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Abstract

This paper proposes a new three-parameter generalized Fréchet distribution using the MTI
transformation scheme. We refer to the proposed model as MTI-Fréchet (MTIF) distribution.
Several statistical treatments of the MTIF distribution, including survival, hazard rate, and quantile
functions, moments, incomplete moments, moment-generating function, probability-weighted moment,
and Renyi entropy, are derived. The study adopts four methods of parameter estimation to estimate
the parameters of the MTIF distribution, followed by a simulation experiment to investigate the
performance of the parameter estimates based on the four methods. The simulation results suggest
that the MPS is the most appropriate estimation method for estimating the parameters of the MTIF
distribution. The flexibility of the proposed MTIF distribution in practical data fitting is illustrated
using two data sets. The results obtained from some model selection criteria and goodness-of-fit test
statistics revealed that the MTIF distribution offered a better fit for the data sets compared to the
classical Fréchet distribution and other generalized Fréchet distributions.
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1 Introduction

The development of tractable statistical distributions for modeling time-to-event datasets have enormously
increased in recent times. Due to the complexity and non-monotonic nature of most datasets, classical
distributions have proved abortive in providing an adequate fit. Hence, the advent of several transformation
schemes to enhance the flexibility of the existing classical distributions in modeling complex datasets.
Details of some recent transformation schemes can be found in the works of Kavya and Manoharan
(2020), Nasiru and Abubakar (2022), Kharazmi et al. (2022), Lone et al. (2022), Ubaka and Ewere
(2023), Chesneau and Opone (2023), Opone and Chesneau (2024), Diab et al. (2025), and Alsalafi et al.
(2025).

The Fréchet distribution is one of such statistical distributions that has been generalized using different
transformation schemes. The distribution, also referred to as the inverted Weibull distribution, is known
for its suitability in modelling extreme events. The density function of the Fréchet distribution is specified
by

f (y; ξ, λ) = ξλξ−1γ−(ξ+1)e
−
(

λ
γ

)ξ

, y > 0, ξ, λ > 0, (1)

and the distribution function obtained as:

F (y; ξ, λ) = e
−
(

λ
y

)ξ

, y > 0, ξ, λ > 0. (2)

Taking into account the distribution function in equation (2) as a baseline distribution, many
generalizations of the Fréchet distribution have been developed in the literature. For instance, Nadarajah
and Kotz (2003) established the exponentiated Fréchet distribution, Nadarajah and Gupta (2004)
introduced the beta-Fréchet distribution, Krishna et al. (2013) developed the Marshall-Olkin Fréchet
distribution, Mahmoud and Mandouh (2013) proposed the transmuted Fréchet distribution, Mead
(2014) studied the Kumaraswamy-Fréchet distribution, Nasiru et al. (2019) developed the alpha power
transformed Fréchet distribution, Al-Sobhi (2021) generated the modified kies-Fréchet distribution,
Aldahlan (2022) constructed the sine-Fréchet distribution, Mosilhy and Eledum (2022) derived the cubic
transmuted Fréchet distribution, Ocloo et al. (2022) pioneered the harmonic mixture Fréchet distribution,
Moloy et al. (2024) studied the quartic transmuted Fréchet distribution, etc.

In this paper, we employ the MTI transformation scheme to introduce another novel generalized Fréchet
distribution called the MTI-Fréchet (MTIF) distribution. Notable statistical treatments are derived,
including survival, hazard rate, and quantile functions, moments, incomplete moments, moment-generating
function, probability-weighted moment, and Renyi entropy. Four different methods of parameter
estimation are employed, such as the maximum likelihood, ordinary least squares, weighted least squares,
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and maximum product spacing estimators, to estimate the parameters of the proposed MTIF distribution.
Finally, two datasets are utilized to illustrate the relevance of the proposed model over some well-known
generalized Fréchet distributions in modeling real-world datasets.

2 The MTI-Frechet (MTIF) Distribution

The MTI transformation scheme has been developed by Lone et al. (2022) with the CDF specified by

FMTI (y;ψ, β) =
βG (y;ψ)

β − log βG (y;ψ)
, y > 0, β > 0, (3)

and the associated PDF is defined as

fMTI (y;ψ, β) =
β (β − log β) g (y;ψ)[
β − log βG (y;ψ)

]2 y > 0, β > 0. (4)

By inserting the CDF of the Fréchet distribution defined in equation (2) into equation (3), the CDF of
the MTI-Fréchet distribution is obtained as

FMTI (y; ξ, λ, β) =
βe

−
(

λ
y

)ξ

β − log β

[
1− e

−
(

λ
y

)ξ] , y > 0, β, λ, ξ > 0. (5)

Taking the first derivative of equation (5) yields the corresponding PDF as

fMTI (y; ξ, λ, β) =
βξλξ (β − log β) y−(ξ+1)e

−
(

λ
y

)ξ

[
β − log β

(
1− e

−
(

λ
y

)ξ)]2 , y > 0, β, λ, ξ > 0. (6)

The survival and hazard rate functions of the MTIF distribution are obtained, respectively, by an algebraic
manipulation of equations (5) and (6) as:

SMTIF (y; ξ, λ, β) = 1− FMTIF (y; ξ, λ, β)

