X if, for every ε > 0 and λ > 0, there exists
a positive integer N such that

µxn−x(ε) > 1− λ whenever n ≥ N.

2) A sequence {xn} in X is called a Cauchy sequence if, for every ε > 0 and λ > 0, there exists a
positive integer N such that

µxn−xm(ε) > 1− λ whenever n ≥ m ≥ N.

3) An RN-space (X,µ, T ) is said to be complete if and only if every Cauchy sequence in X is convergent
to a point in X.

A complete RN-space is said to be a random Banach space.
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Theorem 2.4. [2] If (X,µ, T ) is an RN-space and {xn} is a sequence such that xn → x, then

lim
n→∞

µxn(t) ≥ µx(t) almost everywhere.

Definition 2.5. [2] A random normed algebra is a random normed space with an algebraic structure such
that

(RN4) µxy(ts) ≥ µx(t)µy(s) for all x, y ∈ X and all t, s > 0.

Definition 2.6. [8] Let (X,µ, T ) and (Y, µ, T ) be random normed algebras.

a) An additive mapping H : X → Y is called a random homomorphism if

H(xy) = H(x)H(y) for all x, y ∈ X.

b) An additive mapping δ : X → Y is called a random derivation if

δ(xy) = δ(x)y − δ(y)x for all x, y ∈ X.

Definition 2.7. [9] Let X be a set. A function d : X ×X → [0,∞] is called a generalized metric on X if
the following conditions hold:

(i) d(p, q) = 0 if and only if p = q,

(ii) d(p, q) = d(q, p) for all p, q ∈ X,

(iii) d(p, s) ≤ d(p, q) + d(q, s) for all p, q, s ∈ X.

Theorem 2.8. [5] Let (X, d) be a complete generalized metric space, and let J : X → X be a strictly
contractive mapping with Lipschitz constant L < 1. Then, for each x ∈ X, either

d(Jnx, Jn+1x) = +∞ for all n ≥ 0,

or there exists a natural number n0 such that

(1) d(Jnx, Jn+1x) < +∞ for all n ≥ n0,

(2) the sequence {Jnx} converges to a fixed point y∗ of J ,

(3) y∗ is the unique fixed point of J in the set

Y = {y ∈ X : d(Jn0x, y) < ∞},

(4)

d(y, y∗) ≤ 1

1− L
d(y, Jy) for all y ∈ Y.

Lemma 2.9. [10] If an odd function f : X → Y satisfies (1.1) for all x, y ∈ X, then f is additive.
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3 Stability of Functional Equation (1.1) using the Direct Method

Theorem 3.1. Let X be a real normed algebra, (Y, µ, T ) be a random Banach algebra space, and let
f : X → Y be an odd mapping such that f(0) = 0 and f(λx) = λf(x) for all x ∈ X and λ ∈ R. Suppose
that the functions θ : X2 × R → D+ and ζ : X2 × R → D+ satisfy

µDf (x,y)(t) ≥ θ(x, y, t), (3.1)

for all x, y ∈ X,
lim
n→∞

θ(3nx, 3ny, 3nt) = 1, (3.2)

lim
n→∞

Tn
z=1

(
θ

(
3z−1x, 3z−1y,

t

3

))
= 1, (3.3)

µf(xy)−f(x)f(y)(t) ≥ ζ(x, y, t), (3.4)

for all x, y ∈ X, and
lim
n→∞

ζ(3nx, 3ny, 32nt) = 1. (3.5)

Then there exists a unique homomorphism H : X → Y such that

µH(x)−f(x)(t) ≥ Tn
z=1

(
θ

(
3z−1x, 3z−1y,

t

3

))
. (3.6)

Proof. If x = y, then from (3.1) we have

µDf (x,x)(t) ≥ θ(x, x, t).

Hence,

µ f(3x)
3

−f(x)

(
t

3

)
≥ θ(x, x, t),

and consequently,
µ f(3x)

3
−f(x)

(t) ≥ θ(x, x, 3t). (3.7)

Therefore,
µ f(3i+1x)

3i+1 − f(3ix)

3i

(t) ≥ θ(3ix, 3iy, 3it),

and
µ f(3i+1x)

3i+1 − f(3ix)

3i

(
t

3i+1

)
≥ θ

(
3ix, 3iy,

t

3

)
. (3.8)

Since
f(3nx)

3n
− f(x) =

n−1∑
i=0

(
f(3i+1x)

3i+1
− f(3ix)

3i

)
,

and

1 >

n∑
i=1

t

3i
⇒ t > t

n∑
i=1

t

3i
,
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it follows from the triangle inequality that

µ f(3nx)
3n

−f(x)
(t) ≥ µ f(3nx)

3n
−f(x)

(
n∑

i=1

t

3i

)

≥ T n−1
i=0

(
µ f(3i+1x)

3i+1 − f(3ix)

3i

(
t

3i+1

))
≥ T n

z=1

(
θ
(
3z−1x, 3z−1x, t

))
. (3.9)

Letting n → ∞ in (3.9), we obtain
µ f(3nx)

3n
−f(x)

(t) = 1.

