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Abstract

A nonlinear mathematical model is proposed and analyzed to examine the impact of a toxicant
effect on human health in fuzzy environment, specifically its detrimental effects on the reproductive
health of a subclass within the species. By applying stability theory, it is demonstrated that the
overall species population stabilizes at an equilibrium level. Additionally, findings indicate that as
the toxicant emission rate increases, the population density of the subclass severely affected by the
toxicant—rendered incapable of reproduction—also rises.

1 Introduction

Homo sapiens have always been exposed to various environmental toxins, including particles, smoke from
fire usage, thermal processing food-related toxicants, fecal aerosols, and pathogens transmitted by domestic
animals, especially in high population densities seen in post-Neolithic societies. Even today, some human
populations have developed genetic adaptations to their environments, resulting in higher frequencies of
protective variants against harmful substances. For example, South American populations have shown
genetic adaptations to arsenic (As), a naturally occurring toxic chemical [2].

With the advent of the Industrial Revolution and technological progress, humans began to face
contaminants never encountered in nature before, such as industrial byproducts, cigarette smoke, and
air pollution [1,3]. These changes are too recent to have triggered genetic adaptation, and modern clinical
practices and urban environments have further weakened the effects of selective pressures [4]. However,
epigenetic processes are believed to be crucial molecular mechanisms for medium-term adaptation, enabling
the body to respond to early exposure to new environmental factors [5–7], possibly creating an epigenetic
signature of exposure.
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Epigenetic mechanisms influence gene expression without altering the DNA sequence itself [8]. Among
these, DNA methylation is one of the most studied. In mammals, DNA methylation occurs at CpG sites,
involving the addition of a methyl group (-CH3) to the 5’ position of cytosine, resulting in 5-methylcytosine
(5mC). DNA methyltransferases (DNMTs) catalyze this process using S-adenosyl-l-methionine (SAM) as
a methyl donor. DNMTs include those responsible for de novo methylation (DNMT3A and DNMT3B)
and the maintenance of pre-existing methylation patterns during cell division (DNMT1) [9].

Exposure to toxic agents can drive natural variation and shape human biodiversity. Two primary
sources of biological variability related to toxicants exposure are genetic variability, observed in human
populations as a result of long-term adaptation, and epigenetic variability, such as altered DNA methylation
profiles, which can be seen both at the individual and population levels and may influence mutation rates
(medium-term adaptation).

Human populations have exhibited genetic variability due to adaptive responses to various
environmental factors throughout their evolution. For instance, the aridification of North Africa 7-11
million years ago led to the formation of deserts and savannas, resulting in environmental changes that
exposed early hominids to new types of aerosols. Innate immunity receptors, such as the Macrophage
Receptor with Collagenous Structure (MARCO), played a central role in responding to these exposures.
Certain genetic changes, such as substitutions in MARCO, have been positively selected, altering its ability
to bind and phagocytose inhaled substances [1].

Researchers suggest that changes in aerosol exposure may have increased the need for more efficient
innate immunity receptors, prompting genetic changes over time. The discovery of fire further exposed
early humans to new environmental stress, including the smoke from burning wood, which contains toxic
and carcinogenic substances like polycyclic aromatic hydrocarbons (PAHs) has been established [1,16,17].

An example of genetic adaptation to toxicants can be seen in South American populations exposed to
arsenic (As), a naturally occurring toxic element. Indigenous communities in certain regions have developed
higher frequencies of protective genetic variants, enabling them to better tolerate arsenic exposure through
mechanisms like increased excretion of arsenic via methylation [2,18,19].

The phenotypic variability observed between individuals and populations cannot be solely explained
by genetic differences. Epigenetic mechanisms, such as DNA methylation, play a crucial role in
regulating gene expression and can explain some of the differences between genetically identical individuals,
like monozygotic twins, who exhibit differing DNA methylation patterns [20]. Thus, the epigenome,
particularly DNA methylation, is key to phenotypic diversity between populations. While some studies
question the role of DNA methylation in human evolution, evidence shows that DNA methylation dynamics
can affect mutation rates, particularly at methylated CpG sites [21,22]. Recent research also suggests that
endocrine disruptors, while not directly causing genetic mutations, can influence genetic instability through

http://www.earthlinepublishers.com



Mathematical Model and Analysis of Toxicant Effect on Human Health in Fuzzy Environment 725

epigenetic changes, thereby promoting mutation and variation [23,24].