=

(
1− log β

β

)(
1− e

−
(

λ
y

)ξ)
[
1− log β

β

(
1− e

−
(

λ
y

)ξ)] , y > 0, β, λ, ξ > 0, (7)
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and

hMTIF (y; ξ, λ, β) =
fMTIF (y; ξ, λ, β)

SMTIF (y; ξ, λ, β)

=
ξλξ

(
1− log β

β

)
y−(ξ+1)e

−
(

λ
y

)ξ

(
1− log β

β

)(
1− e

−
(

λ
y

)ξ)(
1− log β

β

(
1− e

−
(

λ
y

)ξ)) , y > 0.
(8)

The graphical representation of the density function and the hazard rate function of the MTIF distribution
for selected parameter values is shown in Figure 1.

(a) The PDF of the MTIF distribution (b) The HRF of the MTIF distribution

Figure 1: The PDF and HRF of the MTIF distribution for selected values of the parameters.

The plots in Figure 1 suggest that the PDF of the MTIF distribution captures a decreasing or
right-skewed shaped property, while its hazard rate includes a decreasing and inverted bathtub-shaped
property. These unique features make the MTIF distribution suitable for analyzing datasets with
heavy-tailed and non-monotonic properties.

2.1 The Quantile Function

The quantile function, also known as the inverted cumulative distribution function, is useful for generating
random samples from a probability model. It is denoted by Qy (p) = F−1 (p) , 0 < p < 1. From the CDF
defined in equation (5), the quantile function of MTIF distribution is obtained as follows

βe
−
(

λ
y

)ξ

β − log β

[
1− e

−
(

λ
y

)ξ] = p,
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βe
−
(

λ
y

)ξ

= p

[
β − log β

(
1− e

−
(

λ
y

)ξ)]
,

e
−
(

λ
y

)ξ

[β − p log β] = p [β − log β] ,

e
−
(

λ
y

)ξ

=
p [β − log β]

[β − p log β]
.

Taking the natural logarithm of both sides of the equation yields,

Qy(p) = λ

[
− log

{
p [β − log β]

[β − p log β]

}]− 1
ξ

, 0 < p < 1. (9)

Some useful measures of partition, such as the lower quartile, median, and upper quartile of the MTIF
distribution, can be generated from equation (9), respectively, as

Qy

(
1

4
, ξ, λ, β

)
= λ

[
− log

{
[β − log β]

[4β − log β]

}]− 1
ξ

,

Qy

(
1

2
, ξ, λ, β

)
= λ

[
− log

{
[β − log β]

[2β − log β]

}]− 1
ξ

,

and

Qy

(
3

4
, ξ, λ, β

)
= λ

[
− log

{
3 [β − log β]

[4β − 3 log β]

}]− 1
ξ

.

2.2 The Moments, Incomplete Moment and Moment Generating Function

Suppose a random variable Y is associated with a known probability distribution with PDF f(y), then
the rth ordinary moment of Y is defined by

E [Y r] =

∫ ∞

−∞
yrf (y) dy, r = 1, 2, 3, 4. (10)

By substituting the density function in equation (6) into equation (10), the rth ordinary moment of a
random variable Y following the MTIF distribution is constructed as follows

E [Y r] =

∫ ∞

0
yr
ξλξ

(
1− log β

β

)
y−(ξ+1)e

−
(

λ
y

)ξ

{
1− log β

β

(
1− e

−
(

λ
y

)ξ)}2 dy. (11)
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The expression in equation (11) can be evaluated using the generalized binomial series expansion

(1 + y)−s =
∞∑
k=0

(
s+ k − 1

k

)
yk. (12)

Thus, {
1− log β

β

(
1− e−(

λ
y )

ξ
)}−2

=
∞∑
j=0

(j + 1)

(
log β

β

)(
1− e−(

λ
y )

ξ
)j

,

(
1− e−(

λ
y )

ξ
)j

=

j∑
k=0

(
j

k

)
(−1)k e

−k
(

λ
y

)ξ

,

so that equation (11) now becomes

E [Y r] = ξλξ
(
1− log β

β

) ∞∑
j=0

j∑
k=0

(j + 1)

(
log β

β

)j
(
j

k

)
(−1)k

∫ ∞

0
yr−ξ−1e

−(k+1)
(

λ
y

)ξ

dy. (13)

Resolving the integral part of equation (13),

let w = (k + 1)
(
λ
y

)ξ
, y = λ

(
w

(k+1)

)− 1
ξ , dy = −λ

ζ(k+1)

(
w

(k+1)

)− 1
ξ −1

dw. Since y ∈ (0,∞), then as
y→0, w→∞. Also, as y→∞, w→0. Hence, w ∈ (∞, 0).

That is,∫ ∞

0
yr−ξ−1e

−(k+1)
(

λ
y

)ξ

dy = −
∫ 0

∞

(
λ

(
w

(k + l)

)− 1
ξ

)r−ξ−1

e−w λ

ξ (k + 1)

(
w

k + 1

)−1
ξ
−1

dw,

=
λ2

ξ(k + 1)

∫ ∞

0

(
w

k + 1

)−r
ξ

e−wdw,

=
λ2(k + 1)

r
ξ

ξ(k + 1)

∫ ∞

0
w

−r
ξ e−wdw,

=
λ2

ξ
(k + 1)

r
ξ
−1

Γ

(
1− r

ξ

)
.

