
Earthline Journal of Mathematical Sciences
E-ISSN: 2581-8147
Volume 15, Number 5, 2025, Pages 905-925
https://doi.org/10.34198/ejms.15525.905925

Response of Thin Plates Subjected to Inertia Distributed Loads

Moving with Variable Velocity in Opposite Directions

M. S. Dada1 and K. O. Adedeji2,*

1 Department of Mathematics, University of Ilorin, Ilorin, Nigeria

e-mail: msdada@unilorin.edu.ng

2 Department of Mathematics, University of Ilorin, Ilorin, Nigeria

e-mail: olizot.aa@gmail.com

Abstract

The study examined the dynamic deflection characteristic of a plate which is subjected to a pair of

inertia distributed loads, moving with variable velocities and in opposite direction was investigated. The

model was formulated based on the thin plate theory. The governing equation obtained for the behavior

of the model was reduced from a partial differential equation to an ordinary differential equation using

a series solution for the dynamic deflection in terms of the normal modes. The reduced ODE was solved

using chebyshev collocation method, result obtained was presented in graphical form.

1 Introduction

In mechanics, vibration is defined as the to-and-fro movement of an object. Illustration of vibrations can

be seen everywhere in nature as nearly everything vibrates. Vibrations can be felt by the sense of touch

when a vehicle passes by or by our drum when it receives impulse such as sound form the environment

and some vibrations may be too low or too weak to detect. The concept of vibrations is useful to man in

various ways such as designing machines used for various functions in vibrators to massage the body to

compact loose soil est. vibrations can cause wear and tear and even cause malfunctioning of a machine.

It also cause human body to lose concentration and to fall sick.

Study of vibrations is an extremely important area owning to its wide variety of engineering

applications and life applications such as aeronautical, marine, civil, mechanical and so on since the

constituting members (beams, plates, column, shells etc.) form integral parts of structures; it is

therefore essentials for any design engineer to have a prior knowledge of the first few modes of vibrations

characteristics before finalizing the design of a given structure.
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Dynamic behaviours of flat plate under moving external loads are essential problems in structural

dynamic field, which are commonly encountered in engineering, such as bridges and roads, space vehicles,

submarines and mechanical engineering.

The study of dynamic behaviour of plates represents a popular trend in structural dynamics theory in

the past decades. The dynamic behaviour of plates excited by concentrated moving loads has also been

extensively investigated.

In Nikkhoo et al., [15], the authors solved in a semi-analytical form the problem of a Kirchhoff plate

vibrating under two series of moving concentrated inertial loads traversing the plate surface along parallel

rectilinear trajectories with opposite directions. A Kirchhoff plate on multiple supports was studied

by Marchesiello et al., [12], loaded by travelling vehicles modelled as concentrated loads due to sprung

masses, adopting the Rayleigh-Ritz method coupled with an iterative dynamic sub structuring method.

Concentrated moving masses on a Rayleigh beam and a non-Mindlin plate taking into account rotary

inertia, but not shear deformation were considered by Gbadeyan and Oni [9], providing a solution in

series form via generalized finite integral transform and Struble’s method.

In De Faria and Oguamanam [4], a numerical solution was found for a Mindlin plate crossed by

concentrated masses, using a finite element method with adaptive meshes at low speed. In Dyniewicz et

al., [5], a Mindlin plate subjected to a concentrated inertial load travelling at a variable speed along

an arbitrary trajectory was considered; the problem of two concentrated inertial loads travelling in

opposite directions along the same trajectory was also investigated, obtaining a numerical solution using

the space-time finite element method. Esen [8], presented a new FEM procedure for transverse and

longitudinal vibration analysis of thin rectangular plates subjected to a variable velocity moving load

along an arbitrary trajectory. Amiri et al., [1], based on first-order shear deformation plate theory,

studied the response of a Mindlin elastic plate under a moving mass by using direct separation of variable

and eigenfunction expansion method. Eftekhari and Jafari [6], presented a mixed modal-differential

quadrature method for free and forced vibration of beams in contact with fluid.