A recent study on the Faroe Islands examined the effects of various chemicals in food and fish on DNA
methylation in cord blood. The study found that exposure to pollutants like Methyl mercury, PCBs, and
others was linked to DNA methylation changes, with some sex-specific differences observed in the DNA
methylation patterns of males and females [25]. Other studies on air pollution also showed that long-term
exposure to pollutants like PM10 and PM2.5 negatively impacted sperm motility, DNA methylation, and
reproductive fitness in both mice and humans [26–28].

Although male infertility is prevalent, female infertility appears to be more widespread. Oocytes in
females remain demethylated until puberty, making childhood a critical period for environmental exposure.
Studies on chemicals like Methoxychlor, an endocrine disruptor, have shown that exposure can lead to
DNA methylation changes in specific genes, such as those related to estrogen receptors in the ovaries,
potentially affecting female reproductive health [29].

Considering the importance of epigenetic mechanisms, particularly DNA methylation, in responding to
new environmental factors, this study aims to examine recent literature (primarily on humans) to explore
the impact of major industrial-era contaminants on human evolution with the aid of mathematical model.
It focuses on the effects of toxicants on DNA methylation and their evolutionary implications, including
reproductive fitness, survival, biodiversity, mutation rates.

The organisation of this paper is as follows. The model is formulated in Section 2. The analyses of the
formulated model and its numerical simulation are carried out in Section 3, while the results of the model
analyses and simulations are discussed in Section 4. The main results and discussion from this study are
summarized in Section 5 while the study conclusion is carried out in Section 6.

2 Model Formulation

2.1 Assumptions of the model equations

For proper understanding and formulation of system of equations in this study, we present the following
assumptions:

(A1) It is assumed that human environment is affected by different chemicals known as toxicant.

(A2) It is also assumed that toxicant has severe effect on human health after exposure.

(A3) Human population carrying capacity (K) is a function of toxicant concentration.
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(A4) Human population are affected by the environmental toxicant through food chain, air pollution, and
contaminated water.

2.2 Model variables and parameters

Table 1: Description of the model variables and parameters
Variable Interpretation
P (t) Human population at time t

PD(t) Deformed human population at time t

C(t) Concentration of toxicant at time t

U(t) Uptake concentration of toxicant at time t

Parameter Interpretation
r Intrinsic growth rate of human population
K Carrying capacity of human population
Q Influx of toxicant concentration
δ Natural depletion rate of toxicant concentration
γ Quantity of concentration of toxicant uptake by human population
v Rate at which dead human decay added back to toxicant concentration
ϕ Quantity of excreted toxicant concentration uptake by human population
d Death rate of the deformed human population
λ Rate at which some persons that are affected by toxicant become deformed
b Birth rate of the population

2.3 Descriptions of the model equations

The model equations is subdivided into four (4) ecological compartments namely health human population
(P ), deformed human population (PD), concentration of toxicant in human environment (C), and
uptake(inhaled, through food chain) of toxicant concentration (U). The human population is logistically
modelled. The concentration of toxicant (C) and the uptake concentration of toxicant (U) are modelled
by the law of chemical and biological behaviours respectively.

2.4 Model equations

Keeping track of the above assumptions, variables, parameters descriptions, and the model equations
description, the formulated model equations are given by
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dP

dt
= rP − rP 2

K(C)
− (ξ + b)PD (1)

dPD

dt
= λP ′U − rPDP

K(C)
− (ξ + d)PD (2)

dC

dt
= QP − δC − γCP + θvPU (3)

dU

dt
= γCP − ϕU − vPU (4)

with initial data: P (0) ≥ 0, PD(0) ≥ 0, C(0) ≥ 0, U(0) ≥ cP (0), c > 0, 0 ≤ π ≤ 1. and P ′ = P − PD.
The initial conditions of this model are completely possible if and only if there is a deliberate poisoning of
human population sources of food or use of chemical weapon during war. In a natural setting, the human
population will continue to exist.

