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Abstract

In this study, the geometry of Sasakian manifolds is investigated using a general connection instead

of the classical Levi-Civita connection. On a Sasakian manifold admitting a general connection,

we first define the projective and concircular curvature tensors and obtain the characterizations of

projectively flat, concircularly flat, projectively semi-symmetric, and concircularly semi-symmetric

Sasakian manifolds. Additionally, by discuss the act of projective and concircular curvature tensors

on each other, we reveal the properties of Sasakian manifolds admitting a general connection. In

the next section, we construct Ricci-Bourguignon solitons on Sasakian manifolds admitting a general

connection. In this connection, we search Ricci pseudo-symmetric, projectively Ricci pseudo-symmetric,

and concircularly Ricci pseudo-symmetric Sasakian manifolds admitting Ricci-Bourguignon solitons.

Consequently, we compare all these important properties on Sasakian manifolds separately according

to the Tanaka-Webster, Schouten-van Kampen, and Zamkovoy connections.

1 Introduction

Sasakian manifolds are an important class in differential geometry and especially in Riemannian geometry.

Sasakian manifolds can be thought of as Riemannian manifolds with a 1-dimensional contact structure

and can be viewed as a strange but natural generalization of Kaehler manifolds. These manifolds

have important applications in mathematics, physics, and engineering. Because it is related to contact

geometry, it is used for analysis of mechanical systems such as robot arms and dynamic control systems.

Especially in areas such as contact mechanical systems and automatic motion planning, Sasakian geometry

can be used. In geometric optics models, Sasakian manifolds can be used to understand how light travels

in curved spaces. Particle motion under magnetic fields can be modeled using contact and Sasakian
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structures. Sasakian manifolds, which have applications in many similar areas, are a very important

classes for differential geometry.

A connection on a manifold provides a way to differentiate vector fields along curves. More formally,

a connection allows the definition of a derivative of a vector field along another vector field, facilitating

the study of how vectors change in a manifold’s curved geometry. Levi-Civita connection is the most

common type of connection, uniquely determined for a Riemannian manifold. It is compatible with the

metric and is torsion-free, meaning the connection does not introduce any twisting in the vectors.

General connection, often referred to as a connection on a differentiable manifold, is a fundamental

concept in differential geometry and plays a crucial role in the study of curved spaces. General connections

are a powerful tool in understanding the geometric structure of manifolds. They provide the framework

for defining differentiation in curved spaces and have significant implications in both mathematics and

physics. The study of connections continues to be an active area of research, leading to deeper insights

into the geometry and topology of manifolds.

In this study, the geometry of Sasakian manifolds is investigated using a general connection instead

of the classical Levi-Civita connection. On a Sasakian manifold admitting a general connection, we first

define the projective and concircular curvature tensors and obtain the characterizations of projectively

flat, concircularly flat, projectively semi-symmetric, and concircularly semi-symmetric Sasakian manifolds.

Additionally, by discuss the act of projective and concircular curvature tensors on each other, we

reveal the properties of Sasakian manifolds admitting a general connection. In the next section, we

construct Ricci-Bourguignon solitons on Sasakian manifolds admitting a general connection. In this

connection, we search Ricci pseudo-symmetric, projectively Ricci pseudo-symmetric, and concircularly

Ricci pseudo-symmetric Sasakian manifolds admitting Ricci-Bourguignon solitons. Consequently, we

compare all these important properties on Sasakian manifolds separately according to the Tanaka-Webster,

Schouten-van Kampen, and Zamkovoy connections.

2 Preliminary

An almost contact structure on a smooth manifold M of dimension n = (2m+ 1) is a triplet (ϕ, ξ, η),

where ϕ is a (1, 1)-tensor field, ξ is a vector field, and η is a 1-form on M satisfying

ϕ2Θ1 = −Θ1 + η (Θ1) ξ, η (ξ) = 1, (1)

η (ϕΘ1) = 0, ϕξ = 0, rankϕ = 2n. (2)

A smooth manifold M endowed with an almost contact structure is called an almost contact manifold.
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A Riemannian metric g on M is said to be compatible with an almost contact structure (ϕ, ξ, η), if

g (ϕΘ1, ϕΘ2) = g (Θ1,Θ2)− η (Θ1) η (Θ2) , (3)

for all Θ1,Θ2 ∈ χ (M), where χ (M) is the Lie algebra of all vector fields on M . An almost contact

manifold endowed with a compatible Riemannian metric is said to be an almost contact metric manifold

and is denoted by (M,ϕ, ξ, η, g). Furthermore, the fundamental 2-form Φ on M (, ϕ, ξ, η, g) is defined by