Nikkhoo et al., [14] in the work titled On non-stationary response of cracked thin rectangular plates

acted upon by a moving random force concluded that there are nonlinear relationships between the

increasing inclined crack angles and crack lengths and the non-dimensional functions of squared mean

values for both undamped and damped cracked plates, after their investigation on the dynamics of cracked

thin rectangular plates under the influence of a moving non-stationary random load, characterized by a

constant mean value and velocity, along with five different covariance patterns: white noise, constant,

exponential, cosine wave, and exponential cosine covariance. Yao et al., [21] focused on the dynamic

response mechanisms of steel plates under unconfined and confined blast loads, detailing the phases of

plastic hinge formation and deformation patterns in those specific conditions. The findings are centered

on blast load scenarios rather than distributed load dynamics
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Pi et al., [16] presented a study that focuses on the vibration control of a thin rectangular plate

subjected to moving masses, emphasizing the dynamic behavior of the plate over traditional beam

models. The study addresses the challenges of vibration control due to multiple degrees of freedom

and uncertainties in practical applications and proposed the Modal Coordinate Reconstruction (MCR) â

Adaptive Sliding â Mode Control (ASMC) method for effective vibration suppression in similar scenarios.

Analyzing the work of Nikkhoo et al., [13] where parametric investigations on dynamics of cracked thin

rectangular plates, excited by a moving mass was carried out. It was found that the presence of a crack

alters the natural frequencies and mode shapes of the plate, indicating that careful consideration of crack

characteristics is essential for accurate dynamic analysis and structural integrity assessments.

In the work of Song et al., [17], the Ritz method with beam eigenfunctions is used to discretize the

spatial partial derivatives, and the differential quadrature method and integral quadrature method were

employed to analogize the resultant system of partial differential equations of rectangular thin plates

of arbitrary boundary conditions under moving loads. Wu [19], investigated the dynamic analysis of a

rectangular plate under a moving line load using scale beams and scaling laws. Wu [20], presented a

moving distributed mass element to perform the dynamic analysis of an inclined plate under moving

distributed loads using finite element method. Esen [7], presented an equivalent finite element to analyze

the transverse vibration of the plate under a moving point mass. Mamandi et al., [11], investigated an

effects of travelling mass with variable velocity on nonlinear dynamic response of an inclined Timoshenko

beam with different boundary conditions. Based on Hamilton’s principle, the nonlinear governing coupled

PDEs of motion are derived and solved applying Galerkin’s method using the Adam-Bashforth-Moulton

integration method via the MATLAB solver package to obtain the dynamic response of the plate.

Gbadeyan and Dada [10], considered the dynamics response of Mindlin elastic type of plates under the

influence of a partially uniform moving load. The set of partial differential equations was transformed into

its equivalent non dimensional form and the finite difference technique was used to form a new set of linear

algebraic equations which was solved. A rectangular Kirchhoff plate, simply supported on two opposite

edges and free on the other two edges, loaded by a partially distributed mass acting instantaneously on

part of the spatial domain of the plate, travelling in parallel direction with respect to the free edges was

considered by Sorrentino and Catania [18]. Their formulation include damping and it was accomplished

by the Rayleigh Ritz method.

It was observed that most existing studies on plates under moving loads are limited to constant

velocity, concentrated loads or uniformly distributed loads traveling in the same direction. The case of

two inertia distributed loads moving in opposite directions on thin plates has not been comprehensively

addressed. The novelty of this work lies in the formulation and analysis of the dynamic response of thin

plates subjected to two inertia-distributed loads moving in opposite directions with variable velocities,

capturing both acceleration and deceleration phases. This configuration is more representative of real
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world scenarios such as opposing vehicular or train movement on bridge decks and bidirectional conveyor

systems.

This paper is aimed at obtaining the results of response on thin plates subjected to inertial distributed

loads moving with variable velocity in opposite directions.

2 Preliminaries

Definition 2.1 (Inertia Loads [4])

Inertia load is the resisting force developed in a mass due to its resistance to a change in motion.

Definition 2.2 (Distributed Loads [8])

A distributed load is a load applied continuously along a length, area, or volume of a structural element

rather than at a single point.

Definition 2.3 (Variable Velocity [16])

Variable velocity is the velocity of an object when the speed is changing with time.

Definition 2.4 (Chebyshev Collocation Method [2])

The Chebyshev Collocation Method transforms a differential equation into a system of algebraic equations

by enforcing the equation to be satisfied at specific collocation points in the domain.

