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Abstract

In this paper, we prove the approximation of homomorphisms and derivations related to the following

functional equation:

fRr+y)+ f2r—y) = flx+y) + f(x —y) +2f(22) — 2f(z).

The results are obtained in random Banach algebras by means of the direct method and the fixed point
method.

1 Introduction

Starting with Ulam’s question on stability posed in 1940 [13], and following the first response to this
question by Hyers [7] in Banach spaces, together with the extension of Hyers’ result by Aoki /] and
Rassias [12], the study of stability has become a central topic in mathematics due to its importance and

wide range of applications.

With the development of random norms, which are regarded as generalizations of classical norms in
normed vector spaces, this concept is used to describe situations in which the exact determination of the
norm of an element is not possible because of randomness or uncertainty. This framework is particularly
useful in the analysis of vector spaces where traditional norms are inadequate, allowing the study of

functions and functional equations in a more flexible and realistic mathematical setting.

The study of Ulam stability in various random spaces has attracted considerable attention from
researchers, leading to many valuable results and new conclusions. Several important contributions in

this area can be found in the literature (see [1-3,9, 10, 12]).

In this paper, we study the stability of the additive functional equation

fRz+y)+ f(2x —y) = flx +y) + flx —y) +2f(22) — 2f (). (1.1)
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Furthermore, we investigate the homomorphism and derivation associated with the above functional
equation in random Banach algebras, under the assumption that the function is odd. Using both the

direct method and the fixed point method, we obtain several valuable results and meaningful conclusions.

2 Preliminaries

Definition 2.1. [2] A function T : [0,1] x [0,1] — [0, 1] is called a triangular norm (briefly, a t-norm) if
T satisfies the following conditions:

(a) T(x,1) =« for all z € [0, 1],

(b) T(z,y) = T(y,),

(¢) T(x,T(y,2)) =T(T(2,y),2),

d) y>z=T(z,y) > T(z,2).

Definition 2.2. [2] A random normed space (briefly, RN-space) is a triple (X, p, T'), where X is a vector
space, T is a continuous t-norm, and pu is a function from X into DT such that the following conditions

hold:

(RNy) psz(t) =eo(t) for all ¢ > 0 if and only if x = 0,

t
(RN2) piaz(t) = g <]a!) for all zx € X and a # 0,

(RN3) pagy(t+8) > T(pa(t), py(s)) for all 2,y € X and ¢, s > 0.

Definition 2.3. [2| Let (X, u, T) be an RN-space.

1) A sequence {z,} in X is said to be convergent to x in X if, for every € > 0 and A > 0, there exists

a positive integer N such that

fa,—z(€) >1—X whenever n > N.

2) A sequence {x,} in X is called a Cauchy sequence if, for every e > 0 and A > 0, there exists a

positive integer N such that

Uy —z, () > 1 — A whenever n >m > N.

3) An RN-space (X, u, T) is said to be complete if and only if every Cauchy sequence in X is convergent
to a point in X.

A complete RN-space is said to be a random Banach space.
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Theorem 2.4. [2] If (X, u,T) is an RN-space and {x,} is a sequence such that x,, — x, then

lm gy, (t) > pe(t)  almost everywhere.

n—o0

Definition 2.5. [2| A random normed algebra is a random normed space with an algebraic structure such
that
(RN4)  pay(ts) > pe(t)py(s) forall z,y € X and all t,s > 0.

Definition 2.6. [8| Let (X, p,T) and (Y, i, T') be random normed algebras.

a) An additive mapping H : X — 'Y is called a random homomorphism if

H(zy) = H(z)H(y) forall z,y € X.

b) An additive mapping § : X — Y is called a random derivation if
d(zy) =d(x)y — d(y)x for all x,y € X.
Definition 2.7. [9] Let X be a set. A function d : X x X — [0, 00] is called a generalized metric on X if
the following conditions hold:
(i) d(p,q) = 0 if and only if p = q,
(i) d(p,q) = d(g,p) for all p,q € X,
(iii) d(p,s) < d(p,q) + d(gq,s) for all p,q,s € X.

Theorem 2.8. [5] Let (X,d) be a complete generalized metric space, and let J : X — X be a strictly
contractive mapping with Lipschitz constant L < 1. Then, for each x € X, either

d(J"z, J" ) = 400 for all n >0,

or there exists a natural number ng such that

(1) d(J"x, J"1x) < +o00 for all n > ny,

(2) the sequence {J"x} converges to a fized point y* of J,

(3) y* is the unique fized point of J in the set
Y={yeX:d(J"™z,y) < oo},

(4)

1
dly,y*) < 7= Ay, Jy) forallyeY.