Φ (Θ1,Θ2) = g (Θ1, ϕΘ2) (4)

for all Θ1,Θ2 ∈ χ (M). An almost contact metric manifold is said to be Sasakian manifold if

(DΘ1ϕ)Θ2 = g (Θ1,Θ2) ξ − η (Θ2)Θ1, (5)

whereD denotes Levi-Civita connection admitting the Riemannian connection of g. From (5), we conclude

that for a Sasakian structure

DΘ1ξ = −ϕΘ1. (6)

We have the following Lemma for later use.

Lemma 1. n-dimensional Sasakian manifold the following relation holds:

R (Θ1,Θ2) ξ = η (Θ2)Θ1 − η (Θ1)Θ2, (7)

R (ξ,Θ2)Θ3 = g (Θ2,Θ3) ξ − η (Θ3)Θ2, (8)

R (Θ1, ξ)Θ3 = −g (Θ1,Θ3) ξ + η (Θ3)Θ1, (9)

S (Θ1, ξ) = (n− 1) η (Θ1) , (10)

(DΘ1η)Θ2 = g (Θ1, ϕΘ2) , (11)

Qξ = (n− 1) ξ, (12)
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for all vector fields Θ1,Θ2 and Θ3 on M , where R,S and Q are Riemann curvature tensor,Ricci tensor

and Ricci operator respectively.

It is also defined as

S (Θ1,Θ2) = g (QΘ1,Θ2) .

In this paper, the symbolsDG, D,Dq, DZ , DS andDT are, respectively, denoted for general connection,

Levi-Civita connection, quarter-symmetric metric connection, Zamkovoy connection, Schouten-Van

Kampen connection and generalized Tanaka-Webster connection, respectively.

Recently, Biswas and Baishya introduced and studied a new connection, named general connection in

Sasakian geometry [1, 2]. In the contact geometry, the general connection DG is defined as

DG
Θ1

Θ2 = DΘ2
Θ1

+ κ1 [(DΘ1η) (Θ2) ξ − η (Θ2)DΘ1ξ] + κ2η (Θ1)ϕΘ2, (13)

the pair (κ1, κ2) being real constants. The beauty of such connection DG lies in the fact that it has the

flavour of

· quarter symmetric metric connection for (κ1, κ2) = (0,−1) in [3, 4],

· Schouten-Van Kampen connection for (κ1, κ2) = (1, 0) in [5],

· Tanaka Webster connection for (κ1, κ2) = (1,−1) in [6],

· Zamkovoy connection for (κ1, κ2) = (1, 1) in [7].

The torsion tensor T of the connection DG in Sasakian manifold satisfies

TG (Θ1,Θ2) = 2κ1g (Θ1, ϕΘ2) ξ + κ1 [η (Θ2)ϕΘ1 − η (Θ1)ϕΘ2]

+κ2 [η (Θ1)ϕΘ2 − η (Θ2)ϕΘ1] .

(14)

If we choose Θ2 = ξ in (13) and by using (6) , we have

DG
Θ1

ξ = (κ1 − 1)ϕΘ1. (15)

Lemma 2. For an n-dimensional Sasakian manifold admitting general connection and if RG, SG, rG, QG

are Riemannian curvature tensor, Ricci tensor,scalar curvature and Ricci operator in general connection,

then following results ( [1, 2]) hold:

RG (Θ1,Θ2)Θ3 = R (Θ1,Θ2)Θ3 +
(
κ21 − 2κ1

)
[g (Θ3, ϕΘ1)ϕΘ2 + g (Θ2, ϕΘ3)ϕΘ1]

+ (κ1 − κ1κ2 + κ2) [g (Θ1,Θ3) η (Θ2) ξ − g (Θ2,Θ3) η (Θ1) ξ

+η (Θ1) η (Θ3)Θ2 − η (Θ2) η (Θ3)Θ1]− 2κ2g (Θ2, ϕΘ1)ϕΘ3,

(16)
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SG (Θ2,Θ3) = S (Θ2,Θ3)− Λ1g (Θ2,Θ3) + Λ2η (Θ2) η (Θ3) , (17)

