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Abstract 

Necessary and sufficient conditions in terms of lower cut sets are given for the insertion 

of a contra-α-continuous function between two comparable real-valued functions. 

1. Introduction  

The concept of a preopen set in a topological space was introduced by Corson and 

Michael in 1964 [4]. A subset A of a topological space ( )τ,X  is called preopen or 

locally dense or nearly open if ( ( )).AClIntA ⊆  A set A is called preclosed if its 

complement is preopen or equivalently if ( ( )) .AAIntCl ⊆  The term, preopen, was used 

for the first time by Mashhour et al. [21], while the concept of a, locally dense, set was 

introduced by Corson and Michael [4]. 

The concept of a semi-open set in a topological space was introduced by Levine in 

1963 [18]. A subset A of a topological space ( )τ,X  is called semi-open [10] if 
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( ( )).AIntClA ⊆  A set A is called semi-closed if its complement is semi-open or 

equivalently if ( ( )) .AAClInt ⊆  

Recall that a subset A of a topological space ( )τ,X  is called α-open if A is the 

difference of an open and a nowhere dense subset of X. A set A is called α-closed if its 

complement is α-open or equivalently if A is union of a closed and a nowhere dense set. 

We have a set is α-open if and only if it is semi-open and preopen. 

A generalized class of closed sets was considered by Maki in [20]. He investigated 

the sets that can be represented as union of closed sets and called them V-sets. 

Complements of V-sets, i.e., sets that are intersection of open sets are called Λ-sets [20]. 

Recall that a real-valued function f defined on a topological space X is called 

A-continuous [25] if the preimage of every open subset of R  belongs to A, where A is a 

collection of subsets of X. Most of the definitions of function used throughout this paper 

are consequences of the definition of A-continuity. However, for unknown concepts the 

reader may refer to [5, 11]. In the recent literature many topologists had focused their 

research in the direction of investigating different types of generalized continuity. 

Dontchev in [6] introduced a new class of mappings called contra-continuity. Jafari 

and Noiri in [12, 13] exhibited and studied among others a new weaker form of this class 

of mappings called contra-α-continuous. A good number of researchers have also 

initiated different types of contra-continuous like mappings in the papers [1, 3, 8, 9, 10, 

23]. 

Hence, a real-valued function f defined on a topological space X is called contra-α-

continuous (resp. contra-semi-continuous, contra-precontinuous) if the preimage of 

every open subset of R  is α-closed (resp. semi-closed, preclosed) in X [6]. 

Results of Katĕtov [14, 15] concerning binary relations and the concept of an 

indefinite lower cut set for a real-valued function, which is due to Brooks [2], are used in 

order to give a necessary and sufficient conditions for the insertion of a contra-α-

continuous function between two comparable real-valued functions. 

If g and f are real-valued functions defined on a space X, we write fg ≤  ( .resp  

)fg <  in case ( ) ( )xfxg ≤  ( ( ) ( ))xfxg <.resp  for all x in X. 

The following definitions are modifications of conditions considered in [16]. 
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A property P defined relative to a real-valued function on a topological space is a 

cα-property provided that any constant function has property P and provided that the 

sum of a function with property P and any contra-α-continuous function also has 

property P. If 1P  and 2P  are cα-property, the following terminology is used: (i) A space 

X has the weak cα-insertion property for ( )21, PP  if and only if for any functions g and f 

on X such that ,fg ≤  g has property 1P  and f has property ,2P  then there exists a 

contra-α-continuous function h such that .fhg ≤≤  (ii) A space X has the strong 

cα-insertion property for ( )21, PP  if and only if for any functions g and f on X such that 

,fg ≤  g has property 1P  and f has property ,2P  then there exists a contra-α-continuous 

function h such that fhg ≤≤  and if ( ) ( )xfxg <  for any x in X, then 

( ) ( ) ( ).xfxhxg <<  

In this paper, for a topological space whose α-kernel of sets are α-open, is given a 

sufficient condition for the weak cα-insertion property. Also for a space with the weak 

cα-insertion property, we give necessary and sufficient conditions for the space to have 

the strong cα-insertion property. Several insertion theorems are obtained as corollaries of 

these results. 

2. The Main Result 

Before giving a sufficient condition for insertability of a contra-α-continuous 

function, the necessary definitions and terminology are stated. 