The fuzzy representation of the model equations (1 - 4) can be expressed as follows:

dP

dt
= rP − rP 2

K(C)
− (ξ + b)PD (5)

dPD

dt
= λP ′U − rPDP

K(C)
− (ξ + d)PD (6)

dC

dt
= Q(ω)P − δC − γ(ω)CP + θvPU (7)

dU

dt
= γ(ω)CP − ϕU − vPU (8)

It is assumed that the influx of toxicant into human environment is at per capita rate denoted by
Q(ω) and the fraction of uptake concentration of toxicant by the human, γ(ω), are represented as fuzzy
numbers, contigent upon the predator’s concentration uptake. The variable Q(ω) is defined by Barros et
al. [32] as

Q(ω) =


0 ω < ωmin,

ω−ωmin
ωM−ωmin

, ωmin ≤ ω ≤ ωM

1, ωM < ω,

The Q(ω) attains its peak when ω is its maximum value, and it becomes immaterial when ω is at its
minimum. ωmin represents the minimum toxicant concentration influx required for human’s deformity,
and the concentration of toxicant is at its highest when ω = ωM , attaining or approaching a value of 1.
Similarly, γ(ω) is defined as (Verna et al. [34]).
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γ(ω) =
{

Q0−1
ωM

ω + 1, 0 ≤ ω ≤ ωM

where Q0 > 0 is the minimum concentration of the toxicant influx rate.

2.5 Equilibrium analysis

The analysed model has two toxicant-free equilibrium points and two toxicant-present equilibrium points.

Case 1. If ω ≤ ωmin and γ(ω) > 0 then Q(ω) = 0 and we get the following two TFE points:

E0 = (0, 0, 0, 0) and E1 = (K0, 0, 0, 0).

In this case, we will ignore the E0 equilibrium and stick to E1 equilibrium since the analysis of E0

equilibrium is trivial. However, the E0 equilibrium is completely possible if and only if there is a deliberate
poisoning of human population sources of food or use of chemical weapon during war. In a natural setting,
the human population will continue to exist.
Case 2. If ωmin ≤ ω ≤ ωM and γ(ω) > 0 then Q(ω) = ω−ωmin

ωM−ωmin
and we get

E∗ = (P ∗, P ∗
D, C

∗, U∗)

where

P ∗ =
K(C)(λ+ ξ + d)P ∗

D

K(C)λ− rP ∗
D

, P ∗
D =

K(C)rP ∗ − rP ∗2

K(C)(ξ + b)
, C∗ =

(Q(ω) + θvU∗)P ∗

δ + γ(ω)P ∗ , U∗ =
γ(ω)C∗P ∗

ϕ+ vP ∗ .

Case 3. If ωM < ω and γ(ω) > 0 then Q(ω) = 1 and we get

E∗∗ = (P ∗∗, P ∗∗
D , C∗∗, U∗∗)

where

P ∗∗ =
K(C)(λ+ ξ + d)P ∗∗

D

K(C)λ− rP ∗∗
D

, P ∗∗
D =

K(C)rP ∗∗ − rP ∗∗2

K(C)(ξ + b)
, C∗∗ =

(1 + θvU∗∗)P ∗∗

δ + γ(ω)P ∗∗ , U∗∗ =
γ(ω)C∗∗P ∗∗

ϕ+ vP ∗∗ .
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The equilibrium points E∗ and E∗∗ represent situations where toxicant concentrations persist in
human’s environment exceeds the minimum threshold necessary for its deformity, resulting in the oscillation
of the human population.

Stability analysis

To carry out the model stability, we shall rewrite Equations (5 - 8) as follows.

B1 = rP − rP 2

K(C)
− (ξ + b)PD (9)

B2 = λP ′U − rPDP

K(C)
− (ξ + d)PD (10)

B3 = Q(ω)P − δC − γ(ω)CP + θvPU (11)

B4 = γ(ω)CP − ϕU − vPU (12)

The Jacobian matrix of the system of Equations (9) - (12) can be represented by

J1 =


∂B1
∂P

∂B1
∂PD

∂B1
∂C

∂B1
∂U

∂B2
∂P

∂B2
∂PD

∂B2
∂C

∂B2
∂U

∂B3
∂P

∂B3
∂PD

∂B3
∂C

∂B3
∂U

∂B4
∂P

∂B4
∂PD

∂B4
∂C

∂B4
∂U



∴ J1 =


r − 2rP

K(C) −(ξ + b) 0 0

λU − rPD
K(C) −λU − rP

K(C) 0 λ(P − PD)

Q(ω)− γ(ω)C + θvU 0 −δ − γ(ω)P θvP

γ(ω)C − vU 0 γ(ω)P −θ − vP



∴ J1(E1) =


−r −(ξ + b) 0 0

0 −r 0 λK0

Q(ω) 0 −δ − γ(ω)K0 θvK0

0 0 γ(ω)K0 −θ − vK0


System Eqs. (1) − (4) is locally asymptotic stable when the absolute eigenvalues of the Jacobian matrix
in Eq.(15) have negative real parts.
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3 Numerical Investigation

3.1 Forward Euler Scheme

The Forward Euler scheme is a well-known explicit first-order numerical approach for solving ordinary
differential equations. It provides a fast estimation of the behaviour of solution over time computational
efficient.