SG (Θ2, ξ) = −SG (ξ,Θ2) = − (n− 1)Λ3η (Θ2) , (18)

QGΘ2 = QΘ2 − Λ1Θ2 + Λ2η (Θ2) ξ, (19)

QGξ = − (n− 1)Λ3ξ, (20)

rG = r − Λ1n+ Λ2, (21)

RG (Θ1,Θ2) ξ = Λ3 [η (Θ1)Θ2 − η (Θ2)Θ1] , (22)

RG (ξ,Θ2)Θ3 = Λ3 [−g (Θ2,Θ3) ξ + η (Θ3)Θ2] , (23)

RG (Θ1, ξ)Θ3 = Λ3 [g (Θ1,Θ3) ξ − η (Θ3)Θ1] , (24)

and where

Λ1 = κ21 − κ1 − κ2 − κ1κ2, (25)

Λ2 = κ21 + (n− 2)κ1κ2 − n (κ1 + κ2) , (26)

Λ3 = κ1 − κ1κ2 + κ2 − 1, (27)

for all Θ1,Θ2,Θ3 ∈ χ (M) .
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If we make calculations according to the general connection, some other connections can be expressed

as follows with the help of some special choices of Λ1,Λ2,Λ3 :

◦ For quarter-symmetric metric connection

Λ1 = 1,Λ2 = n,Λ3 = −2, (28)

◦ For generalized Tanaka-Webster connection

Λ1 = 2,Λ2 = 3− n,Λ3 = 0, (29)

◦ For Zamkovoy connection

Λ1 = −2,Λ2 = −1− n,Λ3 = 0, (30)

◦ For Schouten-Van Kampen connection

Λ1 = 0,Λ2 = 1− n,Λ3 = 0. (31)

Lemma 3. The following relations hold for the projective curvature tensor defined on an n =

(2m+ 1)-dimensional Sasakian manifold admitting a general connection.

PG (Θ1,Θ2)Θ3 = RG (Θ1,Θ2)Θ3 −
1

n− 1

[
SG (Θ2,Θ3)Θ1 − SG (Θ1,Θ3)Θ2

]
, (32)

PG (ξ,Θ2)Θ3 = −Λ3g (Θ2,Θ3) ξ −
1

n− 1
SG (Θ2,Θ3) , (33)

PG (Θ1, ξ)Θ3 = Λ3g (Θ1,Θ3) ξ +
1

n− 1
SG (Θ1,Θ3) , (34)

PG (Θ1,Θ2) ξ = 0, (35)

η
(
PG (Θ1,Θ2)Θ3

)
= 0, (36)

for all Θ1,Θ2,Θ3 ∈ χ (M) .
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Lemma 4. The following relations hold for the concircular curvature tensor defined on an n =

(2m+ 1)-dimensional Sasakian manifold admitting a general connection.

CG (Θ1,Θ2)Θ3 = RG (Θ1,Θ2)Θ3 −
rG

n (n− 1)
[g (Θ2,Θ3)Θ1 − g (Θ1,Θ3)Θ2] , (37)

CG (ξ,Θ2)Θ3 = A [−g (Θ2,Θ3) ξ + η (Θ3)Θ2] , (38)

CG (Θ1, ξ)Θ3 = A [g (Θ1,Θ3) ξ − η (Θ3)Θ1] , (39)

CG (Θ1,Θ2) ξ = A [η (Θ1)Θ2 − η (Θ2)Θ1] , (40)

η
(
CG (Θ1,Θ2)Θ3

)
= Ag (η (Θ2)Θ1 − η (Θ1)Θ2,Θ3) , (41)

for all Θ1,Θ2,Θ3 ∈ χ (M) , where A = Λ3 +
rG

n(n−1) .

3 Semi-Symmetric Sasakian Manifolds Admitting a General

Connection

In this section, we first examine the conditions of projective flat and concircular flatness for Sasakian

manifolds admitting a general connection and then obtain the characterizations of projective and

concircular semi-symmetric manifolds.

Theorem 1. Let M be an n-dimensional Sasakian manifold admitting a general connection. If M is a

projective flat manifold, then M is an Einstein manifold.