The abbreviations cαc, cpc and csc are used for contra-α-continuous, contra-

precontinuous and contra-semi-continuous, respectively. 

Let ( )τ,X  be a topological space. Then the family of all α-open, α-closed, semi-

open, semi-closed, preopen and preclosed will be denoted by ( ),, τα XO  ( ),, τα XC  

( ),, τXsO  ( ),, τXsC  ( )τ,XpO  and ( ),, τXpC  respectively. 

Definition 2.1. Let A be a subset of a topological space ( )., τX  We define the 

subsets Λ
A  and V

A  as follows: 

{ ( )}τ∈⊇=Λ ,,: XOAOOA ∩  and { ( )}.,,: τ∈⊆= XFAFFA
cV

∪  

In [7, 19, 22], Λ
A  is called the kernel of A. 
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We define the subsets ( ),Λα A  ( ),V
Aα  ( ),Λ

Ap  ( ),V
Ap  ( )Λ

As  and ( )V
As  as 

follows: 

( ) { ( )},,,: τα∈⊇=α Λ
XOOAOOA ∩  

( ) { ( )},,,: τα∈⊆=α XCFAFFA
V

∪  

( ) { ( )},,,: τ∈⊇=Λ
XpOOAOOAp ∩  

( ) { ( )},,,: τ∈⊆= XpCFAFFAp
V

∪  

( ) { ( )},,,: τ∈⊇=Λ
XsOOAOOAs ∩   

( ) { ( )}.,,: τ∈⊆= XsCFAFFAs
V

∪  

( )Λα A ( ( ) ( ))ΛΛ
AsAp ,.resp  is called the α-kernel (resp. prekernel, semi- kernel) of A. 

The following first two definitions are modifications of conditions considered in [14, 

15]. 

Definition 2.2. If ρ is a binary relation in a set S, then ρ  is defined as follows:  

yx ρ  if and only if y ρ v implies x ρ v and u ρ x implies u ρ y for any u and v in S. 

Definition 2.3. A binary relation ρ in the power set ( )XP  of a topological space X is 

called a strong binary relation in ( )XP  in case ρ satisfies each of the following 

conditions: 

(1) If ji BA ρ  for any { }mi ...,,1∈  and for any { },...,,1 nj ∈  then there exists a set 

C in ( )XP  such that CAi ρ  and jBC ρ  for any { }mi ...,,1∈  and any { }....,,1 nj ∈  

(2) If ,BA ⊆  then .BA ρ  

(3) If A ρ B, then ( ) BA ⊆α Λ  and ( ).V
BA α⊆  

The concept of a lower indefinite cut set for a real-valued function was defined by 

Brooks [2] as follows: 

Definition 2.4. If f is a real-valued function defined on a space X and if 

( ){ } ( ) ( ){ }ℓℓℓ ≤∈⊆⊆<∈ xfXxfAxfXx :,:  for a real number ,ℓ  then ( )ℓ,fA  

is called a lower indefinite cut set in the domain of f at the level .ℓ  
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We now give the following main result: 

Theorem 2.1. Let g and f be real-valued functions on the topological space X, in 

which α-kernel sets are α-open, with .fg ≤  If there exists a strong binary relation ρ on 

the power set of X and if there exist lower indefinite cut sets ( )tfA ,  and ( )tgA ,  in the 

domain of f and g at the level t for each rational number t such that if ,21 tt <  then 

( ) ( ),,, 21 tgAtfA ρ  then there exists a contra-α-continuous function h defined on X 

such that .fhg ≤≤   

Proof. Let g and f be real-valued functions defined on the X such that .fg ≤  By 

hypothesis there exists a strong binary relation ρ on the power set of X and there exist 

lower indefinite cut sets ( )tfA ,  and ( )tgA ,  in the domain of f and g at the level t for 

each rational number t such that if ,21 tt <  then ( ) ( ).,, 21 tgAtfA ρ  

Define functions F and G mapping the rational numbers Q  into the power set of X 

by ( ) ( )tfAtF ,=  and ( ) ( )., tgAtG =  If 1t  and 2t  are any elements of Q  with 