3 Formulation of Solution

The proposed research study is motivated by the fact that the vibration of plates subjected to a pair of

distributed line loads moving in opposite directions with variable velocities in an arbitrary trajectory has

not been investigated.
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Figure 1: Thin plate under a pair of rectangular loads.

3.1 Problem Assumption

1. The plate is assumed to be a thin rectangular plate.

2. The plate is undamped and homogenous.

3. There is permanent contact condition between the moving loads and the plate surface during the

whole cause of the load movement.

4. The plate is traversed by two opposite traveling loads.

5. The loads are assumed to be concentrated along x direction and distributed along y direction.

Regarding the classical plate theory, the deflection w(x, y) is given by

D∇4w(x, y) = p(x, y), (1)
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where

∇4 =
∂4

∂x4
+

2∂4

∂x2∂y2
+

∂4

∂y4
; (2)

p(x, y) = load identity;

D = flexural rigidity given by

D =
Eh3

12 (1− v2)
(3)

for which
E = Young’s modulus;

h = plate’s thickness;

v = Poisson’s ratio.

For the problem absorption above, we have D∇4w(x, y, t) +m∂2w(x,y,t)
∂t2

=
∑2

k=1 Pkδ (x− xk)
(
H
(
y − yk +

µ
2

)
−H

(
y − yk − µ

2

))
Pk = 1

µ

{
Mkg +Mk

d2

dt2
w (xk(t), yk(k), t)

} , (4)

where

m = mass per unit area of the plate,

t = time,

Mk = mass per unit length of the load,

δ(·) = Direc delta function,

µ = load length,

H(·) = Heavside function,

g = acceleration due to gravity,

Pk = contact force of the traveling load,

(xk(t), yk(t)) = location of the traveling loads at time t,

k = number of load.

Rewriting equation (4)

D∇4w(x, y, t) +m
∂2w(x, y, t)

∂t2
=

2∑
k=1

1

µ

(
Mkg +Mk

d2

dt2
w (xk(t), yk(t), t)

)
(5)

· δ (x− xk) ·
(
H
(
y − yk −

µ

2

)
−H

(
y − yk −

µ

2

))
.
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Expanding the RHS of equation (5)

d2

dt2
w (xk(t), yk(t), t) =

∂2w

∂t2
+
∂2w

∂x2

(
dxk
dt

)2

+
∂2w

∂y2

(
dyk
dt

)2

+
2∂2w

∂x∂y

(
dxk
dt

)(
dyk
dt

)
+

2∂2w

∂x∂t

(
dxk
dt

)
+

2∂2w

∂y∂t

(
dyk
dt

)
(6)

+
∂w

∂x

(
d2xk
dt2

)
+
dw

dy

(
d2yk
dt2

)
.

Based on the problem assumption, the motion path is along x-direction and moving at a constant

speed, no position change in y-direction therefore equation (6) is reduced as

d2

dt2
w (xk(t), yk(t)t) =

∂2w

∂t2
+ 2U

∂2w

∂x∂t
+ U2

k

∂2w

∂x2
, (7)

where Uk is the velocity of the moving load.

Put equation (7) into (5) and expand the summation.

D∇4w(x, y, t) +m
∂2w(x, y, t)

∂t2
=

1

µ

(
M1g +M1

(
∂2w

∂t2
+ 2U1

∂2w

∂x∂t
+ U2

1

∂2w

∂x2

))
· δ (x− x1) ·

(
H
(
y − y1 −

µ

2

)
−H

(
y − y1 −

µ

2

))
+

1

µ

(
M2g +M2

(
∂2w

∂t2
+ 2U2

∂2w

∂x∂t
+ U2

2

∂2w

∂x2

))
· δ (x− x2) ·

(
H
(
y − y2 −

µ

2

)
−H

(
y − y2 −

µ

2

))
. (8)

To solve equation (8), a semi analytical procedure is adopted which utilize the natural mode shapes

of the continuous media. To extract such modes, the plate equation of free vibration is treated.

D∇4w(x, y, t) +m
∂2w(x, y, t)

∂t2
= 0; (9)

D∇4w(x, y, t) = −m∂2w(x, y, t)

∂t2
; (10)

Put w(x, y, t) =
N∑

m=1

N∑
n=1

wm(x)wn(y)e
iwt into (10).