Lemma 2.9. [10] If an odd function f: X — 'Y satisfies (1.1) for all x,y € X, then f is additive.
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3 Stability of Functional Equation (1.1) using the Direct Method

Theorem 3.1. Let X be a real normed algebra, (Y,pu,T) be a random Banach algebra space, and let
f:X =Y be an odd mapping such that f(0) =0 and f(Ax) = Af(x) for allx € X and A € R. Suppose
that the functions 6 : X2 x R — Dt and ( : X? x R — D7 satisfy

MDf(av,y)(t) > g(xvyat)7 (3,1)
forallx,y € X,
ILm 0(3"x,3"y,3"t) =1, (3.2)
: n z—1 z—1 E _

nh_}rgo T, <9 (3 x,3* My, 3 =1, (3.3)
ff ay)—f @) f) (E) = (259, 1), (3.4)

forall xz,y € X, and
lim ((3"w,3"y,3"t) = 1. (3.5)

Then there exists a unique homomorphism H : X — 'Y such that
_ _ t
B (@)~ f(a)(t) = Ty (9 <3Z o, 377y, 3>) : (3.6)
Proof. If x =y, then from (3.1) we have

Hence,

and consequently,

an_ o (t) > 0z, 2,3t) (3.7)
3
Therefore,
Hp(3it1g) _ f(3ix) (t) > 9(3111:, 3ly, 3lt),
Tt T3t
and
t i it
Mf<§z+iz) f(3zz) <31+1) > 0<3 z,3 Y, 3) . (38)
Since
f(3n "2_:1 3z+1 B f(BZ:c)
3" = 3it+l 3t ’
and

"t "t
i=1 =1
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it follows from the triangle inequality that

n
t
HiGr) gy (t) > Ha@ns) _ gy ( ?)Z>
i=

1
e e
Zdi—0 Mf(S”‘lw) f(31w)

> T (0(3 2,37 e (3.9)

Letting n — oo in (3.9), we obtain

Ha@ne) gy (t) =1.

377,
Hence, {f( $)} is a Cauchy sequence in (Y, u,T). Since (Y,u,T) is complete, the sequence

{f (3"x) N
3n

} is convergent. Define

H(xz) = lim f(gnl’)’ for all z € X.

n—o0

Clearly, H is an odd mapping.

Replacing x,y with 3”2 and 3"y, respectively, in (3.1), and then multiplying the right-hand side by
30 it follows that
H 2Dy (3ne,3n () = 0(3"z,3"y,3"t), forallz € X.

Letting n — oo, we find that H satisfies the functional equation (1.1). Therefore, by Lemma 2.9, H is
additive. Moreover, H(Ax) = AH (z), and hence H is linear.

To prove that H is a homomorphism, we observe that

IH (2y)—H(2)H(y) (1) = 1

£(32ay) (3 f(3"y)> (t)
32n 37 37

limy— 00 (

> lim ¢(3"x,3"x,3%"t) = 1. (3.10)
Therefore,
H(zy) = H(z)H(y).

Finally, assume that there exists another mapping H : X — Y such that H satisfies the functional
equation (1.1) and (3.9). Let
~ 3n
H(z) = lim 9l :E)

n—oo 3N

t t
M/‘(gzac),g(:gzz)( ) > T<Mf<a ) f(w)< > g () 2572) <2>>
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> T(Tf_l <0 (32_13:,33_1:13, ;)) STy <9 <3Z_1x,3z_1:v, ;))) . (3.11)

Letting n — oo, we obtain

and hence

O

Theorem 3.2. Let X be a real normed algebra, (Y,pu,T) be a random Banach algebra space, and let
f: X =Y be an odd mapping such that f(0) =0 and f(Az) = Af(x) for all x € X and A € R. Suppose
that the functions 6 : X2 x R — Dt and ¢ : X? x R — D% satisfy

H(Dy(z,y)) (t) > e(mvyat)’ (3.12)
forallz,ye X,
ILm 0(3"x,3"y,3"t) =1, (3.13)
: mn z—1 z—1 E _

nh_)rgo T, (9 (3 x, 3y, 3 =1, (3.14)
[f (ay)—af () -y f (@) (8) = C(2,9,1), (3.15)

forall z,y € X, and
lim ¢(3"z, 3"y, 3%t) = 1. (3.16)

Then there exists a unique derivation § : X — 'Y such that
_ _ t
Ho(a)—f(a) (1) = T2 (9 <3Z ta, 35y, 3>) : (3.17)

Proof. The proof follows by applying the same argument used in the proof of Theorem 3.1. O

4 Stability of Functional Equation (1.1) using the Fixed Point Method

Theorem 4.1. Let X be a real normed algebra and let (Y, u,T) be a random Banach algebra space. Let
f: X =Y be an odd mapping such that f(0) =0 and f(Ax) = A\f(z) for allz € X and X\ € R. Suppose
there exists a function 6 : X? x R — D% such that

