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Abstract

This study presents a stochastic predator-prey model involving two harvested prey species—sardines
and anchovies—and a common predator, the blacktip shark, under the influence of environmental
noise. The model incorporates Holling type-II functional responses, harvesting efforts, and white
noise perturbations representing environmental variability. Analytical investigations determine the
boundedness and stability conditions of equilibria. Numerical simulations reveal that the predator
population is highly sensitive to stochastic perturbations, particularly the noise intensity associated with
predator mortality. Notably, a sufficiently large noise intensity in anchovy dynamics (α2 > 72.06) can
stabilize the coexistence equilibrium, where higher values of α1 and α2 tend to destabilize the system.
Phase portraits and bifurcation analyses illustrate the effects of harvesting rates and noise intensities on
species persistence and extinction. These findings highlight critical thresholds for sustainable harvesting
and noise tolerance, offering ecological insights into species coexistence within the California Current
ecosystem.

1 Introduction

The California Current Ecosystem (CCE) ranks among the world’s most productive marine systems.
It supports diverse marine animals and hosts large commercial fisheries. Forage fish such as sardines
(Sardinops sagax) and anchovies (Engraulis mordax) make up the component parts of this ecosystem,
with these two forage fish types being consumed by a variety of predatory fishes, including blacktip sharks
(Carcharhinus limbatus), tunas, and mackerels. The populations are thought to fluctuate greatly due to
some stochastic elements and overexploitation by people [1, 2].

Understanding the demographic differences between these species is critical for the advancement of an
ecosystem-based approach to fisheries management. Much of the competition between the sardines and

Received: July 20, 2025; Accepted: August 29, 2025; Published: September 9, 2025
2020 Mathematics Subject Classification: Primary 92D25, 60H10; Secondary 37H10, 92D40, 37N25.
Keywords and phrases: Holling type-II response, harvesting pressure, stochastic dynamics, stability analysis, stochastic
persistence, stationary distribution, predator–prey model, environmental noise.
*Corresponding author Copyright 2025 the Author



990 Chandrima Talapatra

the anchovies is often referred to as “apparent competition,” meaning that the two species’ relationships
are mediated through predators rather than through direct resource competition [3]. Climate, predation
intensity, and harvesting regulations all define these phenomena.

Like every other ecosystem, marine ecosystems too depend on multiple stochastic factors such as the
sea surface temperature (SST), climatic oscillations like El Nino Southern Oscillation (ENSO), and even
ocean upwelling [4]. Sea surface temperature changes greatly impact recruitment, cycles in population, and
species dominance. A series of studies suggest that whereas cooler conditions tend to benefit anchovies,
warmer conditions tend to favor capacity of sardine populations [5].

Stochasticity is announced as an umbrella term that defines the SDEs, which are often used in
determining the fluctuations in populations and the risks of their extinction [6]. These models are helpful
in forecasting population persistence and the conditions in which they may sustain themselves despite the
changes in the environment.

The present study highlights the effect of environmental fluctuations on the aquatic ecosystem. A
number of researchers have analyzed the local and global dynamics of various prey models in a deterministic
environment, as mentioned in [7], [8], [9], [10]. The drawback of the deterministic models is that they fail
to justify the influence of environmental fluctuations. On the other hand, the parameters of the aquatic
environment are random by nature, for instance, growth rate, mortality rate, density of species, etc.

They depend upon changes in nutrient and mineral supplies, levels of sun energy, oxygen, carbon
dioxide concentration, concentration of nitrogen at some level in the sea, water salinity, the rate of flow,
availability of food supply, unexpected appearances of poisonous agents, the maturation behavior of the
organism, influences exerted by climatic fluctuations as seasonal change over the area, and thousands of
such elements. May [11] said that continuous fluctuations in the environment affect birth and death rates,
carrying capacity, competition coefficients, and all other parameters of the model. It is impossible to
achieve a constant value for the equilibrium population distribution, which fluctuates around an average
value. Many authors considered the impacts of white noise on two species of predator-prey models with
various kinds of functional responses, as well as with other different kinds of responses ( [12], [13], [14], [15]).

Few articles about a stochastic model of a predator-prey system with a Holling type II functional
response have been written. J. Lv et al. [16] considered the dynamic properties of the stochastic model,
and it is also devoted to the global stability of the positive solutions and discussed the stochastic persistence
in the mean of the species population. In accordance with this, Z. Liu et al. [17] solved the stochastic
prey-predator model with Holling type II and discussed the existence of a stationary distribution for small
white noise. They analyzed the extinction of the system for large values of white noise. P. S. Mandal
et al. [18] also considered a two-dimensional Holling-Tanner-type predator-prey model with stochastic
perturbation and established that the system is strongly persistent on average when the intensity of
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the environmental pressure is less than certain thresholds. Gard [19] considered the transient effects of
stochastic multi-population models and estimated the exit probability, indicating the initial tendency of
the corresponding populations in the system to survive or die out.

There is no unique way to formulate a stochastic model for interacting populations under discussion.
The relationship between fluctuations and species concentration is measured by quantifying these variations
in the model, which concerns noisy quantities whose variance at a given time may be a significant fraction
of their mean values. The birth and death processes are inherently stochastic processes that depend on
the average level of biomass and can vary rapidly from time to time. Since the interactions between
populations are not uniformly distributed, there are some random factors in the system. These factors can
be included in the mathematical model by taking into account parameters that fluctuate irregularly and
randomly in nature. However, to the best of our knowledge, the analysis of fishery systems in the presence
of environmental factors has not been addressed so far. Stochastic models can be broadly classified into
two categories: discrete or continuous Markov chain modeling ( [20], [21], [22]) and the noisy systems
( [23], [24], [25]).

Fokker-Planck equations and moment closure techniques are some of the mathematical methods
designed to find stationary distributions in stochastic ecological models [26]. In the context of the CCE,
these techniques aid in the prediction of sardine and anchovy population dynamics in relation to changing
environmental and fishing activities [27]. In ecological modeling, a principal question of interest is whether
a given species endures in the face of stochastic influences and harvesting. This can be approached by
persistence measures, extinction probabilities, invariant measures, and stationary distributions [28]. The
stationary distribution of a species’ population informs what the long-term changes of the species are and
the probability of its occurrence at certain levels of abundance. This study is particularly applicable for
understanding long-term species behaviors of sardines and anchovies in the California Current Ecosystem,
in which stochastic environmental factors play an important role in population fluctuations.

Stability analysis of harvested predator-prey systems often uses equilibrium points, Lyapunov functions,
and bifurcation analysis [29]. Some of the more recent studies have looked into how harvesting policies
can be crafted to maximize profits economically while being ecologically sustainable [30]. In particular,
bioeconomic models that include randomization of harvesting rates have been created in order to determine
sustainability over a long period [31]. Since the natural growth and death rate of species in the ecosystem
is often subject to environmental noise, many authors have investigated stochastic population models with
harvesting ( [32], [33], [34]). Harvesting natural populations is beneficial for commercial purposes, and
its consequences or aftereffects are useful for renewable resource management ( [32]- [35]). Harvesting
can also mean a reduction in the population through hunting or trapping of individuals, effectively
removing individuals from the population [36]. The capture intensity of harvesting depends mainly on the
harvesting strategy used. The capture function plays a key role in describing the dynamic behavior of the
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predator-prey system.

An essential aspect of ecological modeling is establishing whether a species can survive in the long run
while experiencing random effects along with harvesting. A person’s capability to investigate persistence
can be done through extinction probabilities, invariant measures, and stationary distributions [28]. It is
always good to know the stationary distribution of the population of a species because it gives information
on its future long-run fluctuations and the extent of abundance of the species.

In this paper, a stochastic predator–prey model involving two prey species and a common predator has
been investigated. Intra-specific competition is assumed within the predator population, while interspecific
competition occurs between the two prey species. Additionally, harvesting pressure is incorporated on the
prey populations in the presence of environmental stochasticity.