The rth ordinary moment of the MTIF distribution is thus, obtained as

E [Y r] = λ2+ξ

(
1− log β

β

) ∞∑
j=0

j∑
k=0

(j + 1)

(
log β

β

)j
(
j

k

)
(k + 1)

r
ξ
−1

(−1)k Γ

(
1− r

ξ

)
. (14)

The first four ordinary moments of the MTIF distribution are derived from equation (14) when r = 1, 2,
3, and 4, respectively.
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Furthermore, the incomplete moment of the MTIF distribution can be constructed from the expression:

mr (t) =

∫ t

0
yrf (y) dy. (15)

Following the same procedure of generating the ordinary moment, we have the following:

mr (t) = ξλξ
(
1− log β

β

) ∞∑
j=0

j∑
k=0

(j + 1)

(
log β

β

)j
(
j

k

)
(−1)k

∫ t

0
yr−ξ−le

−(k+1)
(

λ
y

)ξ

dy. (16)

Again, resolving the integral part of equation (16), since y ∈ (0, t), we have y→0, w→∞. Also, as y→t,
w→ (k + 1)

(
λ
t

)ξ. Hence, w ∈
(
∞, (k + 1)

(
λ
t

)ξ).
so that,∫ t

0
yr−ξ−1e

−(k+1)
(

λ
y

)ξ

dy = −
∫ (k+1)(λ

t )
ξ

∞

(
λ

(
w

k + 1

)− 1
ξ

)r−ξ−1

e−w λ

ξ (k + 1)

(
w

k + 1

)− 1
ξ
−1

dw,

=

∫ ∞

(k+1)(λ
t )

ξ

(
λ

(
w

k + 1

)− 1
ξ

)r−ξ−1

e−w λ

ξ (k + 1)

(
w

k + 1

)− 1
ξ
−1

dw,

=
λ2

ξ
(k + 1)

r
ξ
−1
∫ ∞

(k+1)(λ
t )

ξ
w

− r
ξ e−wdw,

=
λ2

ξ
(k + 1)

r
ξ
−1

Γ

(
(k + 1)

(
λ

t

)ξ

, 1− r

ξ

)
.

Hence, the rth incomplete moment of the MTIF distribution is derived as

mr (t) = λ2+ξ

(
1− log β

β

) ∞∑
j=0

j∑
k=0

(j + 1)

(
log β

β

)j
(
j

k

)
(−1)k (k + 1)

r
ξ
−1

Γ

(
(k + 1)

(
λ

t

)ξ

, 1− r

ξ

)
.

(17)

The moment generating function of the MTIF distribution can be obtained by introducing the Maclaurin
series expansion of the exponential function to the rth ordinary moment defined in equation (14) as

MY (t) = E
[
ety
]
=

∫ ∞

−∞
etyf (y) dy,

=

∫ ∞

0
ety

ξλξ
(
1− log β

β

)
y−(ξ+1)e

−
(

λ
y

)ξ

{
1− log β

β

(
1− e

−(λ
y )

ξ)}2 dy,

= λ2+ξ

(
1− log β

β

) ∞∑
j,m=0

j∑
k=0

(j + 1)

(
log β

β

)j
(
j

k

)
(k + l)

m
ξ
−1 (−1)k tm

m!
Γ

(
1− m

ξ

)
.

(18)

Earthline J. Math. Sci. Vol. 15 No. 5 (2025), 755-778



762 T. Ejemah, F. E. Itiveh, G. A. Eriyeva, E. P. Omosioni and F. C. Opone

It is important to note that the first four raw moments of the MTIF distribution can also be obtained
from equation (18) by taking its first four derivatives, respectively, and evaluating the expression at t = 0.
That is, E [Y ] =M

′
y (0), E

[
Y 2
]
=M

′′
y (0), E

[
Y 3
]
=M

′′′
y (0), and E

[
Y 4
]
=M

′′′′
y (0).

2.3 The Probability-Weighted Moments

Greenwood et al. (1979) have defined the Probability Weighted Moments (PWMs) of a random variable
Y with the density function, f(y), as

ρq,r = E [f (y)F q (y)] =

∫ ∞

−∞
yrf (y)F q (y) dy. (19)

Direct substitution of the PDF and CDF of the MTIF distribution into equation (19), we derive the PWMs
of the MTIF distribution as follows:

ρq,r =

∫ ∞

0
yr
β−qξλξ

(
1− log β

β

)
y−(ξ+1)e−(q+1)

(
λ
y

)ξ
{
1− log β

β

(
1− e

−(λ
y )

ξ)}2+q dy. (20)

Now, using the generalized binomial series expansion in equation (20), we have

{
1− log β

β

(
1− e

−(λ
y )

ξ
)}−(2+q)

=

∞∑
j=0

(
q + j + 1

j

)(
log β

β

)j
(
1− e

−(λ
y )

ξ
)j

,

(
1− e

−(λ
y )

ξ
)j

=

j∑
k=0

(
j

k

)
(−1)k e

−k
(

λ
y

)ξ

.