0(3x,3y) < 3L6O(x,y), for some L <1,

and
forallz,y € X, (4.1)
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3"t

li =1 4.2
nroo 30E + 0(37x,3"y) ’ (42)
t
Then £(3"2)
) x
H@ =, o
exists for each x € X and defines a random homomorphism H : X — 'Y such that
(3—3L)t
_ t) > . 4.4
[f (2)— H(z) () = B30t +00.1) (4.4)
Proof. Setting x =y in (4.1), we obtain
t
f(32)—3f(2) (t) = F0(@a)
Consequently,
3t
. > — . .
M@—f(i)(t)_BtJrﬁ(Lx)’ forallz € X, t >0 (4.5)
O
Consider the set
M={g: X >Y}
Define a generalized metric on M by
3t
— + .
d(g, h) = inf {Oé eR": ,ug(x)_h(x)(at) Z m, for all x S X, t> 0} .
Then (M, d) is complete (see |5]).
Now, define the linear mapping J : M — M by
J(g(x)) = g(:?:)x)j for all z € X.
Let g,h € M be such that d(g,h) = . Then
3t
,Ug(x)—h(a:) (Et) Z m, for all x € )(7 t> 0.
Moreover,
Pag(e)—an(w) (Let) = pgGe _nen (Let)
= Hg(3z)—h(3z) (3L€t)
9Lt
>
~ 9Lt + 6(3x,3x)
B 3t
N 0(3x,3x)
RN T
> frallze X, t>0 (4.6)
—3t+0(x, )’ ’ ' '
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Since d(g, h) = € implies that d(Jg, Jh) < Le, it follows that
d(Jg,Jh) < Ld(g,h), forall g,h e M.

From (4.5), we obtain
d(f,Jf) < 1.

By Theorem 2.8, there exists a mapping H : X — Y satisfying the following properties:

1. H is a fixed point of .J, that is,

which implies
H(3x)
3

Hence, for all x € X, the mapping H is the unique fixed point of J in the set

= H(z), or equivalently, H(3z)=3H(x).

K={geM:d(f,g) < oo}.

Therefore, there exists a € (0,00) such that
d(f,H) < a,

and consequently,

3t

>
M (a)-H()(OF) 2 3t+60(x,x)

2. d(J"f,H) — 0 as n — oo, which implies

lim 1(3"z)

n—oo 3N

= H(z), forallze X.

1

which yields the desired inequality

This implies that inequality (4.4) holds:

® 3(1— L)t
Rr@ -1\ = 30 ") 1 0(x, 2)’

forallz € X, t > 0. (4.7)
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By (4.1), we obtain

[ EGn Gaty)) | S3MGemy) _ S@Maty) G @my) 2@ 2e)) 2067 @) (1)
3n 3n 3n 3n 3n 3n
3™
2 )
37t 4+ 6(3"x, 3"y)

for all z,y € X, t > 0. (4.8)

Letting n — oo, we obtain

BDy(zy)(t) =1, foralzye X, t>0,
that is,
I H (22-4+y)+ H (20 —y)— H (2 —y)— H(a-+y)—2H (20)—2H (2) (1) = 1.
Thus,
HQ2z+y)+H(2x—y)+H(x+y)+ H(x —y) —2H(2z) — 2H(z) = 0,

which shows that H : X — Y is additive by Lemma 2.9, and hence H is linear.

Moreover,
Pf ey~ @) ) (1) = t—i—Ht(xy) for all 7,y € X, t > 0.
Therefore,
3"t
/j’f(33227;ly)7f(3”§)21;(3ny) (t) > 0337y for all z,y € X, ¢t > 0. (4.9)
Since

. 3"t
lim
n—oo0 3"t 4 0(3"x, 3"y)

=1, forallz,ye X, t>0,

we conclude that

Thus,
H(zy) — H(z)H(y) =0,

and hence H(z) is a random homomorphism. O

Theorem 4.2. Let X be a real normed algebra, and (Y,u,T) be a random Banach algebra space. Let

f: X =Y be an odd mapping with f(0) = 0 and f(Ax) = Af(x) for all z € X, A € R. Suppose the
function 0 : X? x R — DY satisfies

0(3x,3y) < 3LO(x,y), L <1,

and
t

>
NDf(m,y)(t) e t+6($,y)’

forall z,y € X, (4.10)
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3t
I =1 411
w00 3¢ + (30, 3ny) (4.11)
t
i) -af i@ 1) 2 ey, Jorallz,y € X, (4.12)
Then .
d(xz) = lim f(3"2)

n—oo 3N

exists for each x € X and defines a random derivation § : X — Y such that

(3—3L)t
_ t) > . 4.13
[f (z)—8(x) () = B30t +0(.y) (4.13)
Proof. This theorem can be readily demonstrated by using the same method as in Theorem 4.1. O

Conclusion

In this study, we have obtained results concerning the approximation of homomorphisms and derivations
for the functional equation in random Banach algebras. This work represents a new contribution to the
study of Ulam—Hyers—Rassias stability and serves as an extension of a series of previous papers authored
by the researcher in various other spaces. Furthermore, additional results can be obtained in different
spaces and for other types of functional equations, as well as by considering the applied aspects of the

study.
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