On simplification,

N∑
m=1

N∑
n=1

{
D
(
wiv
m(x)wn(y) + 2wii

m(x)wii
n (y) + wm(x)wiv

n (y)
)}

=
N∑

m=1

N∑
n=1

λmnNm(x)wn(y)m, (11)

where λmn = Eigen values for some specific boundary conditions.

Earthline J. Math. Sci. Vol. 15 No. 5 (2025), 905-925



912 M. S. Dada and K. O. Adedeji

Assuming a separation variables solution in the form of a series,

w(x, y, t) =

N∑
m=1

N∑
n=1

Tmn(t)wm(x)wn(y), (12)

where wm(x) and wn(y) are the fundamental mode shapes, m and n are the number of contributed modes

and Tmn(t) are the unknown functions of time.

Using equations (11) and (12) in (8)

N∑
m=1

N∑
n=1

Tmn(t)Wm(x)Wn(y)λmnM +
N∑

m=1

N∑
n=1

T̈mn(t)Wm(x)Wn(y)M =
N∑

m=1

N∑
n=1(

1

µ

(
M1g +M1

(
T̈mn(t)Wm (x1)Wn (y1) + 2U1Ṫmn(t)W

′
m (x1)Wn (y1)

+U2
1Tmn(t)W

′′
m (x1)Wn (y1)

)
δ (x− x1) ·

(
H
(
y − y1 +

µ

2

)
−H

(
y − y1 −

µ

2

)))
+

1

µ

(
M2g +M2

(
T̈mn(t)Wm (x1)Wn (y2) + 2U2Ṫmn(t)W

′
m (x2)Wn (y2)

+U2
2Tmn(t)W

′′
m (x2)Wn (y2)

)
δ (x− x2) ·

(
H
(
y − y2 −

µ

2

)
−H

(
y − y2 −

µ

2

))))
. (13)

Multiply both sides of the equations by wi(x)wj(y) taking the double integral of both side along the

length and breadth of the plate and using the properties of orthogonal functions wm(x) and wn(x).

N∑
m=1

N∑
n=1

mλmnTmn(t)

∫ l

0

∫ b

0
Wm(x)Wn(y)Wi(x)Wj(y)dxdy

+
N∑

m=1

N∑
n=1

mT̈mn(t)

∫ l

0

∫ b

0
Wm(x)Wn(y)Wi(x)Wj(y)dxdy =

N∑
m=1

N∑
n=1

(
1

µ

(
M1g

∫ l

0

∫ b

0
Wi(x)Wj(y)dxdy

+M1T̈mn(t)

∫ l

0

∫ b

0
Wm (x1)Wn (y1)Wi(x)Wj(y)dxdy+

2M1U1Ṫmn(t)

∫ l

0

∫ b

0
W ′

m (x1)Wn (y1)Wi(x)Wj(y)dxdy
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+M1U
2
1Tmn(t)

∫ l

0

∫ b

0
W ′′

m (x1)Wn (y1)Wi(x)Wj(y)dxdy

)
δ (x− x1) ·

(
H
(
y − y1 +

µ

2

)
−H

(
y − y1 −

µ

2

))
+

1

µ

(
M2g

∫ l

0

∫ b

0
Wi(x)Wj(y)dxdy +M2T̈mn(t)

∫ l

0

∫ b

0
Wm (x2)Wn (y2)Wi(x)Wj(y)dxdy+

2M2U2Ṫmn(t)

∫ l

0

∫ b

0
W ′

m (x2)Wn (y2)Wi(x)Wj(y)dxdy+

M2U
2
2Tmn(t)

∫ l

0

∫ b

0
W ′′

m (x2)Wn (y2)Wi(x)Wj(y)

dxdy · δ (x− x1) ·
(
H
(
y − y1 +

µ

2

)
−H

(
y − y1 −

µ

2

))))
, (14)

where l and b are the length and width of the plate.