The modeling framework and analysis proceed as follows: A comprehensive stochastic differential
equation (SDE) model has been considered in Section 2 by introducing white noise into the intrinsic growth
rates of the prey and the mortality rate of the predator, while all other parameters remain deterministic.
Section 3 establishes the stochastic stability of the system in the mean-square sense near the interior
equilibrium. Section 4 demonstrates the existence of a unique positive global solution to the stochastic
model. Section 5 derives the parametric thresholds required to ensure stochastic persistence in the mean
for all species. The long-term behavior of the system is explored in Section 6, where we investigate the
existence of a stationary distribution under suitable conditions. The theoretical results are illustrated
through numerical simulations in Section 7, validating the effects of environmental noise and harvesting
on population dynamics. Finally, ecological interpretations of the findings and their implications for species
persistence and management are discussed in Section 8.

2 Mathematical Model Formulation

A classic example of a system with two prey animals and one predator can be seen in the ecosystem
of the California Current on the west coast of North America. In this marine ecosystem, sardines
(Sardinops sagax) and anchovies (Engraulis mordax) are the prey. These two species are commercially
harvested because of their high economic value, mainly for human consumption, aquaculture, and fish-meal
production. These two small pelagic fish species are indirectly competing, also known as false competition,
because they are important prey for these generalist predators, among others such as the blacktip shark
(Carcharhinus limbatus) and large predatory fish such as tuna and mackerel.

Within this system, the predator population represented by the blacktip shark feeds upon both
prey species to create some complex dynamics in predator-prey interactions. This fishery is within the
California Current, where sardine and anchovy fisheries are closely monitored and mostly managed to
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avoid overfishing, for fluctuations in prey could directly affect the predator population and eventually the
stability of the ecosystem. Moreover, the predatory fish population in that region, the blacktip shark, is
not fished since conservation efforts aim at averting the further decline of sharks.

This interplay between the continuous removal of prey and the feeding behavior of predators illustrates
the complicated dynamics of this marine ecosystem, which is shaped by both natural ecological processes
and human activities. Such a system can be mathematically modeled to understand the interactions
between the two prey species (sardines and anchovies) and their common predator (the blacktip shark)
and to gain insights into the sustainability and stability of the ecosystem under different fishing scenarios.

For simplicity, logistic growth functions are assumed for both sardines and anchovies, implying that
the population density of each species is resource-limited. It is also assumed that the feeding rate of the
predator (blacktip shark) increases linearly with prey density, while the functional response of the predator
is described by a Holling type II functional response.

The governing equations of the system can be formulated as follows:

dx1
dt

= x1

(
a1 − x1 −

c1y

e1 + x1
− E1

)
,

dx2
dt

= x2

(
a2 − x2 −

c2y

e2 + x2
− E2

)
,

dy

dt
= y

(
m1x1
e1 + x1

+
m2x2
e2 + x2

− d1 − γy

)
,

(1)

where:

• x1 and x2 denote the biomass of the prey species, sardines and anchovies, at time t.

• y denotes the biomass of the predator population (blacktip shark) at time t.

• a1 and a2 are the intrinsic birth rates of sardines and anchovies, respectively.

• c1 and c2 are the per capita predation rates of the blacktip shark on sardines and anchovies.

• e1 and e2 are the half-saturation constants for the functional responses of the blacktip shark to
sardines and anchovies.

• m1 and m2 are the conversion rates of sardines and anchovies into predator biomass.

• d1 is the natural mortality rate of the predator (blacktip shark).

• γ is the removal rate due to intraspecific competition within the predator population (blacktip
sharks).
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• E1 and E2 are the harvest coefficients for sardines and anchovies, respectively.

All parameters of this model are treated as positive constants. The first two equations represent the
dynamics of the two prey species: sardines and anchovies, with the parameters accounting for natural
growth rates, predation, and effects of fishing. The third equation models the population of predators
(blacktip sharks) with account taken for the consumption of prey, natural mortality, and intra-specific
competition among predators. This model of equations can be used to study the interactions between
the prey species and predator species, namely sardines and anchovies with blacktip sharks, as well as the
influence of competition, predation, and fishing.

The impact of including a nonzero harvesting rate within the prey equations from the predator-prey
model, as well as environmental noise, is also discussed. It is assumed that random factors in the
environment manifest as fluctuations in the intrinsic growth rates of the prey species and the mortality rate
of the predator. Specifically, let a1 and a2 denote the intrinsic growth rates of sardines and anchovies and
d1 represent the mortality rate of the blacktip shark. These parameters are treated as average values with
an additional error term. Using the central limit theorem, this error is modeled by a normal distribution
and quantified by the difference between the current population sizes and their equilibrium state. The
disturbances due to environmental noise are modeled as follows:

a1 → a1 + α1Ḃ1(t), a2 → a2 + α2Ḃ2(t), −d1 → −d1 + α3Ḃ3(t),

where α1, α2, and α3 are the intensities of noise, and Ḃi(t) for i = 1, 2, 3 represents standard Brownian
motion. These are characterized by:

⟨Ḃi(t)⟩ = 0, for i = 1, 2, 3,

and
⟨Ḃk(tk)Ḃl(tl)⟩ = δklδ(tk − tl), for k, l = 1, 2, 3,

where δkl is the Kronecker delta, and δ(·) is the Dirac delta function.

The resulting stochastic model is formulated as:

dx1(t) = x1(t)

[(
a1 − x1(t)

)
− c1y(t)

e1 + x1(t)
− E1

]
dt+ α1x1(t)dB1(t),

dx2(t) = x2(t)

[(
a2 − x2(t)

)
− c2y(t)

e2 + x2(t)
− E2

]
dt+ α2x2(t)dB2(t),

dy(t) = y(t)

[
m1x1(t)

e1 + x1(t)
+

m2x2(t)

e2 + x2(t)
− d1 − γy(t)

]
dt+ α3y(t)dB3(t).

(2)

Every solution of the system (1) with positive initial conditions is an Itô process ( [37], [38]). Without
loss of generality, it is assumed that αi > 0 for i = 1, 2, 3.
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The main goals of this study are:
1. To prove the stochastic stability of the model system around its positive equilibrium.
2. Investigate the existence and uniqueness of global solutions, which are helpful in studying the local
and global dynamic behavior.

Thus, the goal is to find positive and global solutions of the system (1).

3 Stochastic Stability of the Positive Equilibrium

In this paper, the existence of the positive equilibrium E∗(x∗1, x
∗
2, y

∗) of the system (1) is checked. The
system (1) must be considered equal to zero. This gives us two functions f1(x1, x2), g1(x1, x2). They then
intersect at the equilibrium point E∗(x∗1, x

∗
2, y

∗). The following results from (1)

a1 − x1 −
c1y

e1 + x1
− E1 = 0, (3)

a2 − x2 −
c2y

e2 + x2
− E2 = 0, (4)

m1x1
e1 + x1

+
m2x2
e2 + x2

− d1 − γy = 0. (5)

From (3), (4) and (5) we get

y =
(a1 − x1 − E1)(e1 + x1)

c1
, (6)

y =
(a2 − x2 − E2)(e2 + x2)

c2
, (7)

y =
1

γ
[
m1x1
e1 + x1

+
m2x2
e2 + x2

− d1]. (8)

From (6) and (7) we find

f(x1, x2) =
(a1 − x1 − E1)(e1 + x1)

c1
− (a2 − x2 − E2)(e2 + x2)

c2
= 0, (9)

and from (6) and (8)

g(x1, x2) =
(a1 − x1 − E1)(e1 + x1)

c1
− 1

γ
[
m1x1
e1 + x1

+
m2x2
e2 + x2

− d1]. (10)
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Equations (9) and (10) are two functions with two variables x1, x2. The existence of E∗(x∗1, x
∗
2, y

∗), must
be shown, and the conditions under which f(x1, x2) and g(x1, x2) meet in the interior of the positive
(x1, x2) plane at a point (x∗1, x

∗
2), must be found. (x∗1, x

∗
2), y∗ can be obtained from (9).