,21 tt <  then ( ) ( ) ( ) ( ),, 2121 tGtGtFtF ρρ  and ( ) ( ).21 tGtF ρ  By Lemmas 1 and 2 of 

[15] it follows that there exists a function H mapping Q  into the power set of X such that 

if 1t  and 2t  are any rational numbers with ,21 tt <  then ( ) ( ) ( ) ( )2121 , tHtHtHtF ρρ  

and ( ) ( ).21 tGtH ρ  

For any x in X, let ( ) { ( )}.:inf tHxtxh ∈∈= Q  

We first verify that :fhg ≤≤  If x is in ( ),tH  then x is in ( )tG ′  for any ;tt >′  

since x is in ( ) ( )tgAtG ′=′ ,  implies that ( ) ,txg ′≤  it follows that ( ) .txg ≤  Hence 

.hg ≤  If x is not in ( ),tH  then x is not in ( )tF ′  for any ;tt <′  since x is not in 

( ) ( )tfAtF ′=′ ,  implies that ( ) ,txf ′>  it follows that ( ) .txf ≥  Hence .fh ≤  

Also, for any rational numbers 1t  and 2t  with ,21 tt <  we have ( ) =−
21

1 , tth  

( ( ) ) ( ( ) ).\ 12
Λαα tHtH

V  Hence ( )21
1 , tth

−  is α-closed in X, i.e., h is a contra-alpha-

continuous function on X. � 

The above proof used the technique of Theorem 1 in [14]. 

If a space has the strong cα-insertion property for ( ),, 21 PP  then it has the weak 
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cα-insertion property for ( )., 21 PP  The following result uses lower cut sets and gives a 

necessary and sufficient condition for a space satisfies that weak cα-insertion property to 

satisfy the strong cα-insertion property.  

Theorem 2.2. Let 1P  and 2P  be cα-property and X be a space that satisfies the weak 

cα-insertion property for ( )., 21 PP  Also assume that g and f are functions on X such that 

,fg ≤  g has property 1P  and f has property .2P  The space X has the strong 

cα-insertion property for ( )21, PP  if and only if there exist lower cut sets ( )n
gfA

−− 2,  

and there exists a sequence { }nF  of subsets of X such that (i) for each n, nF  and 

( )n
gfA

−− 2,  are completely separated by contra-α-continuous functions, and (ii) 

{ ( ) ( ) } ∪
∞

==>−∈
1

.0:
n nFxgfXx  

Proof. Suppose that there is a sequence ( ( ))n
gfA

−− 2,  of lower cut sets for 

gf −  and suppose that there is a sequence ( )nF  of subsets of X such that  

{ ( ) ( ) } ∪
∞

=

=>−∈
1

0:

n

nFxgfXx  

and such that for each n, there exists a contra-α-continuous function nk  on X into 

[ ]n−
2,0  with n

nk
−= 2  on nF  and 0=nk  on ( ).2,

n
gfA

−−  The function k from X 

into [ ]41,0  which is defined by 

( ) ( )∑
∞

=
=

1

41

n

n xkxk  

is a contra-α-continuous function by the Cauchy condition and the properties of contra-

α-continuous functions, (1) ( ) { ( ) ( ) }0:0
1 =−∈=−

xgfXxk  and (2) if ( ) ( )xgf −  

,0>  then ( ) ( ) ( ):xgfxk −<  In order to verify (1), observe that if ( ) ( ) ,0=− xgf  

then ( )n
gfAx

−−∈ 2,  for each n and hence ( ) 0=xkn  for each n. Thus ( ) .0=xk  

Conversely, if ( ) ( ) ,0>− xgf  then there exists an n such that nFx ∈  and hence 

( ) .2 n
n xk

−=  Thus ( ) 0≠xk  and this verifies (1). Next, in order to establish (2), note 

that 
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{ ( ) ( ) } ( )∩
∞

=

−−==−∈
1

2,0:

n

n
gfAxgfXx  

and that ( ( ))n
gfA

−− 2,  is a decreasing sequence. Thus if ( ) ( ) ,0>− xgf  then either 

( )21,gfAx −∉  or there exists a smallest n such that ( )n
gfAx

−−∉ 2,  and 

( )j
gfAx

−−∈ 2,  for .1...,,1 −= nj  

In the former case, 

( ) ( ) ( ) ( )∑ ∑
∞

=

∞

=

− −≤<≤=
1 1

,2124141

n n

n
n xgfxkxk  

and in the latter, 

( ) ( ) ( ) ( )∑ ∑
∞

=

∞

=

−− −≤<≤=
nj nj

nj
j xgfxkxk .224141  

Thus gfk −≤≤0  and if ( ) ( ) ,0>− xgf  then ( ) ( ) ( ) .0>>− xkxgf  Let 

( )kgg 411 +=  and ( ) .411 kff −=  Then ffgg ≤≤≤ 11  and if ( ) ( ),xfxg <  

then  

( ) ( ) ( ) ( ).11 xfxfxgxg <<<  

Since 1P  and 2P  are cα-properties, 1g  has property 1P  and 1f  has property .2P  Since 

by hypothesis X has the weak cα-insertion property for ( ),, 21 PP  there exists a contra-α-

continuous function h such that .11 fhg ≤≤  Thus fhg ≤≤  and if ( ) ( ),xfxg <  then 

( ) ( ) ( ).xfxhxg <<  Therefore X has the strong cα-insertion property for ( )., 21 PP  (The 

technique of this proof is by Lane [16].) 

Conversely, assume that X satisfies the strong cα-insertion for ( )., 21 PP  Let g and f 

be functions on X satisfying 1P  and ,2P  respectively such that .fg ≤  Thus, there exists 

a contra-α-continuous function h such that fhg ≤≤  and such that if ( ) ( )xfxg <  for 

any x in X, then ( ) ( ) ( ).xfxhxg <<  We follow an idea contained in Powderly [24]. 

Now consider the functions 0 and .hf −  0 satisfies property 1P  and hf −  satisfies 
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property .2P  Thus, there exists a contra-α-continuous function 1h  such that 

hfh −≤≤ 10  and if ( ) ( )xhf −<0  for any x in X, then ( ) ( ) ( ).0 1 xhfxh −<<  We 

next show that 

{ ( ) ( ) } { ( ) }.0:0: 1 >∈=>−∈ xhXxxgfXx  

If x is such that ( ) ( ) ,0>− xgf  then ( ) ( ).xfxg <  Therefore, ( ) ( ) ( ).xfxhxg <<  

Thus, ( ) ( ) 0>− xhxf  or ( ) ( ) .0>− xhf  Hence, ( ) .01 >xh  On the other hand, if 

( ) ,01 >xh  then since ( ) 1hhf ≥−  and ,hfgf −≥−  therefore ( ) ( ) .0>− xgf  For 

each n, let ( ) { ( ) ( ) },2:2, nn
xgfXxgfA

−− ≤−∈=−  and  

{ ( ) }1
1 2:

+−≥∈= n
n xhXxF  

and 

{ { } } .22,2,infsup
1

1
nnn

n hk
−−+− −=  

Since { ( ) ( ) } { ( ) },0:0: 1 >∈=>−∈ xhXxxgfXx  it follows that 

{ ( ) ( ) } ∪
∞

=

=>−∈
1

.0:

n

nFxgfXx  

We next show that nk  is a contra-α-continuous function which completely separates nF  

and ( ).2,
n

gfA
−−  From its definition and by the properties of contra-α-continuous 

functions, it is clear that nk  is a contra-α-continuous function. Let .nFx ∈  Then, from 

the definition of ,nk  ( ) .2
n

n xk
−=  If ( ),2,

n
gfAx

−−∈  then since ≤−≤ hfh1  

,gf −  ( ) .21
n

xh
−≤  Thus, ( ) ,0=xkn  according to the definition of .nk  Hence nk  

completely separates nF  and ( ).2,
n

gfA
−−  

Theorem 2.3. Let 1P  and 2P  be cα-properties and assume that the space X satisfied 

the weak cα-insertion property for ( )., 21 PP  The space X satisfies the strong 

cα-insertion property for ( )21, PP  if and only if X satisfies the strong cα-insertion 

property for ( )ccP α,1  and for ( )., 2Pccα  

Proof. Assume that X satisfies the strong cα-insertion property for ( )ccP α,1  and for 
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( )., 2Pccα  If g and f are functions on X such that ,fg ≤  g satisfies property ,1P  and f 