Introducing the orthogonal shape functions property

∫
A

∫
wm(x)wn(y)wi(x)wj(y)dA = δij =

0 m ̸= n, i ̸= j

1 m = n, i = j

N∑
m=1

N∑
n=1

(mλmnTmn(t) +mTmn(t)) δij =

N∑
m=1

N∑
n=1

(
1

µ

(
M1g

∫ l

0
Wi (x1) δ (x− x1) dx

∫ b

0
Wj (y1)

·H
(
y − y1 +

µ

2

)
−H

(
y − y1 −

µ

2

)
dy +M1T̈mn(t)

∫ l

0
Wm (x1)Wi (x1) δ (x− x1) dx∫ b

0
Wn (y1)Wj (y1) ·H

(
y − y1 +

µ

2

)
−H

(
y − y1 −

µ

2

)
dy+

2M1U1Ṫmn(t)

∫ l

0
W ′

m (x1)Wi (x1) δ (x− x1) dx∫ b

0
Wn (y1)Wj (y1) ·H

(
y − y1 +

µ

2

)
−H

(
y − y1 −

µ

2

)
dy+

M1U
2
1Tmn(t)

∫ l

0
W ′′

m (x1)Wi (x1) δ (x− x1) dx

Earthline J. Math. Sci. Vol. 15 No. 5 (2025), 905-925



914 M. S. Dada and K. O. Adedeji

∫ b

0
Wn (y1)Wj (y1) ·H

(
y − y1 +

µ

2

)
−H

(
y − y1 −

µ

2

)
dy

)
+

1

µ

(
M2g

∫ l

0
Wi (x2) δ (x− x1) dx

∫ b

0
Wj (y2)

·H
(
y − y2 +

µ

2

)
−H

(
y − y2 −

µ

2

)
dy +M2T̈mn(t)

∫ l

0
Wm (x2)Wi (x2) δ (x− x2) dx∫ b

0
Wn (y2)Wj (y2) ·H

(
y − y2 +

µ

2

)
−H

(
y − y2 −

µ

2

)
dy+

2M2U2Ṫmn(t)

∫ l

0
W ′

m (x2)Wi (x2) δ (x− x2) dx∫ b

0
Wn (y2)Wj (y2) ·H

(
y − y2 +

µ

2

)
−H

(
y − y2 −

µ

2

)
dy+

M2U
2
2Tmn(t)

∫ l

0
W ′′

m (x2)Wi (x2) δ (x− x2) dx∫ b

0
Wn (y2)Wj (y2) ·H

(
y − y2 +

µ

2

)
−H

(
y − y2 −

µ

2

)
dy

))
. (16)

Using the Dirac delta

N∑
m=1

N∑
n=1

(mλmnTmn(t) +mTmn(t)) δij =

N∑
m=1

N∑
n=1

(
1

µ

(
M1gWi (x1)

∫ y1+
µ
2

y1−µ
2

Wj (y1) dy

+M1T̈mn(t)Wm (x1)Wi (x1)

∫ y1+
µ
2

y1−µ
2

Wn (y1)Wj (y1) dy

+ 2M1U1Ṫmn(t)W
′
m (x1)Wi (x1)

∫ y1+
µ
2

y1−µ
2

Wn (y1)Wj (y1) dy

+M1U
2
1Tmn(t)W

′′
m (x1)Wi (x1)

∫ y1+
µ
2

y1−µ
2

Wn (y1)Wj (y1) dy

)
+

1

µ

(
M2gWi (x2)

∫ y2+
µ
2

y2−µ
2

Wj (y2) dy +M2T̈mn(t)Wm (x2)Wi (x2)

∫ y2+
µ
2

y2−µ
2

Wn (y2)Wj (y2) dy

+ 2M2U2Ṫmn(t)W
′
m (x2)Wi (x2)

∫ y2+
µ
2

y2−µ
2

Wn (y2)Wj (y2) dy

+M2U
2
2Tmn(t)W

′′
m (x2)Wi (x2)

∫ y2+
µ
2

y2−µ
2

Wn (y2)Wj (y2) dy

))
. (17)
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For simply supported rectangular plates the edges conditions can be expressed as:

w(0, y, t) = w(l, y, t) =
∂2w(0, y, t)

∂x2
=
∂2w(l, y, t)

∂x2
= 0, (18)

w(x, 0, t) = w(x, b, t) =
∂2w(x, 0, t)

∂y2
=
∂2w(x, b, t)

∂y2
= 0. (19)

With the initial conditions

w(x, y, t) =
∂w(x, y, t)

∂t
= 0. (20)

The normalized deflection curves for simply supported boundary condition for a rectangular plate is

wm(x)wn(x) =
2√
lb

sin
mπx

l
sin

nπy

b
. (21)

Using (21) in equation (11), we obtain

λmn = Dπ4
(
m2

l2
+
n2

b2

)2

. (22)

λmn is the eigenvalues for the boundary condition.