Pn+1 = Pn + h
[
rPn − rPn2

K(C)
− (ξ + b)Pn

D

]
(13)

Pn+1
D = Pn

D + h
[
λ(P 2 − Pn

D)U
n − rPn2

K(C)
− (ξ + b)Pn

D

]
(14)

Cn+1 = Cn + h
[
Q(ω)Pn − δCn − γ(ω)CnPn + θvPnUn

]
(15)

Un+1 = Un + h
[
γ(ω)CnPn − ϕUn − vPnUn

]
(16)

Case 1. If ω < ωmin and γ(ω) > 0 then Q(ω) = 0 and

Pn+1 = Pn + h
[
rPn − rPn2

K(C)
− (ξ − b)Pn

D

]
(17)

Pn+1
D = Pn

D + h
[
λ(P 2 − Pn

D)U
n −

rPn
DP

n

K(C)
− (ξ + b)Pn

D

]
(18)

Cn+1 = Cn − h
[
δCn + γ(ω)CnPn − θvPnUn

]
(19)

Un+1 = Un + h
[
γ(ω)CnPn − ϕUn − vPnUn

]
(20)

Case 2. If ωmin ≤ ω ≤ ωM and γ(ω) > 0 then Q(ω) = ω−ωmin
ωM−ωmin

and the Euler scheme becomes

Pn+1 = Pn + h
[
rPn − rPn2

K(C)
− (ξ + b)Pn

D

]
(21)

Pn+1
D = Pn

D + h
[
λ(P 2 − Pn

D)U
n − rPn2

K(C)
− (ξ + b)Pn

D

]
(22)

Cn+1 = Cn + h
[
Q(ω)Pn − δCn − γ(ω)CnPn + θvPnUn

]
(23)

Un+1 = Un + h
[
γ(ω)CnPn − ϕUn − vPnUn

]
(24)

Case 3. If ωM < ω and γ(ω) > 0 then Q(ω) = 1 and

Pn+1 = Pn + h
[
rPn − rPn2

K(C)
− (ξ + b)Pn

D

]
(25)

Pn+1
D = Pn

D + h
[
λ(P 2 − Pn

D)U
n − rPn2

K(C)
− (ξ + b)Pn

D

]
(26)

Cn+1 = Cn + h
[
Pn − δCn − γ(ω)CnPn + θvPnUn

]
(27)

Un+1 = Un + h
[
γ(ω)CnPn − ϕUn − vPnUn

]
(28)
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3.2 Non-standard finite difference (NSFD)scheme

The scheme, NSFD is a class of numerical methods for approximating solutions of differential equations.
This method is not the same as the traditional finite difference methods in their approach to discretizing the
domain and its derivatives approximation. The numerical model, NSFD is formulated based on Mickens
[33] NSFD theory.

Pn+1 =
Pn + hK(C)(λ+ ξ + d)PD

1 + h(K(C)λ− rPD)
(29)

Pn+1 =
Pn
D + h[K(C)rP − rP 2]

1 + hK(C)(ξ + b)
(30)

Cn+1 =
Cn + h(Q(ω) + ϕvU)

1 + h(δ + γ(ω)P )
(31)

Un+1 =
Un + hγ(ω)CP

1 + h(ϕ+ vP )
(32)

Case 1. If ω < ωmin and γ(ω) > 0 then Q(ω) = 0 and the NSFD scheme becomes

Pn+1 =
Pn + hK(C)(λ+ ξ + d)PD

1 + h(K(C)λ− rPD)
(33)

Pn+1 =
Pn
D + h[K(C)rP − rP 2]

1 + hK(C)(ξ + b)
(34)

Cn+1 =
Cn + hϕvUP

1 + h(δ + γ(ω)P )
(35)

Un+1 =
Un + hγ(ω)CP

1 + h(ϕ+ vP )
(36)