satisfies property ,2P  then since X satisfies the weak cα-insertion property for ( )21, PP  

there is a contra-α-continuous function k such that .fkg ≤≤  Also, by hypothesis there 

exist contra-α-continuous functions 1h  and 2h  such that khg ≤≤ 1  and if ( ) ( ),xkxg <  

then ( ) ( ) ( )xkxhxg << 1  and such that fhk ≤≤ 2  and if ( ) ( ),xfxk <  then 

( ) ( ) ( ).2 xfxhxk <<  If a function h is defined by ( ) ( ( ) ( )) ,212 xhxhxh +=  then h is a 

contra-α-continuous function, ,fhg ≤≤  and if ( ) ( ),xfxg <  then ( ) ( )xhxg <  

( ).xf<  Hence X satisfies the strong cα-insertion property for ( )., 21 PP  

The converse is obvious since any contra-α-continuous function must satisfy both 

properties 1P  and .2P  (The technique of this proof is by Lane [17].) 

3. Applications 

Before stating the consequences of Theorems 2.1, 2.2 and 2.3 we suppose that X is a 

topological space whose α-kernel sets are α-open. 

Corollary 3.1. If for each pair of disjoint preopen (resp. semi-open) sets 21, GG  of 

X, there exist α-closed sets 1F  and 2F  of X such that ,11 FG ⊆  22 FG ⊆  and 

,21 ∅=FF ∩  then X has the weak cα-insertion property for ( )cpccpc,  

( ( )).,. csccscresp  

Proof. Let g and f be real-valued functions defined on X, such that f and g are cpc 

( ),.resp csc  and .fg ≤  If a binary relation ρ is defined by BA ρ  in case ( )Λ
Ap  

( )V
Bp⊆  ( ( ) ( )),.resp

V
BsAs ⊆Λ  then by hypothesis ρ is a strong binary relation in the 

power set of X. If 1t  and 2t  are any elements of Q  with ,21 tt <  then 

( ) { ( ) } { ( ) } ( );,::, 2211 tgAtxgXxtxfXxtfA ⊆<∈⊆≤∈⊆  

since { ( ) }1: txfXx ≤∈  is a preopen (resp. semi-open) set and since { ( )xgXx :∈  

}2t<  is a preclosed (resp. semi-closed) set, it follows that ( ( ) ) ⊆Λ
1, tfAp  

( ( ) )V
tgAp 2,  ( ( ( ) ) ( ( ) )).,,.resp 21

V
tgAstfAs ⊆Λ  Hence 21 tt <  implies that 

( ) ( ).,, 21 tgAtfA ρ  The proof follows from Theorem 2.1. 
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Corollary 3.2. If for each pair of disjoint preopen (resp. semi-open) sets ,, 21 GG  

there exist α-closed sets 1F  and 2F  such that 2211 , FGFG ⊆⊆  and ,21 ∅=FF ∩  

then every contra-precontinuous (resp. contra-semi-continuous) function is contra-α-

continuous. 

Proof. Let f be a real-valued contra-precontinuous (resp. contra-semi-continuous) 

function defined on X. Set ,fg =  then by Corollary 3.1, there exists a contra-α-

continuous function h such that .fhg ==  � 

Corollary 3.3. If for each pair of disjoint preopen (resp. semi-open) sets 21, GG  of 

X, there exist α-closed sets 1F  and 2F  of X such that ,11 FG ⊆  22 FG ⊆  and 

,21 ∅=FF ∩  then X has the strong cα-insertion property for ( )cpccpc,  

( ( )).,. csccscresp  

Proof. Let g and f be real-valued functions defined on the X, such that f and g are cpc 

( ),.resp csc  and .fg ≤  Set ( ) ,2gfh +=  thus fhg ≤≤  and if ( ) ( )xfxg <  for 

any x in X, then ( ) ( ) ( ).xfxhxg <<  Also, by Corollary 3.2, since g and f are contra-α-

continuous functions hence h is a contra-α-continuous function. � 

Corollary 3.4. If for each pair of disjoint subsets 21, GG  of X, such that 1G  is 

preopen and 2G  is semi-open, there exist α-closed subsets 1F  and 2F  of X such that 