Hence,
{
f(3nx)

3n

}
is a Cauchy sequence in (Y, µ, T ). Since (Y, µ, T ) is complete, the sequence{

f(3nx)

3n

}
is convergent. Define

H(x) = lim
n→∞

f(3nx)

3n
, for all x ∈ X.

Clearly, H is an odd mapping.

Replacing x, y with 3nx and 3ny, respectively, in (3.1), and then multiplying the right-hand side by
3n

3n
, it follows that

µ 1
3n

Df (3nx,3ny)
(t) ≥ θ(3nx, 3ny, 3nt), for all x ∈ X.

Letting n → ∞, we find that H satisfies the functional equation (1.1). Therefore, by Lemma 2.9, H is
additive. Moreover, H(λx) = λH(x), and hence H is linear.

To prove that H is a homomorphism, we observe that

µH(xy)−H(x)H(y)(t) = µ
limn→∞

(
f(32nxy)

32n
− f(3nx)

3n
f(3ny)

3n

)(t)
≥ lim

n→∞
ζ(3nx, 3nx, 32nt) = 1. (3.10)

Therefore,
H(xy) = H(x)H(y).

Finally, assume that there exists another mapping Ĥ : X → Y such that Ĥ satisfies the functional
equation (1.1) and (3.9). Let

Ĥ(x) = lim
n→∞

g(3nx)

3n
.

Then
µ f(3nx)

3n
− g(3nx)

3n
(t) ≥ T

(
µ f(3nx)

3n
−f(x)

(
t

2

)
, µ

f(x)− g(3nx)
3n

(
t

2

))
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≥ T

(
Tn
z=1

(
θ

(
3z−1x, 3z−1x,

t

3

))
, Tn

z=1

(
θ

(
3z−1x, 3z−1x,

t

3

)))
. (3.11)

Letting n → ∞, we obtain
µ
H(x)−Ĥ(x)

(t) = 1,

and hence
H = Ĥ.

Theorem 3.2. Let X be a real normed algebra, (Y, µ, T ) be a random Banach algebra space, and let
f : X → Y be an odd mapping such that f(0) = 0 and f(λx) = λf(x) for all x ∈ X and λ ∈ R. Suppose
that the functions θ : X2 × R → D+ and ζ : X2 × R → D+ satisfy

µ(Df (x,y))(t) ≥ θ(x, y, t), (3.12)

for all x, y ∈ X,
lim
n→∞

θ(3nx, 3ny, 3nt) = 1, (3.13)

lim
n→∞

Tn
z=1

(
θ

(
3z−1x, 3z−1y,

t

3

))
= 1, (3.14)

µf(xy)−xf(y)−yf(x)(t) ≥ ζ(x, y, t), (3.15)

for all x, y ∈ X, and
lim
n→∞

ζ(3nx, 3ny, 32nt) = 1. (3.16)

Then there exists a unique derivation δ : X → Y such that

µδ(x)−f(x)(t) ≥ T∞
z=1

(
θ

(
3z−1x, 3z−1y,

t

3

))
. (3.17)

Proof. The proof follows by applying the same argument used in the proof of Theorem 3.1.

4 Stability of Functional Equation (1.1) using the Fixed Point Method

Theorem 4.1. Let X be a real normed algebra and let (Y, µ, T ) be a random Banach algebra space. Let
f : X → Y be an odd mapping such that f(0) = 0 and f(λx) = λf(x) for all x ∈ X and λ ∈ R. Suppose
there exists a function θ : X2 × R → D+ such that

θ(3x, 3y) ≤ 3Lθ(x, y), for some L < 1,

and
µDf (xy)(t) ≥

t

t+ θ(x, y)
, for all x, y ∈ X, (4.1)
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lim
n→∞

3nt

3nt+ θ(3nx, 3ny)
= 1, (4.2)

µf(xy)−f(x)f(y)(t) ≥
t

t+ θ(x, y)
, for all x, y ∈ X, t > 0. (4.3)

Then
H(x) = lim

n→∞

f(3nx)

3n

exists for each x ∈ X and defines a random homomorphism H : X → Y such that

µf(x)−H(x)(t) ≥
(3− 3L)t

(3− 3L)t+ θ(x, y)
. (4.4)

Proof. Setting x = y in (4.1), we obtain

µf(3x)−3f(x)(t) ≥
t

t+ θ(x, x)
.

Consequently,

µ f(3x)
3

−f(x)
(t) ≥ 3t

3t+ θ(x, x)
, for all x ∈ X, t > 0. (4.5)

Consider the set
M = {g : X → Y }.

Define a generalized metric on M by

d(g, h) = inf

{
α ∈ R+ : µg(x)−h(x)(αt) ≥

3t

3t+ θ(x, x)
, for all x ∈ X, t > 0

}
.

Then (M, d) is complete (see [5]).

Now, define the linear mapping J : M → M by

J(g(x)) =
g(3x)

3
, for all x ∈ X.