From (9), x2 tends to x2f as x∗1 → 0. x2f is given by

x2f =
r̂1 +

√
r̂1

2 − 4r̂2
2

, (11)

where r̂1 = (a2−e2−E2), r̂2 = (a1−E1)e1
c2
c1

− (a2e2−E2e2). x2f is positive and real, provided r̂1
2 > 4r̂2.

From (10), as x∗1 → 0, x∗2 tends to x2g . x2g is given by

x2f =
r̂3e2

m2c1 − r̂3
, (12)

where r̂3 = (a1e1γ − e1γE1 + d1c1). x2f is positive and real, provided m2c1 + e1E1γ > a1e1γ + d1c1 and
a1 > E1.

x2f and x2f are the points at which the functions f(x1, x2) and g(x1, x2) would cut the x2 axis in the

(x1, x2) plane, respectively. Then from (9), Since for f(x1, x2), we have,
dx2
dx1

> 0 and for g(x1, x2), we

have
dx2
dx1

< 0, then f(x1, x2) and g(x1, x2) will meet if x2f < x2g.

Therefore, there is a positive equilibrium point E∗(x∗1, x
∗
2, y

∗) of the system (1).

Then we consider stochastic perturbations of the variables x1, x2, y around their values in positive
equilibrium E∗(x1

∗, x2
∗, y∗). We investigate when it is feasible and locally asymptotically stable. The

local stability of the stationary state E∗ is implied by the existence condition of E∗. The stochastic model
can therefore be expressed in the following form around its values at E∗

dx1(t) = x1(t)

[(
a1 − x1(t)

)
− c1y(t)

e1 + x1(t)
− E1

]
dt+ α1(x1 − x1

∗)dB1(t),

dx2(t) = x2(t)

[(
a2 − x2(t)

)
− c2y(t)

e2 + x2(t)
− E2

]
dt+ α2(x2 − x2

∗)dB2(t),

dy(t) = y(t)

[
m1x1(t)

e1 + x1(t)
+

m2x2(t)

e2 + x2(t)
− d1 − γy(t)

]
dt+ α3(y − y∗)dB3(t).

(13)

The transformation is taken as

ũ1 = x1 − x1
∗, ũ2 = x2 − x2

∗, ũ3 = y − y∗. (14)

Linearized SDEs around E∗ take the form

dũ(t) = f(ũ(t))dt+ g(ũ(t))dB, (15)
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where ũ(t) = (ũ1(t), ũ2(t), ũ3(t))
T and

f(ũ(t)) =



[−2x∗1 +
c1x1

∗y∗

(e1 + x1∗)2
]ũ1(t) 0 − c1x1

∗

(e1 + x1∗)
ũ3(t)

0 [−2x∗2 +
c2x2

∗y∗

(e2 + x2∗)2
]ũ2(t) − c2x2

∗

(e2 + x2∗)
ũ3(t)

m1e1 ∗ y∗

(e1 + x∗1)
2
ũ1(t)

m2e2y
∗

(e2 + x∗2)
2
ũ2(t) −2γy∗ũ3(t)


, (16)

g(ũ(t)) =



α1ũ1(t) 0 0

0 α2ũ2(t) 0

0 0 α3ũ3(t)


. (17)

Since (15) the positive equilibrium E∗ corresponds to the trivial solution ũ(t) = 0. Let U ′ be the set.
U ′ = (t ≥ t0)×Rn, t0 ∈ R+. Hence V ∈ C0

2(U
′) is a twice continuously differentiable function with respect

to ũ and a continuous function with respect to t. The following theorem, given in the book authored by
Afanasev et al. [39], is stated.

Theorem 3.1. Suppose there exists a function U ′ = (t ≥ t0) × Rn, t0 ∈ R+ V ∈ C0
2(U

′) satisfying the
inequalities

K1|ũ|p ≤ V (t, ũ) ≤ K2|ũ|p, (18)

LV (t, ũ) ≤ −k3|ũ|p, ki > 0, p > 0 (19)

where i = 1, 2, 3. Then the trivial solution of (15) is exponentially p-stable, for t ≥ 0.

In (19) and (18), if p = 2, then the trivial solution of (15) is exponentially mean-square stable. Then,
the trivial solution of (15) is globally asymptotically stable in probability [40]. And

LV (t, ũ) =
∂V (t, ũ)

∂t
+ fT (ũ)

∂V (t, ũ)

∂ũ
+

1

2
Trac[gT (ũ)

∂2V (t, ũ)

∂ũ
g(ũ)],

where
∂2V (t, ũ)

∂ũ
= (

∂V

∂ũ1
,
∂V

∂ũ2
,
∂V

∂ũ3
)T ,

∂2V (t, ũ)

∂ũ
= (

∂2V (t, ũ)

∂ũi∂ũj
), i, j = 1, 2, 3.

T is the transposition.
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Theorem 3.2. Suppose that α1
2 < 4x∗1 −

2c1x1
∗y∗

(e1+x1
∗)2 , α2

2 > 4x∗2 −
2c2x2

∗y∗

(e2+x2
∗)2 , α3

2 < 2γy∗. Then the zero
solution of (15) is asymptotically mean-square stable.

Proof. Let consider the Lyapunov function,

V (ũ) =
1

2
[ϖ1ũ

2
1 +ϖ2ũ

2
2 +ϖ3ũ

2
3], (20)

where ϖi (i = 1, 2, 3) are real positive constants to be chosen later. It is easy to check that inequalities
(18) hold true with p = 2. Now

LV (u) = ϖ1

[
− 2x∗1ũ1(t) +

c1x1
∗y∗

(e1 + x1∗)2
ũ1(t)−

c1x1
∗

(e1 + x1∗)
ũ3(t)

]
ũ1(t)

+ϖ2

[
− 2x∗2ũ2(t) +

c2x2
∗y∗

(e2 + x2∗)2
ũ2(t)−

c2x2
∗

(e2 + x2∗)
ũ3(t)

]
ũ2(t)

+ϖ3

[
m1e1 ∗ y∗

(e1 + x∗1)
2
ũ1(t) +

m2e2y
∗

(e2 + x∗2)
2
ũ2(t)− 2γy∗ũ3(t)

]
ũ3(t)

+
1

2
Tr

[
gT (ũ(t))

∂2V

∂ũ2
g(ũ/(t))

]
,

(21)

where

g(ũ(t)) =



α1ũ1(t) 0 0

0 α2ũ2(t) 0

0 0 α3ũ3(t)


.

Hence

gT (ũ(t))
∂2V

∂ũ2
g(ũ(t̃)) =



ϖ1α
2
1ũ

2
1(t) 0 0

0 ϖ2α
2
2ũ

2
2(t) 0

0 0 ϖ3α
2
3ũ

2
3(t)


,

with
1

2
Tr[gT (ũ(t))

∂2V

∂ũ2
g(ũ(t̃))] =

1

2
[ϖ1α

2
1ũ

2
1 +ϖ2α

2
2ũ

2
2 +ϖ3α

2
3ũ

2
3]. (22)

From (21) we select

ϖ1
c1x1

∗

(e1 + x1∗)
= ϖ3

m1c1y
∗

(e1 + x1∗)2
⇒ ϖ1x1

∗(e1 + x1
∗) = ϖ3m1y

∗,
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and
ϖ2

c2x2
∗y∗

(e2 + x2∗)2
= ϖ3

m1e1 ∗ y∗

(e1 + x∗1)
2
⇒ ϖ2x2

∗(e2 + x2
∗) = ϖ3m2y

∗.

Then from (21) and (22) we get

LV = −(2x∗1 −
c1x1

∗y∗

(e1 + x1∗)2
− α1

2

2
)ϖ2

1ũ
2
1

−(2x∗2 −
c2x2

∗y∗

(e2 + x2∗)2
− α2

2

2
)ϖ2

2ũ
2
2

−(γy∗ − α2
3)ϖ3

2ũ23.

It follows that LV ≤ 0 under the assumption of the Theorem 3.2. According to Theorem 3.1 the proof,
it is completed.