Inserting these expressions into equation (20), yields

ρq,r = β−qξλξ
(
1− log β

β

) ∞∑
j=0

j∑
k=0

(
q + j + 1

j

)(
j

k

)(
log β

β

)j

(−1)k
∫ ∞

0
yr−ξ−1e

−(q+k+1)
(

λ
y

)ξ

dy.

(21)

Evaluating the integral part,

let w = (q + k + 1)
(
λ
y

)ξ
, which implies that y = λ

[
w

(q+k+1)

]− 1
ξ and dy = −λ

ξ(q+k+1)

[
w

(q+k+1)

]− 1
ξ
−1
dw.
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Note that y ∈ (0,∞). As y → 0, w → ∞. Also, as y → ∞, w → 0. Hence, w ∈ (∞, 0).

Consequently,

∫ ∞

0
yr−ξ−1e

−(q+k+1)
(

λ
y

)ξ

dy = −
∫ 0

∞

[
λ

(
w

q + k + 1

)− 1
ξ

]r−ξ−1

e−w λ

ξ (q + k + 1)

[
w

q + k + 1

]− 1
ξ
−1

dw,

=
λr−ξ

ξ (q + k + 1)
1− r

ξ

∫ ∞

0
w

−r
ξ e−wdw,

=
λr−ξ

ξ (q + k + 1)
1− r

ξ

Γ

(
1− r

ξ

)
.

Finally, the PWM of the MTIF distribution is expressed as:

ρq,r =
β−qλr

(
1− log β

β

)
(q + k + 1)

1− r
ξ

∞∑
j=0

j∑
k=0

(
q + j + 1

j

)(
j

k

)(
log β

β

)j

(−1)k Γ

(
1− r

ξ

)
. (22)

2.4 The Renyi Entropy

Let Y be a random variable following a probability distribution, the entropy of Y describes the degree of
uncertainty associated with Y . Renyi (1961) has defined the Renyi entropy of Y as

R (Ψ) =
1

1−Ψ
log

∫ ∞

−∞
fΨ (y) dy, Ψ > 0,Ψ ̸= 1. (23)

Again, by substituting the PDF of the MTIF distribution into equation (23), we have

R (Ψ) =
1

1−Ψ
log

∫ ∞

0

[
ξλξ

(
1− log β

β

)]Ψ
y−Ψ(ξ+1)e

−Ψ
(

λ
y

)ξ

[
1− log β

β

(
1− e

−
(

λ
y

)ξ)]2Ψ dy. (24)

Now, [
1− log β

β

(
1− e

−
(

λ
y

)ξ)]−2Ψ

=

∞∑
j=0

(
2Ψ + j − 1

j

)(
log β

β

)j (
1− e

−
(

λ
y

)ξ)j

,

(
1− e

−
(

λ
y

)ξ)j

=

j∑
k=0

(
j

k

)
(−1)k e

−k
(

λ
y

)ξ

.

Inserting these expressions into equation (24), yields
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R (Ψ) =
1

1−Ψ
log

[
ξλξ

(
1− log β

β

)]Ψ ∞∑
j=0

j∑
k=0

(
2Ψ + j − l

j

)(
j

k

)(
log β

β

)j

(−1)k

×
∫ ∞

0
y−Ψ(ξ+1)e

−(Ψ+k)
(

λ
y

)ξ

dy.

(25)

The integral part of equation (25) is further evaluated as∫ ∞

0
y−Ψ(ξ+1)e

−(Ψ+k)
(

λ
y

)ξ

dy =
λ1−Ψ(ξ+1)

ξ (Ψ + k)
(Ψ+1)

ξ
+Ψ

Γ

(
Ψ+

(Ψ− 1)

ξ

)
, (26)

so that the Renyi entropy of the MTIF distribution now becomes

R (Ψ) =
1

1−Ψ
log

[
ξλξ

(
1− log β

β

)]Ψ ∞∑
j=0

j∑
k=0

(
2Ψ + j − l

j

)(
j

k

)(
log β

β

)j

(−1)k

× λ1−Ψ(ξ+1)

ξ (Ψ + k)
(Ψ+1)

ξ
+Ψ

Γ

(
Ψ+

(Ψ− 1)

ξ

)
.

(27)

3 Methods of Parameter Estimation and Simulation Experiment

This section is dedicated to exploring different methods of parameter estimation applicable to the unknown
parameters of the MTIF distribution. In particular, maximum likelihood, ordinary least squares, weighted
least squares, and maximum product spacing estimators are investigated to determine the best estimation
method for the unknown parameters of the MTIF distribution.

3.1 Maximum Likelihood Estimator(MLE)

Let (y1, y2, . . . , yn) be random samples from the MTIF distribution with PDF defined in equation (6),
then the log-likelihood function of Y is derived by

ℓmle (yi; ξ, λ, β) = n loge (β) + n loge (ξ) + nξ loge (λ) + n loge (β − logeβ)− (ξ + 1)
n∑

i=1

loge (yi)

−
n∑

i=1

(
λ

yi

)ξ

− 2

n∑
i=1

loge

[
β − β loge

(
1− e

−
(

λ
yi

)ξ)]
.