Let g, h ∈ M be such that d(g, h) = ε. Then

µg(x)−h(x)(εt) ≥
3t

3t+ θ(x, x)
, for all x ∈ X, t > 0.

Moreover,

µJg(x)−Jh(x)(Lεt) = µ g(3x)
3

−h(3x)
3

(Lεt)

= µg(3x)−h(3x)(3Lεt)

≥ 9Lt

9Lt+ θ(3x, 3x)

=
3t

3t+
θ(3x, 3x)

3L

≥ 3t

3t+ θ(x, x)
, for all x ∈ X, t > 0. (4.6)
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Since d(g, h) = ε implies that d(Jg, Jh) ≤ Lε, it follows that

d(Jg, Jh) ≤ Ld(g, h), for all g, h ∈ M.

From (4.5), we obtain

d(f, Jf) ≤ 1.

By Theorem 2.8, there exists a mapping H : X → Y satisfying the following properties:

1. H is a fixed point of J , that is,

J(H(x)) = H(x),

which implies
H(3x)

3
= H(x), or equivalently, H(3x) = 3H(x).

Hence, for all x ∈ X, the mapping H is the unique fixed point of J in the set

K = {g ∈ M : d(f, g) < ∞}.

Therefore, there exists α ∈ (0,∞) such that

d(f,H) < α,

and consequently,

µf(x)−H(x)(αt) ≥
3t

3t+ θ(x, x)
.

2. d(Jnf,H) → 0 as n → ∞, which implies

lim
n→∞

f(3nx)

3n
= H(x), for all x ∈ X.

3.

d(f,H) ≤ 1

1− L
d(f, Jf),

which yields the desired inequality

d(f,H) ≤ 1

1− L
.

This implies that inequality (4.4) holds:

µf(x)−H(x)(t) ≥
3(1− L)t

3(1− L)t+ θ(x, x)
, for all x ∈ X, t > 0. (4.7)
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By (4.1), we obtain

µ f(3n(2x+y))
3n

+
f(3n(2x−y))

3n
− f(3n(x+y))

3n
− f(3n(x−y))

3n
− 2f(3n(2x))

3n
− 2f(3n(x))

3n
(t)

≥ 3nt

3nt+ θ(3nx, 3ny)
, for all x, y ∈ X, t > 0. (4.8)

Letting n → ∞, we obtain

µDH(x,y)(t) = 1, for all x, y ∈ X, t > 0,

that is,
µH(2x+y)+H(2x−y)−H(x−y)−H(x+y)−2H(2x)−2H(x)(t) = 1.

Thus,
H(2x+ y) +H(2x− y) +H(x+ y) +H(x− y)− 2H(2x)− 2H(x) = 0,

which shows that H : X → Y is additive by Lemma 2.9, and hence H is linear.

Moreover,
µf(xy)−f(x)f(y)(t) ≥

t

t+ θ(x, y)
, for all x, y ∈ X, t > 0.

Therefore,

µ f(32nxy)

32n
− f(3nx)f(3ny)

32n

(t) ≥ 3nt

3nt+ θ(3nx, 3ny)
, for all x, y ∈ X, t > 0. (4.9)

Since
lim
n→∞

3nt

3nt+ θ(3nx, 3ny)
= 1, for all x, y ∈ X, t > 0,

we conclude that
µH(xy)−H(x)H(y)(t) = 1.

Thus,
H(xy)−H(x)H(y) = 0,

and hence H(x) is a random homomorphism. □

Theorem 4.2. Let X be a real normed algebra, and (Y, µ, T ) be a random Banach algebra space. Let
f : X → Y be an odd mapping with f(0) = 0 and f(λx) = λf(x) for all x ∈ X, λ ∈ R. Suppose the
function θ : X2 × R → D+ satisfies

θ(3x, 3y) ≤ 3Lθ(x, y), L < 1,

and
µDf (x,y)(t) ≥

t

t+ θ(x, y)
, for all x, y ∈ X, (4.10)
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lim
n→∞

3nt

3nt+ θ(3nx, 3ny)
= 1, (4.11)

µf(xy)−xf(y)yf(x)(t) ≥
t

t+ θ(x, y)
, for all x, y ∈ X. (4.12)

Then
δ(x) = lim

n→∞

f(3nx)

3n

exists for each x ∈ X and defines a random derivation δ : X → Y such that

µf(x)−δ(x)(t) ≥
(3− 3L)t

(3− 3L)t+ θ(x, y)
. (4.13)

Proof. This theorem can be readily demonstrated by using the same method as in Theorem 4.1.

Conclusion

In this study, we have obtained results concerning the approximation of homomorphisms and derivations
for the functional equation in random Banach algebras. This work represents a new contribution to the
study of Ulam–Hyers–Rassias stability and serves as an extension of a series of previous papers authored
by the researcher in various other spaces. Furthermore, additional results can be obtained in different
spaces and for other types of functional equations, as well as by considering the applied aspects of the
study.
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