4 Existence and Uniqueness of the Global Positive Solution

Always, a stochastic differential equation has a unique global solution for every given initial value. The
coefficients of the equation are required to satisfy the linear growth condition and the local Lipschitz
condition [41,42]. It is investigated whether the system (2) has a global positive solution, and it must be
proven that the system has a suitable local solution by a suitable change of variables.

Theorem 4.1. For any initial value (x10, x20, y0) ∈ Int(R3
+), the system (2) has unique positive local

solution (x1(t), x2(t), y(t)) for t ∈ [0, τe) almost surely, where τe is the explosion time.

The transformation is considered: u1(t) = logx1(t), u2(t) = logx2(t) and v(t) = logy(t). By using Itô’s
formula, the system (2) becomes

du1(t) = [a1 − E1 −
α2
1
2 − eu1(t) − c1ev(t)

e1+eu1(t)
]dt+ α1dB1(t),

du2(t) = [a2 − E2 −
α2
2
2 − eu2(t) − c2ev(t)

e2+eu2(t)
]dt+ α2dB2(t),

dv(t) = [ m1eu1(t)

e1+eu1(t)
+ m2eu2(t)

e2+eu2(t)
− d1 − γev(t) − α2

3
2 ]dt+ α3dB3(t),

 (23)

subjected to the initial condition u1(0) = logx1(0), u2(0) = logx2(0) and v(0) = logy(0). The drift part of
the system (23) is expressed by the functions having linear growth which satisfy local Lipschitz condition.
Hence there exists a unique local solution (u1(t), u2(t), v(t)) which is defined in some interval [0, τe), (τe is
any finite positive real numbers). x1(t) = eu1(t), x2(t) = eu2(t), y(t) = ev(t) is unique positive local solution
of the system (23) beginning from an interior point of the first quadrant. Now the aim is to examine that
this local solution is actually the global solution of the system (23).
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Further we have to show that τe = ∞ almost surely, which will serve our purpose. First we explain
the following lemma, see [42] and using this lemma we will prove the following theorem.

Lemma 4.1. For all z ∈ (0,∞), (z + 4− 2log2) ≤ 2(z + 1− logz) holds.

Theorem 4.2. For every initial condition (x10, x20, y0) ∈ Int(R3
+), the system (2) holds a unique solution

(x1(t), x2(t), y(t)) for t ∈ [0,∞) and the solution will remain in Int(R3
+) with probability one.

Proof. We take a sufficiently large positive integer r̂ such that the interval [1r̂ , r̂] contains (x10, x20, y0).
For every r ≥ r0 the stopping time τr is defined by,

τt = inf{t ∈ [0, τe) : x1 /∈ (
1

r̂
, r̂) or x2 /∈ (

1

r̂
, r̂) or y /∈ (

1

r̂
, r̂)},

where inf ∅ = ∞ (∅ being the empty set). Clearly, we see that τr is increasing as r → ∞. Let τ∞ =

limr→∞ τr then τ∞ ≤ τe almost surely. We show that τ∞ = ∞ almost surely, which will eventually prove
that τe = ∞.

If possible, let τe ̸= ∞. Then there exist two constants T > 0 and ϵ ∈ (0, 1) such that

P{τ∞ ≤ T} > ϵ. (24)

In this case there is an integer r1 ≥ r0 such that ∀r ≥ r1

P{τr ≤ T} ≥ ϵ. (25)

Let us take V is a C3-function from Int(R3
+) → Int(R+). Then

V (x1, x2, y) =
m1

c1
(x1 + 1− logx1) +

m2

c2
(x2 + 1− logx2) + (y + 1− logy). (26)

As z+1−logz > 0, ∀z > 0 the function V (x1, x2, y) is positive-definite ∀(x1, x2, y) ∈ Int(R3
+). By applying

Itô’s formula and taking differential of V (x1, x2, y) along the trajectories of equation (2), we obtain

dV (x1, x2, y) = LV (x1, x2, y)dt+ α1(x1 − 1)dB1 + α2(x2 − 1)dB2 + α3(y − 1)dB3.
(27)

dV (x1, x2, y) = [
m1

c1
(x1 − 1)(a1 − E1 − x1 −

c1y

e1 + x1
) +

m2

c2
(x2 − 1)(a2 − E2 − x2 −

c2y

e2 + x2
)

+ (y − 1)(−d1 − γy +
m1x1
e1 + x1

+
m2x2
e2 + x2

) +
m1

c1

α2
1

2
+

m2

c2

α2
2

2
+

α2
3

2
]dt

+ α1(x1 − 1)dB1 + α2(x2 − 1)dB2 + α3(y − 1)dB3.

Since x1(t) > 0, x2(t) > 0 and y(t) > 0, we get

dV (x1, x2, y) ≤ [
m1

c1
(2a1x1 −

c1x1y

e1 + x1
) +

m2

c2
(2a2x2 −

c2x2y

e2 + x2
) + (d1 + γy +

m1x1y

e1 + x1
+

m2x2y

e2 + x2
)

+
m1

c1

α2
1

2
+

m2

c2

α2
2

2
+

α2
3

2
]dt+

m1

c1
α1(x1 − 1)dB1 +

m2

c2
α2(x2 − 1)dB2 + α3(y − 1)dB3
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≤ [
2a1m1

c1
x1 +

2a2m2

c2
x2 + d1 + γy +

1

2
(
m1α

2
1

c1
+

m2α
2
2

c2
+ α2

3)]dt

+
m1

c1
α1(x1 − 1)dB1 +

m2

c2
α2(x2 − 1)dB2 + α3(y − 1)dB3.

Using Lemma 4.1 we take

L1 = d1 +
1

2

(
m1α

2
1

c1
+

m2α
2
2

c2
+ α2

3

)
, L2 = max

{
4a1m1

c1
,
4a2m2

c2
, 2γ

}
.

We have,
2a1m1

c1
x1 +

2a2m2

c2
x2 + γy ≤ 4a1m1

c1
(x1 + 1− logx1)

+
2a2m2

c2
(x2 + 1− logx2) + 2γ(y + 1− logy)

≤ L2V (x1, x2, y).

(28)

From (26) and (27) we get

dV (x1, x2, y) ≤
[
(L2V (x1, x2, y) + L1)dt+

m1

c1
α1(x1 − 1)dB1 +

m2

c2
α2(x2 − 1)dB2 + α3(y − 1)dB3

]
.

Now we assume that L3 = max{L1, L2} we have

dV (x1, x2, y) ≤ L3(V (x1, x2, y) + 1)dt+
m1

c1
α1(x1 − 1)dB1 +

m2

c2
α2(x2 − 1)dB2 + α3(y − 1)dB3.

Therefore, for t1 < T∫ τr∧t1

0
dV (x1, x2, y) ≤ L3

∫ τr∧t1

0
(1 + V (x1, x2, y))dt+

m1α1

c1

∫ τr∧t1

0
(x1 − 1)dB1

+
m2α2

c2

∫ τr∧t1

0
(x2 − 1)dB2 + α3

∫ τ1∧t1

0
(y − 1)dB3,

where τr ∧ t1 = min{τr, t1}. By applying the property of Itô integral [20] and from the above inequality
we obtain

V (x1(τr ∧ t1), x2(τr ∧ t1), y(τr ∧ t1)) ≤ V (x10, x20, y0) + L3E

∫ τ1∧t1

0
(1 + V (x1, x2, y))dt.

Let us take expectation of both sides of the above inequality and use Fubini’s theorem [43], we find

≤ V (x10, x20, y0) + L3E

∫ τr∧t1

0
(1 + V (x1, x2, y))dt,

= V (x10, x20, y0) + L3T + L3

∫ t1

0
EV (x1(τr ∧ t), x2(τr ∧ t), y(τr ∧ t))dt.

By applying Gronwall’s inequality [44] we calculate from the above inequality

EV (x1(τr ∧ T ), x2(τr ∧ T ), y(τr ∧ T )) ≤ L4, (29)

Earthline J. Math. Sci. Vol. 15 No. 6 (2025), 989-1020



1002 Chandrima Talapatra

where
L4 =

(
V (x10, x20, y0)) + L3T

)
eL3T .