Proof. Suppose that M is a projective flat manifold. In this case, we have

PG (Θ1,Θ2)Θ3 = 0,

for all Θ1,Θ2,Θ3 ∈ χ (M) . If we use (32) , we have

RG (Θ1,Θ2)Θ3 =
1

n− 1

[
SG (Θ2,Θ3)Θ1 − SG (Θ1,Θ3)Θ2

]
. (42)
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If we choose Θ2 = ξ in (42) and use (18) , (24) , we obtain

SG (Θ1,Θ3) ξ = − (n− 1)Λ3g (Θ1,Θ3) ξ.

Taking the inner product of both sides of the last equality with the vector field ξ ∈ χ (M), we have

SG (Θ1,Θ3) = − (n− 1)Λ3g (Θ1,Θ3) .

Thus, the proof is complete.

Theorem 2. Let M be an n-dimensional Sasakian manifold admitting a general connection. If M is a

concircular flat manifold, then M is an real space form.

Proof. The proof of the theorem is clear from the definition of the concircular curvature tensor.

Theorem 3. Let M be an n-dimensional Sasakian manifold admitting a general connection DG. If M is

a concircular semi-symmetric manifold, then M is either a flat or the general connection on M reduces

to one of the Tanaka-Webster, Zamkovoy, or Schouten-van Kampen connections.

Proof. Suppose that M is a concircular semi-symmetric manifold. In this case, we can write(
RG (Θ1,Θ2) · CG

)
(Θ4,Θ5,Θ3) = 0,

for all Θ1,Θ2,Θ3,Θ4,Θ5 ∈ χ (M) . The meaning of this is

RG (Θ1,Θ2)C
G (Θ4,Θ5)Θ3 − CG

(
RG (Θ1,Θ2)Θ4,Θ5

)
Θ3

−CG
(
Θ4, R

G (Θ1,Θ2)Θ5

)
Θ3 − CG (Θ4,Θ5)R

G (Θ1,Θ2)Θ3 = 0.

(43)

If we choose Θ1 = ξ in (43) and make use of (23), then we obtain

−Λ3g
(
Θ2, C

G (Θ4,Θ5)Θ3

)
ξ + Λ3η

(
CG (Θ4,Θ5)Θ3

)
Θ2

+Λ3g (Θ2,Θ4)C
G (ξ,Θ5)Θ3 − Λ3η (Θ4)C

G (Θ2,Θ5)Θ3

+Λ3g (Θ2,Θ5)C
G (Θ4, ξ)Θ3 − Λ3η (Θ5)C

G (Θ4,Θ2)Θ3

+Λ3g (Θ2,Θ3)C
G (Θ4,Θ5) ξ − Λ3η (Θ3)C

G (Θ4,Θ5)Θ2 = 0.

(44)

If we use (38) , (39) , (40) in (44), we have
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−Λ3g
(
Θ2, C

G (Θ4,Θ5)Θ3

)
ξ + Λ3η

(
CG (Θ4,Θ5)Θ3

)
Θ2

−AΛ3g (Θ2,Θ4) g (Θ5,Θ3) ξ +AΛ3g (Θ2,Θ4) η (Θ3)Θ5

−Λ3η (Θ4)C
G (Θ2,Θ5)Θ3 +AΛ3g (Θ2,Θ5) g (Θ4,Θ3) ξ

−AΛ3g (Θ2,Θ5) η (Θ3)Θ4 − Λ3η (Θ5)C
G (Θ4,Θ2)Θ3

+AΛ3g (Θ2,Θ3) η (Θ4)Θ5 −AΛ3g (Θ2,Θ3) η (Θ5)Θ4

−Λ3η (Θ3)C
G (Θ4,Θ5)Θ2 = 0.

(45)

If we choose Θ4 = ξ in (45) , we obtain

−Λ3

[
CG (Θ2,Θ5)Θ3 −A (g (Θ2,Θ3)Θ5 − g (Θ5,Θ3)Θ2)

]
= 0. (46)

If we substitute (37) for (46) , we get

−Λ3

[
RG (Θ2,Θ5)Θ3 − Λ3 (g (Θ2,Θ3)Θ5 − g (Θ5,Θ3)Θ2)

]
= 0.

This proves our assertion.

Corollary 1. Let M be an n-dimensional Sasakian manifold admitting a quarter-symmetric metric

connection Dq. If M is a concircular semi-symmetric manifold, then M is a real space form.