(28)

Taking the partial derivative of the function in equation (28) in terms of the parameters ξ, λ, and β,
the estimates ξ̂, λ̂, and β̂ are, respectively, obtained as the solution of the system of non-linear equations
∂lmle(yi;ξ,λ,β)

∂ξ = 0, ∂lmle(yi;ξ,λ,β)
∂λ = 0, and ∂lmle(yi;ξ,λ,β)

∂β = 0.
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3.2 Ordinary Least Squares Estimator (OLS)

Swain (1988) developed an alternative method of parameter estimation known as the ordinary least squares
estimation. Let Y(1), Y(2), . . . , Y(n) be a set of ordered statistics with corresponding CDF F (Yi), and
y(1), y(2), . . . , y(n) be the ordered observed values. The ordinary least squares estimates is obtained by
differentiating the function

ℓols(yi;ψ) =
n∑

i=1

[F (Yi;ψ)− E[F (Yi;ψ)]]2 ψ = (ξ, λ, β)T , (29)

with respect to the parameters ξ, λ, and β, where E[F (Yi;ψ)] =
i

n+1 . Substituting the CDF of the MTIF
distribution into equation (29), we derive the ordinary least squares estimates from the function

ℓols (yi; ξ, λ, β) =

n∑
i=1

 βe
−
(

λ
y

)ξ

β − log β

[
1− e

−
(

λ
y

)ξ] − i

n+ 1


2

. (30)

That is, the estimates ξ̂ols, λ̂ols, and β̂ols are the solution of the system of non-linear equations
∂lols(yi;ξ,λ,β)

∂ξ = 0, ∂lols(yi;ξ,λ,β)
∂λ = 0, and ∂lols(yi;ξ,λ,β)

∂β = 0, respectively.

3.3 Weighted Least Squares Estimator(WLS)

Similar to the OLS method, Swain (1988) also developed the weighted least squares estimation method.
In this method, the weighted least square estimates ξ̂wls, λ̂wls, and β̂wls of the parameters of the MTIF
distribution are derived by taking the partial derivative of the function

ℓwls((yi; ξ, λ, β) =

n∑
i=1

Wi

[
F (Yi;ψ)−

i

n+ 1

]2
,

=
n∑

i=1

Wi

 βe
−
(

λ
y

)ξ

β − log β

[
1− e

−
(

λ
y

)ξ] − i

n+ 1


2

,

(31)

in terms of the parameters ξ, λ, and β, where Wi =
1

Var[F (Yi;ξ,λ,β)]
= (n+1)2(n+2)

i(n−i+1) . The estimates ξ̂wls, λ̂wls,

and β̂wls are obtained as the solution of the system of equations ∂lwls(yi;ξ,λ,β)
∂ξ = 0, ∂lwls(yi;ξ,λ,β)

∂λ = 0, and
∂lwls(yi;ξ,λ,β)

∂β = 0, respectively.
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3.4 Maximum Product Spacing Estimator (MPS)

Cheng and Amin (1979) derived the maximum product spacing method, which suggests that the differences
between the values of the distribution function at consecutive observed values should be identically
distributed. Let the distribution function follow the MTIF distribution, then by taking the partial
derivative of the function

ℓmps (yi; ξ, λ, β) =
1

n+ 1

n+1∑
i=1

log
[
FMTIF(Y(i); ξ, λ, β)− FMTIF(Y(i−1); ξ, λ, β)

]
, (32)

with respect to the parameters ξ, λ, and β, the estimates ξ̂mps, λ̂mps, and β̂mps are obtained as the solution
of the system of equations ∂lmps(yi;ξ,λ,β)

∂ξ = 0, ∂lmps(yi;ξ,λ,β)
∂λ = 0, and ∂lmps(yi;ξ,λ,β)

∂β = 0, respectively.

3.5 Simulation experiment

In this subsection, a Monte Carlo simulation experiment is carried out to examine the level of precision
of the parameter estimates of the MTIF distribution. The simulation experiment is based on the four
methods of parameter estimation in order to determine the best method suitable for the parameters of
the MTIF distribution. Random samples of size n = 30, 75, 200, 500, and 1000, are generated from the
MTIF distribution using the quantile function defined in equation (9). The experiment is repeated 1000
times, and the mean estimate, absolute bias, and root mean square error of the parameter estimates are
computed as follows;

1. mean estimate = 1
1000

∑1000
i=1 ψ̂i

2. absolute bias = 1
1000

∑1000
i=1

∣∣∣ψ̂i − ψ
∣∣∣

3. root mean square error (RMSE) =
√

1
1000

∑1000
i=1 (ψ̂i − ψ)2

Tables 1–3 provide the simulation results of the mean estimate, absolute bias, and root mean square
error of the parameter estimates of the MTIF distribution, respectively.
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Table 1: Mean Estimates of the parameters of the MTIF distribution