Set Ωr = {τr ≤ T} for r ≥ r1 by (25) we find P (Ωr) ≥ ϵ. Since for any ρ ∈ Ωr, there is at least one of
x1(τr, ρ), x2(τr, ρ), y(τr, ρ) which is equal either r or 1

r . Hence V (x1(τr), x2(τr), y(τr)) is no less than the
smallest of r + 1− logr and 1

r + 1 + log r.

Consequently
V
(
x1(τr), x2(τr), y(τr)

)
≥ (r + 1− logr) ∧ (

1

r
+ 1 + logr).

Thus from (24) and (29) it follows that

L4 ≥ E

[
IΩr(ρ)V (x1(τr), x2(τr), y(τr))

]
≥ ϵ

[
(r + 1− logr) ∧ (

1

r
+ 1 + logr)

]
,

where IΩr(ρ) is the indicator function of Ωr. If r → ∞ we get ∞ > L4 = ∞. Which is a contradiction.
So we must have τ∞ = ∞ almost surely. Hence proof is completed.

5 Stochastic Persistence in the Mean

There are various concepts of stochastic persistence [45]. Here we apply the notion of stochastic persistence
in mean. Stochastic persistence means, if we start from any arbitrary positive initial condition, that is,
from any interior point of the first quadrant, the solution trajectories of the stochastic model persist
within the interior of the first quadrant and remain bounded at all future time. In this section we have
to examine the stochastic persistence of the model system (2) under certain parametric restriction(s). We
define stochastic persistence in mean as follows.

The population x(t) is said to be strongly persistent if ⟨x(t)⟩∗ > 0, where

⟨x(t)⟩ := 1

t

∫ t

0
x(s)ds, ⟨x(t)⟩∗ := lim inf

t→+∞

1

t

∫ t

0
x(s)ds.

Before we prove the main theorem, first we explain the following lemma [45]. The derivation of strong
persistence conditions for system (2) is a direct consequence of the result stated in the following lemma.

Lemma 5.1. Suppose x(t) ∈ C[Ω×R+,R0
+], where R0

+ = {a|a > 0, a ∈ R}.

i) If there exist positive constants ζ, T and σ ≥ 0 such that

lnx(t) ≥ σt− ζ

∫ t

0
x(s)ds+

n∑
i=1

βiBi(t, )
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for t ≥ T , where βi (i = 1, 2, 3, ....., n) is constant, then ⟨x(t)⟩∗ ≥ σ
ζ , almost surely.

ii) If there exist positive constants ζ, T and σ ≥ 0 such that

lnx(t) ≤ σt− ζ

∫ t

0
x(s)ds+

n∑
i=1

βiBi(t, )

for t ≥ T , where βi (i = 1, 2, 3, ....., n) is constant, then ⟨x(t)⟩∗ ≤ σ
ζ , almost surely.

Definition 5.1. ⟨x(t)⟩∗ is defined by

⟨x(t)⟩∗ := lim sup
t→+∞

∫ t

0
x(s)ds.

Now we obtain the strong stochastic persistence result for the system (2) in the following theorem.

Lemma 5.2. If a1 − E1 −
α2
1
2 > 0 and a2 − E2 −

α2
2
2 > 0, then every solution of the system satisfies

lim
t→+∞

⟨x1⟩ = a1 − E1 −
α2
1

2
a.s. and lim

t→+∞
⟨x2⟩ = a2 − E2 −

α2
2

2
a.s.

m1 +m2 > d1 +
α2
3

2
and γ > 0.

Using Itô’s formula to the system (2) we find,

d(ln(x1(t))) = [(a1 − x1(t)− E1 − c1
y(t)

e1 + x1(t)
− α2

1

2
]dt+ α1dB1(t).

d(ln(x2(t))) = [(a2 − x2(t)− E2 − c2
y(t)

e2 + x2(t)
− α2

2

2
]dt+ α2dB2(t).

d(ln(y(t))) = [−d1 − γy(t) +
m1x1(t)

1 + e1x1(t)
+

m2x2(t)

e2 + x2(t)
− α2

3

2
]dt+ α3dB3(t)).

Integrating both sides from 0 to t and then dividing by t, we get

ln[ x1(t)
x1(0)

]

t
= (a1 − E1 −

α2
1

2
)− t−1

∫ t

0
x1(s)ds− c1t

−1

∫ t

0

y(s)

e1 + x1(s)
ds+ α1t

−1B1(t) (30)

ln[ x2(t)
x2(0)

]

t
= (a2 − E2 −

α2
2

2
)− t−1

∫ t

0
x2(s)ds− c2t

−1

∫ t

0

y(s)

e2 + x2(s)
ds+ α2t

−1B2(t) (31)

ln[ y(t)y(0) ]

t
= (−d1 −

α2
3

2
)− γt−1

∫ t

0
y(s)ds+m1t

−1

∫ t

0

x1(s)

e1 + x1(s)
ds+m2t

−1

∫ t

0

x2(s)

e2 + x2(s)
ds+ α3t

−1B3(t).

(32)
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By applying the Lemma 5.1 we have

⟨x1(t)⟩∗ ≥ [a1 − E1 −
α2
1

2
].

⟨x2(t)⟩∗ ≥ [a2 − E2 −
α2
2

2
].

⟨y(t)⟩∗ ≥
−d1 −

α2
3
2 +m1 +m2

γ
.

Therefore, ⟨x1(t)⟩∗ ≥ 0, ⟨x2(t)⟩∗ ≥ 0 and ⟨y(t)⟩∗ ≥ 0, whenever a1 ≥ E1 +
α2
1
2 , a2 ≥ E2 +

α2
2
2 and

m1 +m2 > d1 +
α2
3
2 and γ > 0. Hence the required results are obtained.

The strong persistence results of the predator-prey model under consideration within fluctuating
environment absolutely count on the intensity of environmental fluctuation. The threshold
values of environmental driving forces are α∗

1 ≡
√

2(a1 − E1 − c1), α∗
2 ≡

√
2(a2 − E2 − c2) and

α∗
3 ≡

√
2(m1 +m2 − d1). Sometimes situations occur that species population are going to extinction.

Case 1. The prey species with lower growth rate becomes extinct if intensities of environmental
fluctuations α∗

1, α∗
2 are quite high whereas α∗

3 is negligible quantity.

Case 2. Predator population goes to extinction if α∗
1, α∗

2 and α∗
3 are extremely high.

It have been seen that under some specific conditions, population neither explode nor goes to
extinction whenever fluctuation intensities of environmental driving forces are below the threshold limits.

6 Stationary Distribution and Fokker–Planck Analysis

Here we try to establish the existence of stationary distribution of system (2). If stationary distribution
of populations exists then that ensure the stability of the system in stochastic meaner. Before we prove
the main theorem related with the stationary distribution, first we explain the following result regarding
the existence of unique interior equilibrium of the original deterministic system, which have to use to
show the main theorem of this section.
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Lemma 6.1. Let El be the l-dimensional Euclidean space and X(t) be a homogeneous Markov process and
it is defined in El. Let X(t) be denoted by the following system of stochastic differential equations:

dX(t) = b(X(t))dt+
r∑

k=1

fk(X)dBk(t). (33)

The diffusion matrix A(x) is defined by [6],

A(x) =
(
bij(x)

)
,

where bij(x) =
∑r

k=1 α
i
k(x)α

j
k(x).

Assuming there is a bounded domain S ⊂ El with regular boundary Γ with the following properties,

H1: In the domain S and some neighborhood thereof, the smallest eigenvalue of the diffusion matrix
A(x) is bounded away from zero.

H2: If x ∈ El − S, the mean time τ at which a path emerging from x reaches the set S is finite, and
supx∈S1

Exτ < ∞, for every compact subset S1.