2211 , FGFG ⊆⊆  and ,21 ∅=FF ∩  then X have the weak cα-insertion property for 

( )csccpc,  and ( )., cpccsc  

Proof. Let g and f be real-valued functions defined on X, such that g is cpc 

( )csc.resp  and f is csc ( ),.resp cpc  with .fg ≤  If a binary relation ρ is defined by 

BAρ  in case ( ) ( )V
BpAs ⊆Λ

 ( ( ) ( )),.resp V
BsAp ⊆Λ  then by hypothesis ρ is a strong 

binary relation in the power set of X. If 1t  and 2t  are any elements of Q  with ,21 tt <  

then 

( ) { ( ) } { ( ) } ( );,::, 2211 tgAtxgXxtxfXxtfA ⊆<∈⊆≤∈⊆  

since { ( ) }1: txfXx ≤∈  is a semi-open (resp. preopen) set and since { ( )xgXx :∈  

}2t<  is a preclosed (resp. semi-closed) set, it follows that ( ( ) ) ( ( ) )V
tgAptfAs 21 ,, ⊆Λ
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( ( ( ) ) ( ( ) )).,,.resp 21
V

tgAstfAp ⊆Λ
 Hence, 21 tt <  implies that ( ) ( ).,, 21 tgAtfA ρ  

The proof follows from Theorem 2.1. � 

Before stating consequences of Theorems 2.2 and 2.3 we state and prove the 

necessary lemmas. 

Lemma 3.1. The following conditions on the space X are equivalent: 

(i) For each pair of disjoint subsets 21, GG  of X, such that 1G  is preopen and 2G  is 

semi-open, there exist α-closed subsets 21, FF  of X such that 2211 , FGFG ⊆⊆  and 

.21 ∅=FF ∩  

(ii) If G is a semi-open (resp. preopen) subset of X which is contained in a preclosed 

(resp. semi-closed) subset F of X, then there exists an α-closed subset H of X such that 

( ) .FHHG ⊆α⊆⊆ Λ  

Proof. (i) ⇒ (ii) Suppose that ,FG ⊆  where G and F are semi-open (resp. preopen) 

and preclosed (resp. semi-closed) subsets of X, respectively. Hence, c
F  is a preopen 

(resp. semi-open) and .∅=c
FG ∩  

By (i) there exists two disjoint α-closed subsets 21, FF  such that 1FG ⊆  and 

.2FF
c ⊆  But 

,22 FFFF
cc ⊆⇒⊆  

and 

c
FFFF 2121 ⊆⇒∅=∩  

hence 

FFFG
c ⊆⊆⊆ 21  

and since c
F2  is an α-open subset containing ,1F  we conclude that ( ) ,21

c
FF ⊆α Λ

 i.e., 

( ) .11 FFFG ⊆α⊆⊆ Λ  

By setting ,1FH =  condition (ii) holds. 

(ii) ⇒ (i) Suppose that 21, GG  are two disjoint subsets of X, such that 1G  is preopen 

and 2G  is semi-open. 



Majid Mirmiran and Binesh Naderi 

http://www.earthlinepublishers.com 

234 

This implies that c
GG 12 ⊆  and c

G1  is a preclosed subset of X. Hence by (ii) there 

exists an α-closed set H such that ( ) .12
c

GHHG ⊆α⊆⊆ Λ  

But 

( ) (( ) ) ∅=α⇒α⊆ ΛΛ c
HHHH ∩  

and 

( ) (( ) ).11
cc

HGGH
ΛΛ α⊆⇒⊆α  

Furthermore, (( ) )c
H

Λα  is an α-closed subset of X. Hence (( ) )c
HGHG

Λα⊆⊆ 12 ,  

and (( ) ) .∅=α Λ c
HH ∩  This means that condition (i) holds.  