Parameter n MLE OLS WLS MPS
β = 0.5

λ = 0.2

ξ = 0.3

β 30
75
200
500
1000

0.8842
0.7711
0.6103
0.5344
0.5149

1.1429
0.9285
0.7301
0.5748
0.5272

1.0748
0.8827
0.6540
0.5436
0.5182

0.8075
0.6771
0.5731
0.5261
0.5117

λ 30
75
200
500
1000

1.4135
0.9024
0.5092
0.3028
0.2413

2.1153
1.2794
0.7684
0.4131
0.2817

1.9492
1.1496
0.5986
0.3292
0.2499

1.2377
0.7460
0.4408
0.2901
0.2390

ξ 30
75
200
500
1000

0.3202
0.3067
0.3013
0.2995
0.2998

0.2983
0.2970
0.2970
0.2977
0.2985

0.3022
0.2986
0.2980
0.2985
0.2991

0.3484
0.3207
0.3083
0.3030
0.3018

β = 0.8

λ = 0.4

ξ = 0.6

β 30
75
200
500
1000

1.2008
1.2268
1.0632
0.9412
0.8718

1.3888
1.3899
1.2356
1.0422
0.9456

1.3798
1.3604
1.1632
0.9697
0.8906

1.0557
1.0705
0.9505
0.8763
0.8391

λ 30
75
200
500
1000

0.4645
0.4731
0.4514
0.4323
0.4235

0.4792
0.4869
0.4736
0.4523
0.4390

0.4868
0.4886
0.4667
0.4402
0.4287

0.4372
0.4410
0.4227
0.4139
0.4113

ξ 30
75
200
500
1000

0.6769
0.6315
0.6110
0.6047
0.6002

0.6370
0.6154
0.6038
0.6003
0.5971

0.6388
0.6155
0.6039
0.6011
0.5982

0.7435
0.6663
0.6304
0.6153
0.6069
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Table 2: Absolute bias of the parameters of the MTIF distribution

Parameter N MLE OLS WLS MPS
β = 0.5

λ = 0.2

ξ = 0.3

β 30
75
200
500
1000

0.6133
0.4696
0.2365
0.1238
0.0805

0.9672
0.6889
0.4060
0.1928
0.1127

0.8871
0.6176
0.2971
0.1418
0.0885

0.5239
0.3651
0.1939
0.1149
0.0776

λ 30
75
200
500
1000

1.3522
0.8381
0.4067
0.1821
0.1046

2.0896
1.2381
0.6976
0.3147
0.1623

1.9215
1.1022
0.5096
0.2174
0.1181

1.1522
0.6652
0.3282
0.1653
0.1001

ξ 30
75
200
500
1000

0.0582
0.0426
0.0274
0.0177
0.0124

0.0669
0.0506
0.0349
0.0227
0.0157

0.0645
0.0469
0.0301
0.0191
0.0132

0.0677
0.0435
0.0267
0.0173
0.0123

β = 0.8

λ = 0.4

ξ = 0.6

β 30
75
200
500
1000

0.8286
0.7526
0.5013
0.3206
0.1971

1.0946
0.9668
0.7134
0.4498
0.2958

1.0596
0.9048
0.6095
0.3534
0.2196

0.7010
0.6158
0.4070
0.2700
0.1765

λ 30
75
200
500
1000

0.2982
0.2563
0.1887
0.1380
0.0988

0.3648
0.3061
0.2387
0.1773
0.1305

0.6571
0.2880
0.2112
0.1498
0.1066

0.2549
0.2232
0.1651
0.1252
0.0921

ξ 30
75
200
500
1000

0.1318
0.0909
0.0611
0.0435
0.0301

0.1406
0.1038
0.0741
0.0535
0.0381

0.1349
0.0966
0.0669
0.0461
0.0321

0.1670
0.0993
0.0626
0.0435
0.0300
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Table 3: Root mean square error (RMSE) of the parameters of the MTIF distribution