Lemma 6.2. If above assumptions hold, then the Markov process X(t) has a stationary distribution σ(.).
Let g(.) be a function integrable with respect to the measure σ. Then ∀x ∈ E l,

Px{ lim
T→∞

1

T

∫ t

0
g(X(t))dt =

∫
E l

g(x)σ(dx)} = 1.

Remark 6.1. The proof of Lemma 6.2 can be found in [45]. A stationary distribution with a suitable
density function exists (see Theorem 5.1 and Lemma 9.4 in [46]); see also our result in Lemma 6.2.

To verify assumption (H1), it suffices to check that the operator F is uniformly elliptic in S, where

Fu′ = b(x) · u′x +
tr(A(x)) · u′′xx

2
.

This condition implies the existence of a constant M > 0 such that

r∑
i,j=1

bij(x) ξiξj ≥ M |ξ|2, for all x ∈ S, ξ ∈ Rr,

as discussed in [47].

To validate assumption (H2), we must show that there exists a neighborhood S ⊂ El and a non-negative
C3-function V such that LV (x) is negative definite for every x ∈ El \ S; see [40].
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The system (2) can be expressed of the following form :

d

 x1(t)

x2(t)

y(t)

 =


x(t)(a1 − x1(t))− c1

x1(t)y(t)
e1+x1(t)

− E1x1(t)

x2(t)(a2 − x2(t))− c2
x2(t)y(t)
e2+x2(t)

− E2x2(t)

y(t)[ m1x1(t)
e1+x1(t)

+ m2x2(t)
e2+x2(t)

− d1 − γy(t)]

 dt

+

 α1x1(t)

0

0

 dB1(t) +

 0

α2x2(t)

0

 dB2(t) +

 0

0

α3y(t)

 dB3(t)

(34)

where diffusion matrix is given by,

A(x) =

 α2
1x

2
1 0 0

0 α2
2x

2
2 0

0 0 α2
3y

2

 . (35)

Now in the following theorem we have to show the existence of a stationary distribution σ(.) for the system
(2).

Theorem 6.1. Assume the following conditions hold:

• D̃1e1 − c1y
∗ > 0,

• D̃2e2 − c2y
∗ > 0,

• δ < min
[(
M2 − M5

2ϵ

)
(x∗1)

2,
(
M3 − M6

2ϵ

)
(x∗2)

2,
(
M2 − (M5+M6)ϵ

2

)
(y∗)2

]
,

where (x∗1, x
∗
2, y

∗) is the positive equilibrium of system (2), and

D̃1 = e1 + x∗1, D̃2 = e2 + x∗2

δ =

(
M2 −

M5

2ϵ

)
(x1 − x∗1)

2 +

(
M3 −

M6

2ϵ

)
(x2 − x∗2)

2 +

(
M2 −

(M5 +M6)ϵ

2

)
(y − y∗)2

The constants are defined as:

M1 = M ′
1e1e2, M2 = e2(D̃1e1 − c1y

∗), M3 = e1(D̃2e2 − c2y
∗),

M4 = γD̃1D̃2e1e2, M5 = (c1D̃1 +m1D̃2x
∗
1 +m1D̃1D̃2)e2,

M6 = (c2D̃2 +m2D̃1x
∗
2 +m2D̃1D̃2)e1,

M ′
1 =

D̃1

2
x∗1α

2
1 +

D̃2

2
x∗2α

2
2 +

D̃1D̃2

2
α2
3y

∗.

Furthermore, ϵ > 0 such that:

M2 −
M5

2ϵ
> 0, M3 −

M6

2ϵ
> 0, M2 −

(M5 +M6)ϵ

2
> 0

hold simultaneously.
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Proof. The system (2) has a unique positive interior equilibrium (x∗1, x
∗
2, y

∗). Then we have x∗1 +
c1y∗

e1+x∗
1
=

a1 − E1, x∗2 +
c2y∗

e2+x∗
2
= a2 − E2, D̃1 = e1 + x1 and D̃2 = e2 + x2.

Considering the positive definite function as follows V : E3 → R+ where E3 = IntR3
+ as follows

V (x1, x2, y) = D̃1(x1 + 1− ln(
x1
x∗1

)) + D̃2(x2 + 1− ln(
x2
x∗2

)) + D̃1D̃2(y + 1− ln(
y

y∗
)).

Then by applying Itô’s formula, we obtain

dV (x1, x2, y) = dV1(x1, x2, y)+dV2(x1, x2, y)+dV3(x1, x2, y)

= L5V (x1, x2, y)dt+ α1D̃1(x1 − x∗1)dB1 + α1D̃2(x2 − x∗2)dB2 + α3D̃1D̃2(y − y∗)dB1,

where

L5V (x1, x2, y) = [−{D̃1−
y∗c1

e1 + x1
}(x1−x∗1)

2−{D̃2−
y∗c2

e2 + x2
}(x2−x∗2)

2−γD̃1D̃2(y−y∗)2

−c1D̃1(x1 − x∗1)(y − y∗)

e1 + x1
− c2D̃2(x2− x∗2)(y − y∗)

e2 + x2
+

m1D̃1D̃2(x1 − x∗1)(y − y∗)

e1 + x1

+
m2D̃2(x2 − x∗2)(y − y∗)

e2 + x2
−m1D̃2x

∗
1(x1 − x∗1)(y − y∗)

e1 + x1
−m2D̃1x

∗
2(x2 − x∗2)(y − y∗)

e2 + x2
+
D̃1

2
x∗1α

2
1

+
D̃2

2
x∗2α

2
2+

D̃1D̃2

2
α2
3y

∗]dt+α1D̃1(x1−x∗1)dB1+α2D̃2(x2−x∗2)dB2+D̃1D̃2α3(y−y∗)dB3

≤ [−D̃1(x1 − x∗1)
2 − D̃2(x2 − x∗2)

2 − γD̃1D̃2(y − y∗)2 − c1D̃1(x1 − x∗1)(y − y∗)

e1 + x1

−c2D̃2(x2− x∗2)(y − y∗)

e2 + x2
+

m1D̃1D̃2(x1 − x∗1)(y − y∗)

e1 + x1
+

D̃1

2
x∗1α

2
1

−m1D̃2x
∗
1(x1 − x∗1)(y − y∗)

(e1 + x1)
+

m2D̃1D̃2(y − y∗)(x2 − x∗2)

e2 + x2
− m2D̃1x

∗
2(x2 − x∗2)(y − y∗)

(e2 + x2)

+
c1y

∗(x1 − x∗1)
2

e1 + x1
+

c2y
∗(x2 − x∗2)

2

e2 + x2
+M

′
1,

where

M
′
1 =

D̃1

2
x∗1α

2
1 +

D̃2

2
x∗2α

2
2 +

D̃1D̃2

2
α2
3y

∗.

Then

L5V (x1, x2, y) ≤ −D̃1(x1 − x∗1)
2 − D̃2(x2 − x∗2)

2 − γD̃1D̃2(y − y∗)2 + |x1 − x∗1||y − y∗|[ c1D̃1

e1 + x1
+

m1D̃2x
∗
1

e1 + x1

+
m1D̃1D̃2

e1 + x1
] + |x2 − x∗2||y − y∗|[ c2D̃1

e2 + x2
+

m2D̃1x
∗
2

e2 + x2
+

m2D̃1D̃2

e2 + x2
]
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+
c1y

∗(x1 − x∗1)
2

e1 + x1
+

c2y
∗(x2 − x∗2)

2

e2 + x2
+M

′
1

≤ −(D̃1 −
c1y

∗

e1
)(x1 − x∗1)

2 − (D̃2 −
c2y

∗

e2
)(x2 − x∗2)

2 − γD̃1D̃2(y − y∗)2

+|x1 − x∗1||y − y∗|(c1D̃1 +m1D̃2x
∗
1 +m1D̃1D̃2)

e1

+|x2 − x∗2||y − y∗|(c2D̃2 +m2D̃1x
∗
2 +m2D̃1D̃2)

e2
+M

′
1

e1e2L5V (x1, x2, y) ≤ −e2(D̃1e1 − c1y
∗)(x1 − x∗1)

2 − e1(D̃2e2 − c2y
∗)(x2 − x∗2)

2

−γD̃1D̃2e1e2(y − y∗)2 + (c1D̃1 +m1D̃2x
∗
1 +m1D̃1D̃2)e2|x1 − x∗1||y − y∗|

+(c2D̃2 +m2D̃1x
∗
2 +m2D̃1D̃2)e1|x2 − x∗2||y − y∗|+M

′
1e1e2.