Case 2. If ωmin ≤ ω ≤ omegaM and γ(ω) > 0 then Q(ω) = ω−ωmin
ωM−ωmin

and the NSFD scheme becomes

Pn+1 =
Pn + hK(C)(λ+ ξ + d)PD

1 + h(K(C)λ− rPD)
(37)

Pn+1 =
Pn
D + h[K(C)rP − rP 2]

1 + hK(C)(ξ + b)
(38)

Cn+1 =
Cn + h(Q(ω) + ϕvU)

1 + h(δ + γ(ω)P )
(39)

Un+1 =
Un + hγ(ω)CP

1 + h(ϕ+ vP )
(40)

Case 3. If ωM < ω and γ(ω) > 0 then Q(ω) = 1 and the scheme becomes

Pn+1 =
Pn + hK(C)(λ+ ξ + d)PD

1 + h(K(C)λ− rPD)
(41)
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Pn+1 =
Pn
D + h[K(C)rP − rP 2]

1 + hK(C)(ξ + b)
(42)

Cn+1 =
Cn + h(Q(1 + ϕvU)

1 + h(δ + γ(ω)P )
(43)

Un+1 =
Un + hγ(ω)CP

1 + h(ϕ+ vP )
(44)

3.3 Consistency analysis

In this section, we shall check the consistency of the NSFD scheme of the Eqs. (29 − 32) as follows. We
start by considering Eq. (29), and we get

Pn+1[1 + h(K(C)λ− rPD)] = Pn + hK(C)(λ+ ξ + d)PD (45)

Taking into account the Taylor’s series expansion for Pn+1, we obtain

Pn+1 = Pn + h
dP

dt
+

h2

2!

dP

dt
+

h3

3!

dP

dt
+ ... (46)

Substituting Eq.(46) in Eq.(45), we have

(
Pn + h

dP

dt
+

h2

2!

dP

dt
+

h3

3!

dP

dt
+ ...

)[
1 + h(K(C)λ− rPD)

]
= Pn + hK(C)(λ+ ξ + d)PD (47)

As h → 0, we have
dP

dt
+ (K(C)λ− rPD)P

n = K(C)(λ+ ξ + d)PD (48)

or
dP

dt
= K(C)(λ+ ξ + d)PD − (K(C)λ− rPD)P

n (49)

From Eq. (30), we get
Pn+1
D [1 + hK(C)(ξ + b)] = Pn

D + h[K(C)rP − rP 2] (50)

Also, taking into consideration the Taylor’s series expansion for Pn+1
D , we get

Pn+1
D = Pn

D + h
dPD

dt
+

h2

2!

dPD

dt
+

h3

3!

dPD

dt
+ ... (51)

Substituting Eq. (51) in Eq. (50), we have

(
Pn
D + h

dPD

dt
+

h2

2!

dPD

dt
+

h3

3!

dPD

dt
+ ...

)[
1 + hK(C)(ξ + b)] = Pn

D + h[K(C)rP − rP 2
]

(52)

As h → 0, we have

K(C)(ξ + b)Pn
D +

dPD

dt
= K(C)rP − rP 2 (53)
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or
dPD

dt
= (K(C)− P )rP −K(C)(ξ + b)Pn

D (54)

From Eq. (31), we have

Cn+1
[
1 + h(δ + γ(ω)P )

]
= Cn + h(Q(ω) + ϕvU)P (55)

More so, taking into account the Taylor’s series expansion for Cn+1, we have

Cn+1 = Cn + h
dC

dt
+

h2

2!

dC

dt
+

h3

3!

dC

dt
+ ... (56)

Substituting Eq. (56) in Eq. (55), we obtain

(
Cn + h

dC

dt
+

h2

2!

dC

dt
+

h3

3!

dC

dt
+ ...

)[
1 + h(δ + γ(ω)P )

]
= Cn + h(Q(ω) + ϕvU)P (57)

As h → 0, we have
dC

dt
+ δ + γ(ω)P = (Q(ω) + ϕvU)P (58)

or
dC

dt
=

(
Q(ω) + ϕvU

)
P − (δ + γ(ω)P ) (59)

Finally, from Eq. (32), we get

Un+1[1 + h(ϕ+ vP )] = Un + hγ(ω)CP (60)

Taking into consideration the Taylor’s expansion for Un+1, we have

Un+1 = Un + h
dU

dt
+

h2

2!

dU

dt
+

h3

3!

dU

dt
+ ... (61)

Substituting Eq. (61) in Eq. (60), we obtain

(
Un + h

dU

dt
+

h2

2!

dU

dt
+

h3

3!

dU

dt
+ ...