Parameter n MLE OLS WLS MPS
β = 0.5

λ = 0.2

ξ = 0.3

β 30
75
200
500
1000

0.9746
0.8121
0.4442
0.1773
0.1088

1.3214
1.0492
0.7214
0.3559
0.1589

1.2477
0.9814
0.5513
0.2299
0.1209

0.8623
0.6439
0.3465
0.1577
0.1037

λ 30
75
200
500
1000

3.5629
1.7946
0.9728
0.3368
0.1649

4.7984
2.3087
1.4196
0.6890
0.2997

4.5810
2.1732
1.1257
0.4933
0.1946

3.1524
1.4695
0.7508
0.2924
0.1544

ξ 30
75
200
500
1000

0.0761
0.0532
0.0334
0.0223
0.0156

0.0851
0.0612
0.0425
0.0285
0.0197

0.0820
0.0578
0.0372
0.0241
0.0166

0.0910
0.0554
0.0338
0.0218
0.0154

β = 0.8

λ = 0.4

ξ = 0.6

β 30
75
200
500
1000

1.0967
1.0405
0.7793
0.5522
0.3361

1.3163
1.2299
1.0180
0.7241
0.5146

1.2908
1.1839
0.9145
0.5913
0.3782

0.9604
0.8854
0.6511
0.4562
0.2866

λ 30
75
200
500
1000

0.3924
0.3192
0.2383
0.1829
0.1326

0.4518
0.3610
0.2879
0.2261
0.1738

0.4507
0.3453
0.2637
0.1952
0.1422

0.3418
0.2825
0.2082
0.1648
0.1211

ξ 30
75
200
500
1000

0.1794
0.1152
0.0767
0.0538
0.0375

0.1928
0.1312
0.0914
0.0652
0.0470

0.1799
0.1212
0.0826
0.0571
0.0399

0.2234
0.1289
0.0799
0.0544
0.0372

The result in Table 1 shows that as the sample size n increases, the mean estimate tends to the value
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of the population parameter. Also, from Tables 2 and 3, the values of the absolute bias and root mean
square error decrease as the sample size n increases. These features were consistent for all four methods of
estimation. In terms of the performance of the methods, we observed that the maximum product spacing
(MPS), which had the smallest values of the absolute bias and root mean square error as the sample size
n increases, is the best method for estimating the parameters of the MTIF distribution. This is followed
by the maximum likelihood, weighted least squares, and lastly, the ordinary least squares methods.

4 Data fitting

Demonstrating the potential of the proposed model in real-life data fitting is one of the crucial task in
developing statistical distributions. In this section, the relevance of the MTIF distribution is illustrated
using two real-life datasets. Some existing generalizations of the Fréchet distribution, such as the
transmuted Fréchet (TFD), alpha power transformed Fréchet (APTFD), exponentiated Fréchet (ExFD),
Sine Fréchet (SFD), and the classical Fréchet distribution, are employed to fit the datasets alongside the
proposed MTIF distribution. Model comparison is based on the maximized log-likelihood (LogL), Akaike
information criterion (AIC), Komolgorov-Smirnov (K − S), Anderson Darling (A∗), and Crammer-von
Mises (W ∗) test statistics.

Dataset I: This dataset comprises of the trade share data reported in Bantan et al. (2021). The data was
also utilized by Chesneau and Opone (2022) to illustrate the flexibility of the power continuous Bernoulli
distribution. The data are given as: 0.140501976, 0.156622976, 0.157703221, 0.160405084, 0.160815045,
0.22145839, 0.299405932, 0.31307286, 0.324612707, 0.324745566, 0.329479247, 0.330021679, 0.337879002,
0.339706242, 0.352317631, 0.358856708, 0.393250912, 0.41760394, 0.425837249, 0.43557933, 0.442142904,
0.444374621, 0.450546652, 0.4557693, 0.46834656, 0.473254889, 0.484600782, 0.488949597, 0.509590268,
0.517664552, 0.527773321, 0.534684658, 0.543337107, 0.544243515, 0.550812602, 0.552722335, 0.56064254,
0.56074965, 0.567130983, 0.575274825, 0.582814276, 0.603035331, 0.605031252, 0.613616884, 0.626079738,
0.639484167, 0.646913528, 0.651203632, 0.681555152, 0.699432909, 0.704819918, 0.729232311,
0.742971599, 0.745497823, 0.779847085, 0.798375845, 0.814710021, 0.822956383, 0.830238342,
0.834204197, and 0.979355395. The data has a skewness value of 0.006 and a kurtosis value of 2.553,
which suggests approximately symmetric and platykurtic properties, respectively. Figure 2 describes an
exploratory visualization of the property of the dataset in terms of the boxplot and the total time on test
(TTT) plot.
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Figure 2: The boxplot and TTT plot for the trade share data.

From the figure, the boxplot suggests that the dataset is approximately symmetric and outlier-free,
while the TTT plot reveals that the data exhibits an increasing failure rate property. Table 4 provides the
fitting results of the distributions for the trade share data.

Table 4: Summary Result for Trade Share Data

Models Estimates -LogL AIC K-S A* W*
(p-value) (p-value) (p-value)

MTIFD
β = 0.0112

λ = 0.1136

ξ = 4.0769

-9.2675 -12.5349 0.0902
(0.6701)

0.0880
(0.6484)

1.0409
(0.3362)

TFD
θ = 0.6731

λ = 0.3057

ξ = 2.1008

2.0195 10.0391 0.1661
(0.0613)

0.4804
(0.0443)

3.2732
(0.0201)

APTFD
α = 50.8153

λ = 0.2397

ξ = 2.4737

-1.3953 3.2094 0.1478
(0.1254)

0.3175
(0.1206)

2.4947
(0.0501)

ExFD
α = 0.5228

λ = 0.5199

ξ = 1.8844

4.6759 15.3519 0.1767
(0.0389)

0.6279
(0.0188)

3.9322
(0.0095)

SFD
λ = 0.4853

ξ = 1.5048
-1.2452 1.5096 0.1548

(0.0966)
0.4325
(0.0591)

2.8514
(0.0327)

FD
λ = 0.3686

ξ = 1.8843
4.6759 13.3519 0.1767

(0.0388)
0.6276
(0.0188)

3.9313
(0.0095)
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An appropriate model suitable for fitting a given dataset can be investigated by following the model
having the least value in terms of the −LogL, AIC, K−S, A∗, and W ∗ with the maximum corresponding
p-value. Clearly, the results in Table 4 indicates that the proposed MTIF distribution satisfies the above
criteria and thus, becomes the most appropriate model for fitting the trade share data.

The fitting abilities of the distributions are also investigated through the fitted density and empirical
cdf, and probability-probability (P-P) plots as shown in Figures 3 and 4, respectively.