Let

M1 = M
′
1e1e2, M2 = e2(D̃1e1 − c1y

∗), M3 = e1(D̃2e2 − c2y
∗), M4 = γD̃1D̃2e1e2,

M5 = (c1D̃1 +m1D̃2x
∗
1 +m1D̃1D̃2)e2, and M6 = (c2D̃2 +m2D̃1x

∗
2 +m2D̃1D̃2)e1.

Then above expression converts into

L6V (x1, x2, y) ≤ −M2(x1−x∗1)
2−M3(x2−x∗2)

2−M4(y−y∗)2+M5|x1−x∗1||y−y∗|+M6|x2−x∗2||y−y∗|+M1.

Then by Young’s inequality, we find

M5|x1 − x∗1||y − y∗| ≤ M5[
(x1 − x∗1)

2

2ϵ
+

ϵ(y − y∗)2

2
],

and

M6|x2 − x∗2||y − y∗| ≤ M6[
(x2 − x∗2)

2

2ϵ
+

ϵ(y − y∗)2

2
].

Therefore,

L6V (x1, x2, y) ≤ −M2(x1 − x∗1)
2 −M3(x2 − x∗2)

2 −M4(y − y∗)2 +M5[
(x1 − x∗1)

2

2ϵ
+

ϵ(y − y∗)2

2
]

+M6[
(x2 − x∗2)

2

2ϵ
+

ϵ(y − y∗)2

2
] +M1,

≤ −(M2−
M5

2ϵ
)(x1−x∗1)

2−(M3−
M6

2ϵ
)(x2−x∗2)

2−(M4−
(M5 +M6)ϵ

2
)(y−y∗)2+δ.
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If δ satisfies the following condition,

δ < min{(M2 −
M5

2ϵ
)(x∗1)

2, (M3 −
M6

2ϵ
)(x∗2)

2, (M2 −
(M5 +M6)ϵ

2
)(y∗)2},

then the ellipsoid

δ = (M2 −
M5

2ϵ
)(x1 − x∗1)

2 + (M3 −
M6

2ϵ
)(x2 − x∗2)

2 + (M2 −
(M5 +M6)ϵ

2
)(y − y∗)2,

lies entirely within int R3. We select S to be the neighborhood of the elliptic region with S ⊆ E3 =

int R3, where S̄ is the compact closure of S. So for x ∈ S − E3, LV < 0 which is implied that condition
H2 in the Lemma 6.1 is satisfied.

Besides, M ′
1 = min{α2

1x
2
1, α

2
2x

2
2, α

2
3y

2 : (x1, x2, y) ∈ S̄)} > 0, such that

3∑
i,j=1

bijξiξj = α2
1x

2
1ξ

2
1 + α2

2x
2
2ξ

2
2 + α2

3y
2ξ23 ≥ M |ξ|2,

for (x1, x2, y) ∈ S̄ and ξ ∈ R3, which shows that condition H1 of Lemma 6.2 is also satisfied. Thus, the
system (2) has a stationary distribution σ(.).

7 Numerical Simulation

In this section, we provide numerical simulations to support the analytical findings of the model system.
The system (2) is simulated using MATLAB with the following parameter values:
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Table 1: Parameter values and their descriptions for the model.

Parameter Value Description
a1 0.15 Growth rate of prey 1 (sardines)
a2 0.4 Growth rate of prey 2 (anchovies)
e1 1000 Half-saturation constant for x1

e2 1500 Half-saturation constant for x2

c1 0.07 Predation rate on x1

c2 0.06 Predation rate on x2

m1 0.05 Predator’s gain from x1

m2 0.04 Predator’s gain from x2

E1 0.05 Harvesting rate of sardines
E2 0.05 Harvesting rate of anchovies
d1 0.02 Predator natural death rate
γ 0.03 Predator density-dependent mortality

α1, α2, α3 0.1 Noise intensities

The selected parameter values aim to realistically replicate the ecological dynamics of the California
Current, where two prey species—sardines (Sardinops sagax ) and anchovies (Engraulis mordax )—are
subjected to continuous harvesting, while the predator, such as the blacktip shark, relies on both species
for sustenance. The intrinsic growth rates, a1 = 0.15 for sardines and a2 = 0.4 for anchovies, reflect
biological productivity, with anchovies exhibiting a faster reproductive cycle. The half-saturation constants
e1 = 1000 and e2 = 1500 characterize the nonlinear Holling Type-II functional response, which captures
how prey availability affects predator consumption rates.

The predation coefficients c1 = 0.07 and c2 = 0.06 indicate slightly stronger predation on sardines,
likely due to their schooling behavior. Harvesting rates E1 = E2 = 0.05 correspond to levels observed
in heavily exploited fisheries. Predator mortality is modeled via a natural death rate d1 = 0.02 and
a density-dependent term γ = 0.03, accounting for intraspecific competition. The stochastic terms
α1 = α2 = α3 = 0.1 represent environmental variability, such as temperature fluctuations and resource
uncertainty. These parameters are informed by empirical data from the California Current Large Marine
Ecosystem (CCLME), spanning 2000–2015, sourced from NOAA and the Pacific Fishery Management
Council. Notably, uncertainties in shark population estimates due to migration and sparse sampling may
affect predation accuracy.
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Figure 1: (a) Oscillation of x1(t) population (sardines), (b) Oscillation of x2(t) population (anchovies), (c)
Extinction of y(t) population (blacktip shark) for α1 = 0, α2 = 0, α3 = 0 with parameters from Table 1.

Figure 1 presents the deterministic dynamics in the absence of noise. The predator population
y depends on the consumption of both prey species, whereas the prey populations x1 and x2 grow
autonomously when unimpacted by predation. The system exhibits five equilibrium points: the trivial
state (0, 0, 0), single-prey states (0.10, 0, 0) and (0, 0.35, 0), a prey-only coexistence (0.10, 0.35, 0), and
a biologically feasible coexistence equilibrium (614.29, 1298.08, 0.27). The previously proposed point
(0.10, 0.35,−0.5) was discarded due to the non-physical negative predator biomass.

Simulations initiated at (500, 1000, 0.5) over t ∈ [0, 1000] confirm convergence to the coexistence
equilibrium, verifying its local stability in the deterministic case. This result affirms the ecological realism
of the model and motivates further exploration of system behavior under stochastic perturbations.
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Figure 2: (a) Valid region for α1 (0 < α1 < 49.57), (b) Valid region for α2 (α2 > 72.06), (c) Valid region
for α3 (0 < α3 < 0.127), based on stability analysis of the coexistence equilibrium and parameters from
Table 1.

Building on the simulation results, the noise intensities α1, α2, and α3 represent environmental
fluctuations acting on the sardine (x1), anchovy (x2), and predator (y) populations, respectively. To ensure
biologically realistic behavior—such as non-negative population densities and bounded oscillations—these
stochastic perturbations must lie within specific ranges. Numerical analysis around the coexistence
equilibrium (614.29, 1298.08, 0.27), using parameters from Table 1, reveals the constraints: 0 < α1 < 49.57,
α2 > 72.06, and 0 < α3 < 0.127, as shown in Figure 2.

These stability regions serve as critical thresholds, beyond which the system may experience
extinction or unbounded fluctuations. Notably, increasing α2—the intensity of environmental noise on
anchovies—beyond 72.06 appears to stabilize the system, likely due to compensatory mechanisms in
anchovy population dynamics. This finding contrasts with the destabilizing effects of increasing α1

(sardines) and α3 (predator).