)[
1 + h(ϕ+ vP )

]
= Un + hγ(ω)CP (62)

As h → 0, we have
dU

dt
+ ϕ+ vP = γ(ω)PC (63)

or
dU

dt
= γ(ω)CP − (ϕ+ vP ) (64)

Thus, we can categorically say that the NSFD scheme model exhibits first-order consistency.
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3.4 Stability of the non-standard finite difference (NSFD) scheme

To carry out the stability analysis, we shall rewrite the Eqs. (29− 32) as follows:

Pn+1 = C1 =
Pn + hK(C)(λ+ ξ + d)PD

1 + h(K(C)λ− rPD)
(65)

Pn+1 = C2 =
Pn
D + h[K(C)rP − rP 2]

1 + hK(C)(ξ + b)
(66)

Cn+1 = C3 =
Cn + h(Q(ω) + ϕvU)

1 + h(δ + γ(ω)P )
(67)

Un+1 = C4 =
Un + hγ(ω)CP

1 + h(ϕ+ vP )
(68)

4 Numerical Illustration

In order to appreciate the analytical results, numerical simulation of the model equations (1) is presented
by using the following set of parameter values (see Table 2).

Table 2: Parameter values of the model equations
Parameter Value Source
r 0.8 (Kumar [31])
K 10 - 1000 Varied
Q 0.001 - 0.009 Varied
δ 0.025 (Kumar [31])
γ 0.001 Assumed
v 0.001 (Achema et al. [30])
ϕ 0.01 (Achema et al. [30])
d 0.0001 (Kumar [31])
λ 0.3 Assumed
b 0.05 Assumed

5 Results and Discussion

The analysis reveals that when the toxicant emission rate Q reaches a critical threshold (Q = 0.005), the
system loses stability, leading to periodic oscillations. As the emission rate increases, the total population

http://www.earthlinepublishers.com



Mathematical Model and Analysis of Toxicant Effect on Human Health in Fuzzy Environment 735

Figure 1:

Earthline J. Math. Sci. Vol. 15 No. 5 (2025), 723-748



736 Kenneth Ojotogba Achema

Figure 2:
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Figure 3:
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Figure 4:

http://www.earthlinepublishers.com



Mathematical Model and Analysis of Toxicant Effect on Human Health in Fuzzy Environment 739

Figure 5:
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Figure 6:
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Figure 7:
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Figure 8:
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Figure 9:
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density (P) decreases, while the density of the deformed population (PD) initially rises before declining.
Once Q exceeds the critical value, both densities exhibit oscillatory behavior, resulting in a supercritical
Hopf bifurcation with stable periodic solutions (see Figs. 6, 7).

It is well established that pollutants released by human activities–such as industrial waste, vehicle
emissions, and radioactive materials–contain toxic substances harmful to all living populations, including
humans. While humans may not experience direct morphological deformities, exposure to these toxicants
significantly affects health, leading to conditions such as bronchial asthma, lung cancer, chronic obstructive
pulmonary disease (COPD), and reduced reproductive capacity. Consequently, the mortality rate among
affected individuals increases.

The fuzzy set plays a very important role in terms of data uncertainties in this type of model. It is
difficult to get real data for all the model parameters. However, selection of such parameters’ values within
their bound enable the identification of the toxicant emission rate threshold.

6 Conclusion

This study presents a nonlinear mathematical model to investigate the effects of a toxicant on human
health, particularly on individuals who experience severe toxicity-induced reproductive impairment. The
model assumes that the human population itself emits the toxicant into the environment. The system
exhibits four equilibrium points: E0 = (0, 0, 0, 0), E1 = (K0, 0, 0, 0), E∗ = (P ∗, P∗D, C∗, U∗), and E∗∗ =

(P ∗∗, P∗∗D, C∗∗, U∗∗). The first equilibrium point i.e. E0 is a saddle point. The second equilibrium point
i.e. E1 is stable under certain conditions, which means that the human population would settle down to
its equilibrium level. The third and the fourth equilibrium points i.e. E∗ and E∗∗ are unstable due to
toxicant accumulation in the human environment.
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