Lemma 3.2. Suppose that X is a topological space. If each pair of disjoint subsets 

21, GG  of X, where 1G  is preopen and 2G  is semi-open, can be separated by α-closed 

subsets of X, then there exists a contra-α-continuous function [ ]1,0: →Xh  such that 

( ) { }02 =Gh  and ( ) { }.11 =Gh  

Proof. Suppose 1G  and 2G  are two disjoint subsets of X, where 1G  is preopen and 

2G  is semi-open. Since ,21 ∅=GG ∩  hence .12
c

GG ⊆  In particular, since c
G1  is a 

preclosed subset of X containing the semi-open subset 2G  of X, by Lemma 3.1, there 

exists an α-closed subset 21H  such that 

( ) .121212
c

GHHG ⊆α⊆⊆ Λ  

Note that 21H  is also a preclosed subset of X and contains ,2G  and c
G1  is a preclosed 

subset of X and contains the semi-open subset ( )Λα
21

H  of X. Hence, by Lemma 3.1, 

there exists α-closed subsets 41H  and 43H  such that 

( ) ( ) ( ) .14343212141412
c

GHHHHHHG ⊆α⊆⊆α⊆⊆α⊆⊆ ΛΛΛ  

By continuing this method for every ,Dt ∈  where [ ]1,0⊆D  is the set of rational 

numbers that their denominators are exponents of 2, we obtain α-closed subsets tH  with 

the property that if Dtt ∈21,  and ,21 tt <  then .
21 tt HH ⊆  We define the function h 

on X by ( ) { }tHxtxh ∈= :inf  for 1Gx ∉  and ( ) 1=xh  for .1Gx ∈  
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Note that for every ( ) ,10, ≤≤∈ xhXx  i.e., h maps X into [ ].1,0  Also, we note 

that for any ,Dt ∈  ;2 tHG ⊆  hence ( ) { }.02 =Gh  Furthermore, by definition, 

( ) { }.11 =Gh  It remains only to prove that h is a contra-α-continuous function on X. For 

every ,R∈α  we have if ,0≤α  then ( ){ } ∅=α<∈ xhXx :  and if ,0 α<  then 

( ){ } { },:: α<=α<∈ tHxhXx t∪  hence, they are α-closed subsets of X. Similarly, if 

,0<α  then ( ){ } XxhXx =α>∈ :  and if ,0 α≤  then ( ){ } =α>∈ xhXx :  

{ (( ) ) }α>α Λ
tH

c
t :∪  hence, every of them is an α-closed subset. Consequently h is a 

contra-α-continuous function. � 

Lemma 3.3. Suppose that X is a topological space. If each pair of disjoint subsets 

21, GG  of X, where 1G  is preopen and 2G  is semi-open, can separate by α-closed 

subsets of X, and 1G  ( )2. Gresp  is an α-closed subsets of X, then there exists a contra-

continuous function [ ]1,0: →Xh  such that, ( ) 1
1

0 Gh =−
 ( ( ) )2

1
0. Ghresp =−  and 

( ) { }12 =Gh  ( ( ) { }).1. 1 =Ghresp  

Proof. Suppose that 1G  ( )2.resp G  is an α-closed subset of X. By Lemma 3.2, there 

exists a contra-α-continuous function [ ]1,0: →Xh  such that, ( ) { }01 =Gh  

( ( ) { })0.resp 2 =Gh  and ( ) { }1\ 1 =GXh  ( ( ) { }).1\.resp 2 =GXh  Hence, ( ) 1
1 0 Gh =−

 

( ( ) )2
1 0.resp Gh =−  and since 12 \GXG ⊆  ( ),\.resp 21 GXG ⊆  therefore ( ) { }12 =Gh  

( ( ) { }).1.resp 1 =Gh  � 

Lemma 3.4. Suppose that X is a topological space such that every two disjoint semi-

open and preopen subsets of X can be separated by α-closed subsets of X. The following 

conditions are equivalent: 

  (i) For every two disjoint subsets 1G  and 2G  of X, where 1G  is preopen and 2G  is 

semi-open, there exists a contra-α-continuous function [ ]1,0: →Xh  such that, 

( ) 1
1

0 Gh =−
 ( ( ) )2

1
0. Ghresp =−

 and ( ) 2
1

1 Gh =− ( ( ) ).1. 1
1

Ghresp =−  

 (ii) Every preopen (resp. semi-open) subset of X is an α-closed subsets of X. 