Figure 3: The fitted density and empirical cdf of the trade share data.
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Figure 4: The Probability-Probability (P-P) of the trade share data.

Dataset II: The second dataset holds the waiting time (in minutes) before service of 100 bank customers.
This data was first utilized by Ghitany et al. (2008) to demonstrate the usefulness of the Lindley
distribution, while Chesneau et al. (2022) transformed the data into a unit interval data and used it
to illustrate the flexibility of the transmuted continuous Bernoulli distribution. The dataset are as follows:
0.8, 0.8, 1.3, 1.5, 1.8, 1.9 ,1.9, 2.1, 2.6, 2.7,2.9, 3.1, 3.2, 3.3 ,3.5, 3.6, 4.0, 4.1, 4.2, 4.2,4.3, 4.3, 4.4, 4.4, 4.6,
4.7, 4.7, 4.8, 4.9, 4.9,5.0, 5.3, 5.5, 5.7, 5.7, 6.1, 6.2, 6.2, 6.2, 6.3,6.7, 6.9, 7.1, 7.1, 7.1, 7.1, 7.4, 7.6, 7.7,
8.0,8.2, 8.6, 8.6, 8.6, 8.8, 8.8, 8.9, 8.9, 9.5, 9.6,9.7, 9.8, 10.7, 10.9, 11.0, 11.0, 11.1, 11.2, 11.2, 11.5,11.9, 12.4,
12.5, 12.9, 13.0, 13.1, 13.3, 13.6, 13.7, 13.9,14.1, 15.4, 15.4, 17.3, 17.3, 18.1, 18.2, 18.4, 18.9, 19.0,19.9, 20.6,
21.3, 21.4, 21.9, 23.0, 27.0, 31.6, 33.1, 38.5. The skewness value of the dataset is 1.4727, while the kurtosis
value is 5.5402. This information explains that the dataset has right-skewed and leptokurtic properties,
respectively. Figure 5 provides an exploratory visualization of the property of the dataset in terms of the
boxplot and the total time on test (TTT) plot.
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Figure 5: The boxplot and TTT plot for the trade share data.

From the boxplot in Figure 5, the waiting time dataset is skewed to the right and there are presence of
outliers, while the TTT plot shows that the data exhibits an increasing failure rate property. The fitting
results of the distributions for the waiting time dataset is displayed in Table 5.

Table 5: Summary Results for the Waiting Time Data

Models Estimates -LogL AIC K-S A* W*
(p-value) (p-value) (p-value)

MTIFD
β = 0.0184

λ = 0.7117

ξ = 2.2494

319.2996 644.6993 0.0505
(0.9606)

0.0346
(0.9591)

0.3322
(0.9120)

TFD
θ = −0.7579

λ = 3.4743

ξ = 1.2824

330.6362 667.2723 0.1036
(0.2336)

0.2875
(0.1466)

2.1126
(0.0798)

APTFD
α = 94.9943

λ = 2.1297

ξ = 1.4874

326.3056 658.6111 0.0842
(0.4770)

0.1537
(0.3789)

1.3066
(0.2302)

ExFD
α = 7.9435

λ = 0.8451

ξ = 1.1629

334.381 674.762 0.1167
(0.1315)

0.4275
(0.0609)

2.8994
(0.0311)

SFD
λ = 7.8602

ξ = 0.9154
326.4818 656.9636 0.0831

(0.4939)
0.2149
(0.2405)

1.5167
(0.1726)

FD
λ = 5.0232

ξ = 1.1631
334.381 672.762 0.1167

(0.1313)
0.4266
(0.0613)

2.8901
(0.0312)
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The fitted density and empirical cdf, and probability-probability (P-P) plots of the distributions for
the waiting time data are also investigated in Figures 6 and 7, respectively.

Figure 6: The fitted density and empirical cdf of the waiting time data.

Figure 7: The Probability-Probability (P-P) of the waiting time data.
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5 Conclusion

In this paper, the MTI transformation scheme has been employed to generalize the Fréchet distribution. We
have referred to the proposed model as the MTI-Fréchet (MTIF) distribution. Some important statistical
treatments of the MTIF distribution, which include the survival, hazard rate, and quantile functions,
moments, incomplete moments, moment generating function, probability weighted moment, and Renyi
entropy, were studied. Graphical plots of the density function and hazard rate function revealed that
the MTIF distribution exhibits decreasing, right-skewed, and inverted bathtub-shaped properties. Four
methods of parameter estimation were considered to estimate the parameters of the MTIF distribution,
and a simulation experiment was conducted to examine the performance of the parameter estimates based
on the four methods. The results from the experiment suggested that the maximum product spacing
method was the appropriate method for estimating the parameters of the MTIF distribution. In a practical
scenario, two datasets comprising of the trade share and waiting time of 100 bank customers were employed
to illustrate the applicability of the proposed MTIF distribution. The summary results from the fitting
of the two datasets favored the MTIF distribution over the competing generalized Fréchet distributions.
The superiority claim was further supported through graphical goodness-of-fit test statistics such as the
fitted densities, empirical cdfs, and probability-probability (p-p) plots.
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