The baseline noise values α1 = α2 = α3 = 0.1 lie well within the safe bounds, promoting long-term
coexistence. However, when these values are significantly increased—for instance, to α1 = 3.0, α2 =

3.0, α3 = 2.5—the system enters an unstable regime, as shown in subsequent simulations (Figure 4).
Such parameter regimes may lead to predator extinction and chaotic fluctuations in prey populations,
emphasizing the importance of environmental noise regulation.

http://www.earthlinepublishers.com



Stochastic Dynamics of Dual-Prey–Predator Interactions under Harvesting Pressure: ... 1013

Figure 3: (a) Oscillation of x1(t) (sardines), (b) Oscillation of x2(t) (anchovies), (c) Oscillation and
extinction of y(t) (blacktip shark), (d) 3D phase trajectory of the system for α1 = 1.0, α2 = 1.0, α3 = 0.5

using parameters from Table 1.

Figure 4: (a) Long-term oscillation of x1(t) (sardines), (b) Long-term oscillation of x2(t) (anchovies), (c)
Oscillation and extinction of y(t) (blacktip shark), (d) 3D phase trajectory of the system for α1 = 3.0,
α2 = 3.0, α3 = 2.5 using parameters from Table 1.
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Figure 3 demonstrates system dynamics under moderate noise intensities. Subfigures (a) and (b)
show the prey populations (x1 and x2) oscillating around their respective equilibrium values, with mild
irregularities introduced by the noise. The sardine population fluctuates around x1 ≈ 614.29 and anchovies
around x2 ≈ 1298.08, consistent with their biological growth and interaction parameters.

In subfigure (c), the predator population y initially oscillates but eventually declines to extinction
around t = 800. This is attributed to the noise intensity α3 = 0.5, which exceeds the upper bound of
the stability region (α3 < 0.127), destabilizing the predator’s persistence. The corresponding 3D phase
portrait in subfigure (d) illustrates a spiraling trajectory that ultimately collapses onto the x1–x2 plane,
confirming predator extinction and continued prey coexistence.

In contrast, Figure 4 explores the case of high noise intensities, where α1, α2, and α3 all exceed their
respective stability bounds (except α1, which remains within tolerance). The prey populations (subfigures
a and b) display chaotic and amplified oscillations, particularly for anchovies (x2), whose associated noise
α2 = 3.0 falls below the required stabilizing threshold (α2 > 72.06). The predator population (subfigure
c) rapidly declines, going extinct well before t = 100, a direct result of excessive noise in the predator
mortality term. The 3D trajectory in subfigure (d) shows a chaotic path diverging from the coexistence
equilibrium, followed by collapse as the predator vanishes.

These simulations affirm that noise intensity plays a pivotal role in shaping ecological dynamics.
Moderate stochasticity allows prey persistence while threatening predator survival; extreme noise levels
destabilize the entire system. The validity of the stability bounds shown in Figure 2 is thus confirmed,
reinforcing the ecological importance of maintaining environmental conditions within safe thresholds.

http://www.earthlinepublishers.com



Stochastic Dynamics of Dual-Prey–Predator Interactions under Harvesting Pressure: ... 1015

Figure 5: (a) Bifurcation diagram: local maxima of x1 vs. E1. (b) Bifurcation diagram: local maxima
of x2 vs. E2. (c) Equilibrium of x1 vs. E1. (d) Equilibrium of x2 vs. E2. All plots are generated using
parameters from Table 1.

Finally, the impact of harvesting intensity on prey dynamics is presented in Figure 5. Subfigures
Figure 5 (a) and Figure 5 (b) display bifurcation diagrams showing the local maxima of sardine (x1) and
anchovy (x2) populations as functions of their respective harvesting rates E1 and E2. Single peaks indicate
stable equilibrium states, whereas multiple peaks signal oscillatory or chaotic regimes.

Subfigures Figure 5 (c) and Figure 5 (d) depict the corresponding equilibrium population levels, which
exhibit monotonic decline as harvesting increases. These results demonstrate that while low harvesting
promotes stability and sustainable yield, excessive harvesting destabilizes prey populations and drives
them toward extinction. The findings emphasize the need for ecologically informed harvesting policies to
maintain species persistence and system resilience.

8 Conclusion

This work presents a detailed examination of a stochastic predator-prey model for two small-forage fish
prey species, sardines (Sardinops sagax ) and anchovies (Engraulis mordax ), and a predator blacktip shark
(Carcharhinus limbatus) in the California Current Ecosystem (CCE). The model integrates Holling type-II
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functional responses, prey fish harvesting, and stochastic perturbation to prey growth rates and predator
mortality rates to reflect real-world complexity of ecological interactions and stochastic perturbations
that dominate marine ecosystems. Theoretical analysis set forth a number of important results. First, the
stochastic stability of the positive equilibrium was shown in the mean-square sense to prove that the system
is still robust to small environmental fluctuations subject to certain parametric conditions (Theorem 3.2).
This stability means that the expected squared departures of population densities from their equilibrium
values are bounded, guaranteeing that small stochastic disturbances cannot cause the system to go to
extinction. Existence and uniqueness of a global positive solution were also confirmed (Theorem 4.2),
ensuring that the model generates biologically plausible results with non-negative population densities
for all time, an essential prerequisite for ecological validity. In addition, stochastic persistence in the
mean was established by deriving noise intensity thresholds under which populations can persist despite
environmental variability (Section 5). Statistically, this implies that time-averaged population densities
remain positive with probability one, indicating long-term survival. Furthermore, the existence of a
stationary distribution under certain parameter regimes was proven in Section 6, providing insight into
the long-term probabilistic dynamics of the system. This stationary distribution implies that, in the long
term, the population densities settle to a stable probability distribution, allowing for the prediction of
species abundance probabilities under environmental noise. These calculations emphasize the paramount
importance of noise and harvesting in determining predator-prey behavior. The conditions of stability
thus obtained, like the ones concerning the intensities α1, α2, and α3 of noise, indicate the points beyond
which random effects can trigger large-scale departures from equilibrium, even to the point of population
extinction. For example, the predator’s responsiveness to noise in its mortality rate, regulated by α3,
indicates that high environmental variability can disproportionately impact higher trophic levels, which
agrees with ecological theory concerning trophic cascades. Also, the harvesting rates E1 and E2 on
sardines and anchovies, respectively, determine the equilibrium of the system, where high harvesting
causes a deviation from the balance, lowering prey and affecting predator survival. Statistically, this may
be understood using the framework of bifurcation theory: with rising harvesting levels, the system can shift
from a stable equilibrium to oscillatory or chaotic regimes, raising the variance in population densities and
the probability of extinction events. The study highlights the need for careful control of environmental noise
and rates of exploitation to maintain ecosystem stability, especially in the CCE, where sardine and anchovy
fisheries are economically important and blacktip sharks are ecologically important. Sustainable harvesting
practices, guided by the stability conditions derived, are necessary to avoid predator extinction and
guarantee long-term coexistence of all species. For instance, keeping the rates of harvesting at subcritical
levels maintains the population mean densities required for predator feeding, and managing environmental
conditions (e.g., variation in temperature impacting α1 and α2) can buffer variance in prey growth rates.
Additionally, adding stochasticity to ecological models is greatly beneficial for realistic projections, since
deterministic models cannot fully model the range of effects of the environment on population processes.
Statistically, this stochastic method enables the estimation of confidence intervals around population
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trajectories, giving a probabilistic basis for evaluating extinction risks and guiding conservation policy.
Further studies could also build upon this model by introducing further stochastic variables, including
variance in rates of predation or climatic-modulated half-saturation constant alterations, to render it more
realistic. Delving into spatially explicit models or systems of multi-predation could reveal deeper aspects
into the CCE’s greater ecological dynamics that aid more successful ecosystem-based fishery management.
This study thus sets a strong framework for comprehending and managing marine ecosystems under
the twin stresses of environmental stochasticity and human exploitation, emphasizing the fine balance
necessary to preserve biodiversity and ecological stability.
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