(iii) Every preclosed (resp. semi-closed) subset of X is an α-open subsets of X. 
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Proof. (i) ⇒ (ii) Suppose that G is a preopen (resp. semi-open) subset of X. Since ∅  

is a semi-open (resp. preopen) subset of X, by (i) there exists a contra-α-continuous 

function [ ]1,0: →Xh  such that, ( ) .0
1

Gh =−  Set ( ) .
1

:






 <∈=

n
xhXxFn  Then for 

every nFn ,N∈  is an α-closed subset of X and ( ){ }∩
∞

= ==∈=
1

.0:
n n GxhXxF   

(ii) ⇒ (i) Suppose that 1G  and 2G  are two disjoint subsets of X, where 1G  is 

preopen and 2G  is semi-open. By Lemma 3.3, there exists a contra-α-continuous 

function [ ]1,0: →Xf  such that, ( ) 1
1

0 Gf =−  and ( ) { }.12 =Gf  Set 

( ) ,
2

1
:







 <∈= xfXxG ( ) ,

2

1
:







 =∈= xfXxF  and ( ) .

2

1
:







 >∈= xfXxH  

Then FG ∪  and FH ∪  are two α-open subsets of X and ( ) .2 ∅=GFG ∩∪  By 

Lemma 3.3, there exists a contra-α-continuous function 




→ 1,
2

1
: Xg  such that, 

( ) 2
1 1 Gg =−  and ( ) .

2

1







=FGg ∪  Define h by ( ) ( )xfxh =  for ,FGx ∪∈  and 

( ) ( )xgxh =  for .FHx ∪∈  Then h is well-defined and a contra-α-continuous function, 

since ( ) ( ) FFHFG =∪∩∪  and for every Fx ∈  we have ( ) ( ) .
2

1== xgxf  

Furthermore, ( ) ( ) ,XFHFG =∪∪∪  hence h defined on X and maps to [ ].1,0  Also, 

we have ( ) 1
1

0 Gh =−  and ( ) .1 2
1

Gh =−  

(ii) ⇔ (iii) By De Morgan law and noting that the complement of every α-open 

subset of X is an α-closed subset of X and complement of every α-closed subset of X is 

an α-open subset of X, the equivalence is hold. 

Corollary 3.5. If for every two disjoint subsets 1G  and 2G  of X, where 1G  is 

preopen (resp. semi-open) and 2G  is semi-open (resp. preopen), there exists a contra-α-

continuous function [ ]1,0: →Xh  such that, ( ) 1
1

0 Gh =−  and ( ) ,1 2
1

Gh =−  then X has 

the strong cα-insertion property for ( )csccpc,  ( ( )).,. cpccscresp  

Proof. Since for every two disjoint subsets 1G  and 2G  of X, where 1G  is preopen 

(resp. semi-open) and 2G  is semi-open (resp. preopen), there exists a contra-α-
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continuous function [ ]1,0: →Xh  such that, ( ) 1
1

0 Gh =−  and ( ) ,1 2
1

Gh =−  define 

( )






 <∈=

2

1
:1 xhXxF  and ( ) .

2

1
:2







 >∈= xhXxF  Then 1F  and 2F  are two 

disjoint α-closed subsets of X that contain 1G  and ,2G  respectively. Hence, by Corollary 

3.4, X has the weak cα-insertion property for ( )csccpc,  and ( )., cpccsc  Now, assume 

that g and f are functions on X such that gfg ,≤  is cpc ( )csc.resp  and f is cαc. Since 

gf −  is cpc ( ),.resp csc  therefore the lower cut set ( ) =− −n
gfA 2,  

{ ( ) ( ) }n
xgfXx

−≤−∈ 2:  is a preopen (resp. semi-open) subset of X. Now setting 

{ ( ) ( ) }n
n xgfXxH

−>−∈= 2:  for every ,N∈n  then by Lemma 3.4, nH  is an 

α-open subset of X and we have { ( ) ( ) } ∪
∞

==>−∈
1

0:
n nHxgfXx  and for every 

nHn ,N∈  and ( )n
gfA

−− 2,  are disjoint subsets of X. By Lemma 3.2, nH  and 

( )n
gfA

−− 2,  can be completely separated by contra-α-continuous functions. Hence by 

Theorem 2.2, X has the strong cα-insertion property for ( )cccpc α, ( ( )).,.resp cccsc α   

By an analogous argument, we can prove that X has the strong cα-insertion property 

for ( )csccc ,α ( ( )).,.resp cpcccα  Hence, by Theorem 2.3, X has the strong cα-insertion 

property for ( )csccpc,  ( ( )).,.resp cpccsc  
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