Theorem 4. Let M be an n-dimensional Sasakian manifold admitting a general connection. If M is a

projective semi-symmetric manifold, then M is a Einstein manifold provided Λ3 ̸= 0.

Proof. Suppose that M is a projective semi-symmetric manifold. In this case, we can write

(
RG (Θ1,Θ2) · PG

)
(Θ4,Θ5,Θ3) = 0,

for all Θ1,Θ2,Θ3,Θ4,Θ5 ∈ χ (M) . This implies that

RG (Θ1,Θ2)P
G (Θ4,Θ5)Θ3 − PG

(
RG (Θ1,Θ2)Θ4,Θ5

)
Θ3

−PG
(
Θ4, R

G (Θ1,Θ2)Θ5

)
Θ3 − PG (Θ4,Θ5)R

G (Θ1,Θ2)Θ3 = 0.

(47)
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If we choose Θ1 = ξ in (47) and making use of (23), then we obtain

−Λ3g
(
Θ2, P

G (Θ4,Θ5)Θ3

)
ξ + Λ3η

(
PG (Θ4,Θ5)Θ3

)
Θ2

+Λ3g (Θ2,Θ4)P
G (ξ,Θ5)Θ3 − Λ3η (Θ4)P

G (Θ2,Θ5)Θ3

+Λ3g (Θ2,Θ5)P
G (Θ4, ξ)Θ3 − Λ3η (Θ5)P

G (Θ4,Θ2)Θ3

+Λ3g (Θ2,Θ3)P
G (Θ4,Θ5) ξ − Λ3η (Θ3)P

G (Θ4,Θ5)Θ2 = 0.

(48)

By using (33) , (34) , (35) in (48), we have

−Λ3g
(
Θ2, P

G (Θ4,Θ5)Θ3

)
ξ + Λ3η

(
PG (Θ4,Θ5)Θ3

)
Θ2

−Λ2
3g (Θ2,Θ4) g (Θ5,Θ3) ξ − Λ3

n−1g (Θ2,Θ4)S
G (Θ5,Θ3) ξ

−Λ3η (Θ4)P
G (Θ2,Θ5)Θ3 + Λ2

3g (Θ2,Θ5) g (Θ4,Θ3) ξ

+ Λ3
n−1g (Θ2,Θ5)S

G (Θ4,Θ3) ξ − Λ3η (Θ5)P
G (Θ4,Θ2)Θ3

−Λ3η (Θ3)P
G (Θ4,Θ5)Θ2 = 0.

(49)

If we choose Θ4 = ξ in (49) and making use of (33) , we get

−Λ2
3g (Θ5,Θ3)Θ2 − Λ3

n−1S
G (Θ5,Θ3)Θ2 − Λ3P

G (Θ2,Θ5)Θ3

+Λ2
3g (Θ2,Θ3) η (Θ5) ξ +

Λ3
n−1S

G (Θ2,Θ3) η (Θ5) ξ

+Λ2
3g (Θ5,Θ2) η (Θ3) ξ +

Λ3
n−1S

G (Θ5,Θ2) η (Θ3) ξ = 0.

(50)

If we choose Θ3 = ξ in (50) and make use of (18) , (35) , then we have

Λ2
3g (Θ5,Θ2) ξ +

Λ3

n− 1
SG (Θ5,Θ2) ξ = 0.

If we take the inner product of both sides of the last equation with ξ ∈ χ (M) , we get

SG (Θ2,Θ5) = − (n− 1)Λ3g (Θ2,Θ5) .

This completes our proof.

Corollary 2. Let M be an n-dimensional Sasakian manifold admitting a quarter-symmetric metric

connection Dq. If M is a projective semi-symmetric manifold, then M is a Einstein manifold.
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Theorem 5. Let M be an n-dimensional Sasakian manifold admitting a general connection. If the

curvature condition CG (Θ1,Θ2) ·PG = 0 holds on the manifold M , then M is either an Einstein manifold

provided Λ3 ̸= 0 or a manifold with scalar curvature rG = −n (n− 1)Λ3.