Similarly, using (21) in equation (17) and evaluating the integral, we have

N∑
m=1

N∑
n=1

(λmnTmn(t) + Tmn(t)) =

N∑
m=1

N∑
n=1

(
M1g

Mµ

2√
lb

sin
iπu1t

l
· 2√

jπ
sin

jπy1
b

sin
jπµ

2b
+

M1

Mµ
T̈mn(t)

4

lb
sin

mπu1t

l
sin

iπu1t

l

(
b

πp
cos

pπy1
b

sin
pπµ

2b
− b

πd
cos

dπy1
b

sin
dπµ

2b

)
+

2M1U1

Mµ
Ṫmn(t)

4mπ

l2b
cos

mπu1t

l
sin

iπu1t

l

(
b

πp
cos

pπy1
b

sin
pπµ

2b
− b

πd
cos

dπy1
b

sin
dπµ

2b

)
+
M1U

2
1

Mµ
Tmn(t)

4m2π2

l3b

sin
mπu1t

l
sin

iπu1t

l

(
b

πp
cos

pπy1
b

sin
pπµ

2b
− b

πd
cos

dπy1
b

sin
dπµ

2b

))
+

N∑
m=1

N∑
n=1

(
M2g

Mµ

2√
lb

sin
iπ (l − u2t)

l
· 2√

jπ
sin

jπy2
b

sin
jπµ

2b
+

M2

Mµ
T̈mn(t)

4

lb
sin

mπ (l − u2t)

l
sin

iπ (l − u2t)

l

(
b

πp
cos

pπy2
b

sin
pπµ

2b
− b

πd
cos

dπy2
b

sin
dπµ

2b

)
+

2M2U2

Mµ
Ṫmn(t)

4mπ

l2b
cos

mπ (l − u2t)

l
sin

iπ (l − u2t)

l

(
b

πp
cos

pπy2
b

sin
pπµ

2b
− b

πd
cos

dπy2
b

sin
dπµ

2b

)
+
M2U

2
2

Mµ
Tmn(t)

4m2π2

l3b
sin

mπ (l − u2t)

l
sin

iπ (l − u2t)

l(
b

πp
cos

pπy2
b

sin
pπµ

2b
− b

πd
cos

dπy2
b

sin
dπµ

2b

))
(23)
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subject to: Tmn(0) = Tmn(
l
u) = 0

where p = n− j, d = n+ j and n ̸= j

Also x1 = u1t and x2 = l − u2t

For n = j

Equation (23) becomes(
1− 4

lb

(
θ1ψ1 sin

mπu1t

l
sin

iπu1t

l
+ θ2ψ2

(
sin(mπ) cos

mπu2t

l
sin(iπ) cos

iπu2t

l
−

sin(mπ) cos
mπu2t

l
cos(iπ) sin

iπu2t

l
− cos(mπ) sin

mπu2t

l
sin(iπ) cos

iπu2t

l
+

cos(mπ) sin
mπu2t

l
cos(iπ) sin

iπu2t

l

)))
· T̈mn(t)−

(
8mπ

l2b

(
U1θ1ψ1 cos

mπu1t

l
sin

iπu1t

l
+

U2θ2ψ2

(
cos(mπ) cos

mπu2t

l
sin(iπ) cos

iπu2t

l
− cos(mπ) cos

mπu2t

l
cos(iπ) sin

iπu2t

l
+

sin(mπ) sin
mπu2t

l
sin(iπ) cos

iπu2t

l
− sin(mπ) sin

mπu2t

l
cos(iπ) sin

iπu2t

l

)))
Ṫmn(t)+(

λmn +
4m2π2

l3b

(
U2
1 θ1ψ1 sin

mπu1t

l
sin

iπu1t

l
+ U2

2 θ2ψ2

(
sin(mπ) cos

mπu2t

l
sin(iπ) cos

iπu2t

l
−

sin(mπ) cos
mπu2t

l
cos(iπ) sin

iπu2t

l
− cos(mπ) sin

mπu2t

l
sin(iπ) cos

iπu2t

l
+

cos(mπ) sin
mπu2t

l
cos(iπ) sin

iπu2t

l

)))
Tmn(t) =

4b

jπ
√
lb

(
θ1g sin

iπu1t

l
sin

jπy1
b

sin
jπµ

2b
+

θ2g

(
sin(iπ) cos

iπu2t

l
− cos(iπ) sin

iπu2t

l

)
sin

jπy2
b

sin
jπµ

2b

)
(24)

subject to: Tmn(0) = Tmn(
l
u) = 0

where:

θ1 =
M1
Mµ , θ2 =

M2
Mµ

ψ1 =
µ
2 − b

2nπ cos 2nπY1
b sin nπµ

b , ψ2 =
µ
2 − b

2nπ cos 2nπY2
b sin nπµ

b

3.2 Numerical Illustration

In this work, the Chebyshev collocation method was considered to solve equations (23) and (24) as it is

not possible to obtain a closed form solution. The Chebyshev collocation method is a numerical method

for solving differential equations that is based on the spectral method, in which the solution is represented

as a series expansion in terms of a set of basis functions (Boyd, [2]). In the case of Chebyshev collocation,

the basis functions are Chebyshev polynomials, which are defined in terms of the roots of the polynomial.
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One advantage of the Chebyshev collocation method is its ability to achieve high accuracy with

relatively few collocation points (Canuto et al., [3]). This makes it an efficient method for solving

differential equations, particularly those that are stiff or have singularities (Boyd, [2]). Additionally,

the Chebyshev collocation method is well-suited for problems with periodic boundary conditions, as the

Chebyshev polynomials are periodic functions.

To use the Chebyshev collocation method, the domain of the differential equation is transformed to

the interval [−1, 1], and the solution is expressed as a series expansion in terms of Chebyshev polynomials

(Canuto et al., [3]):

u(x) = a0T0(x) + a1T1(x) + a2T2(x) + . . .

where Tn(x) is the nth Chebyshev polynomial and the coefficients an are determined by collocating the

differential equation at a set of points in the interval [−1, 1] (Boyd, [2]). These points, known as collocation

points, are chosen to be the roots of the Chebyshev polynomial of the second kind, which are closely spaced

near the ends of the interval. The motion of the load is considered under the following

• Case One: The loads are considered to be moving in a rectilinear trajectory and with a constant

velocity, hence the load displacement is defined as:{
X1(t) = v1t, Y1(t) = 0.25b

X2(t) = l − v2t, Y2(t) = 0.75b
. (25)

• Case two: The loads are considered to be moving in a rectilinear trajectory and with a variable

velocity, hence the load displacement is defined as:{
X1(t) = v1t+

a1t2

2 , Y1(t) = 0.25b

X2(t) = l −
(
v2t+

a2t2

2

)
, Y2(t) = 0.75b

. (26)

Table 1: Parameters of the model of the plate

Parameter Notation Value

Length of the plate l 10 m

Width of the plate b 5 m

Poisson’s ratio ν 0.2

Plate thickness h 0.2 m

Young’s modulus E 2.109× 107

Mass of the plate M 1000kg
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4 Results and Discussion

In this section, the deflection response of a simply supported thin rectangular plate subjected to a pair

of moving line load with constant and variable velocities was presented in graphical forms. The response

investigated focuses on the effect of the load lengths, mass ratio of the loads to the plate, velocities,

acceleration and deceleration of the moving line loads.

Figure 2: Shape of the deflection along the mid-plane of the plate with same velocities.

Figure 2 above represents the shape of the deflection at the center of the plate when the two line

loads moves with same velocities in opposite direction for various velocities. It will be observed that

the deflection increases as the velocity increases. At the lowest velocity, the deflection profile exhibits a

gradual increase, reaching a relatively small peak before commencing oscillatory recovery. The response

is quasi-static in nature, as the load traverses the plate slowly, allowing the structure to deform without

significant dynamic amplification. For higher velocities, the deflection profiles show more frequent

oscillations within the same time interval, and the time to reach maximum deflection is reduced. This

behavior occurs because the moving load traverses the plate more rapidly, exciting higher vibration modes

and introducing phase shifts in the response.

http://www.earthlinepublishers.com



Response of Thin Plates Subjected to Inertia Distributed Loads Moving with Variable Velocity ... 919

Figure 3: Shape of the deflection along the mid-plane of the plate with different mass ratio.

The effect the mass ratio on the deflection of the plate is illustrated in Figure 3. The mass ratio

here represents the ratio of the moving load’s mass to the equivalent modal mass of the plate. For the

smallest mass ratio the plate experiences the lowest peak deflection, indicating that the moving load

imparts relatively small inertial effects on the structure. As the mass ratio increases, the peak deflection

amplitude rises significantly. This demonstrates the strong influence of load mass on the dynamic response.

Physically, a higher mass ratio corresponds to a heavier moving load relative to the plate’s stiffness and

inertia. Such a load introduces greater inertial forces into the system, resulting in increased bending and

larger vibratory motion. This can have significant implications for structural fatigue, serviceability, and

safety in engineering systems where moving loads of varying masses are present. Figure 4 shows the effect

of the length of the moving loads on the plate’s deflection. At short load length, the plate experiences the

highest peak deflection amplitude, indicating that the concentrated nature of the load produces stronger

localized bending effects. As µ increases, the peak deflection gradually decreases. This trend is due to

the distribution of the load over a larger surface area, which reduces the peak stress and deflection at

any single point. For the longest load length, the deflection amplitude is the smallest among the cases

considered, reflecting the load’s broad footprint and reduced localized impact. Physically, shorter load

lengths behave similarly to point loads, producing more intense local deformation and higher vibration
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amplitudes. In contrast, longer loads behave more like uniformly distributed forces, which spread their

effect and thus induce smaller deflections. The oscillation patterns for all load lengths remain symmetric

about the zero-deflection axis, indicating that the plate’s response is primarily elastic and not permanently

deformed under the given loading conditions.

Figure 4: Shape of the deflection along the mid-plane of the plate with different load length.

Figure 5 shows the deflection behaviour of the mid-plane of the plate when subjected to a pair of moving

line load in opposite directions with variable velocity. The deflection with time for a fixed acceleration

and different load velocities. It can be clearly seen that maximum magnitude of the dynamic deflection

increases with increasing initial load velocity, showing the same trend as in Figure 2.
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Figure 5: Deflection of plate with different velocities moving with variable velocity.

Figure 6 and Figure 7 show the effect of acceleration and deceleration on the dynamic deflection of

the thin plate. The effect of load acceleration on the deflection is significant. It can be observed that

several peaks can be observed and the larger the acceleration the wider the deflection are spread out. The

deceleration effect can be clearly seen in Figure 7, the dynamic deflection increases for some times and

later decreases. The magnitude of the dynamic deflection decreases with increase in deceleration.

Figure 6: Deflection of plate with different acceleration moving with variable velocity.
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Figure 7: Deflection of plate with different deceleration moving with variable velocity.

5 Conclusion

In this work, the dynamic deflection characteristic of a plate which is subjected to a pair of inertia

distributed loads, moving with variable velocities and in opposite direction was investigated. The model

was formulated based on the thin plate theory. The governing equation obtained for the behavior of the

model was reduced from a partial differential equation to an ordinary differential equation using a series

solution for the dynamic deflection in terms of the normal modes. The reduced ODE was solved using

chebyshev collocation method. The effects of acceleration, deceleration, initial velocity, mass ratio and

load length on the dynamic deflection response have been investigated. The main conclusions of this work

is as follows:

• The deflection amplitude of the thin plate increases with increasing velocity of the distributed

moving loads in both directions. This trend is more pronounced at higher velocities, suggesting that

inertial effects become dominant as the load motion approaches the critical velocity region.

• The interaction of inertia loads moving in opposite directions results in more complex deflection

patterns compared to single-direction motion. The presence of counter-moving loads alters the

dynamic amplification, producing regions of constructive and destructive interference in the plate’s

vibration response.

• An increase in the load mass ratio produces a proportional increase in the maximum deflection of

the plate. This is due to the enhanced inertial force imparted to the plate by heavier moving loads,
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thereby increasing the dynamic response amplitude.

• The combined effects of varying velocities and opposing motion directions amplify the dynamic

response nonlinearly. The results indicate that both the magnitude and the location of peak

deflections are sensitive to these factors, which is crucial for predicting structural performance

under real-life loading scenarios.

• The findings are particularly relevant to engineering applications involving bidirectional moving

loads such as vehicular-pedestrian interactions on bridges, automated material handling systems,

and high-speed transport over plate-like structures where understanding the coupled influence of

velocity, mass, and motion direction is essential for design safety and serviceability.
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