Proof. Let us assume that (
CG (Θ1,Θ2) · PG

)
(Θ4,Θ5,Θ3) = 0

for all Θ1,Θ2,Θ3,Θ4,Θ5 ∈ χ (M) . This gives us

CG (Θ1,Θ2)P
G (Θ4,Θ5)Θ3 − PG

(
CG (Θ1,Θ2)Θ4,Θ5

)
Θ3

−PG
(
Θ4, C

G (Θ1,Θ2)Θ5

)
Θ3 − PG (Θ4,Θ5)C

G (Θ1,Θ2)Θ3 = 0.

(51)

If we choose Θ1 = ξ in (51) , we have

−Ag
(
Θ2, P

G (Θ4,Θ5)Θ3

)
ξ +Aη

(
PG (Θ4,Θ5)Θ3

)
Θ2

+Ag (Θ2,Θ4)P
G (ξ,Θ5)Θ3 −Aη (Θ4)P

G (Θ2,Θ5)Θ3

+Ag (Θ2,Θ5)P
G (Θ4, ξ)Θ3 −Aη (Θ5)P

G (Θ4,Θ2)Θ3

+Ag (Θ2,Θ3)P
G (Θ4,Θ5) ξ −Aη (Θ3)P

G (Θ4,Θ5)Θ2 = 0.

(52)

If we making use of (33) , (34) , (35) in (52), we get

−Ag
(
Θ2, P

G (Θ4,Θ5)Θ3

)
ξ +Aη

(
PG (Θ4,Θ5)Θ3

)
Θ2

−AΛ3g (Θ2,Θ4) g (Θ5,Θ3) ξ − A
n−1g (Θ2,Θ4)S

G (Θ5,Θ3) ξ

−Aη (Θ4)P
G (Θ2,Θ5)Θ3 +AΛ3g (Θ2,Θ5) g (Θ4,Θ3) ξ

+ A
n−1g (Θ2,Θ5)S

G (Θ4,Θ3) ξ −Aη (Θ5)P
G (Θ4,Θ2)Θ3

−Aη (Θ3)P
G (Θ4,Θ5)Θ2 = 0.

(53)

If we choose Θ4 = ξ in (53) and using (33) , we obtain

−AΛ3g (Θ5,Θ3)Θ2 − A
n−1S

G (Θ5,Θ3)Θ2 −APG (Θ2,Θ5)Θ3

+AΛ3g (Θ2,Θ3) η (Θ5) ξ +
A

n−1S
G (Θ2,Θ3) η (Θ5) ξ

+AΛ3g (Θ5,Θ2) η (Θ3) ξ +
A

n−1S
G (Θ5,Θ2) η (Θ3) ξ = 0.

(54)
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Again, taking Θ3 = ξ in (54) and use (18) , (35) , we have

A

[
Λ3g (Θ5,Θ2) ξ +

1

n− 1
SG (Θ5,Θ2) ξ

]
= 0.

If we take the inner product of both sides of the last equation with ξ ∈ χ (M) , we get

A

[
Λ3g (Θ5,Θ2) +

1

n− 1
SG (Θ5,Θ2)

]
= 0.

This completes our proof.

Corollary 3. Let M be an n-dimensional Sasakian manifold admitting a quarter-symmetric metric

connection Dq. If the curvature condition CG (Θ1,Θ2) · PG = 0 holds on the manifold M , then M is

either an Einstein manifold or it has the scalar curvature rG = 2n (n− 1).

Theorem 6. Let M be an n-dimensional Sasakian manifold admitting a general connection. If the

curvature condition PG (Θ1,Θ2) ·CG = 0 holds on the manifold M , then M is either an Einstein manifold

provided Λ3 ̸= 0 or a manifold with scalar curvature rG = −n (n− 1)Λ3.

Proof. Let us assume that (
PG (Θ1,Θ2) · CG

)
(Θ4,Θ5,Θ3) = 0

for all Θ1,Θ2,Θ3,Θ4,Θ5 ∈ χ (M) . Thus, we can write

PG (Θ1,Θ2)C
G (Θ4,Θ5)Θ3 − CG

(
PG (Θ1,Θ2)Θ4,Θ5

)
Θ3

−CG
(
Θ4, P

G (Θ1,Θ2)Θ5

)
Θ3 − CG (Θ4,Θ5)P

G (Θ1,Θ2)Θ3 = 0.

(55)

If taking Θ1 = ξ in (55) , we have

−Λ3g
(
Θ2, C

G (Θ4,Θ5)Θ3

)
ξ − 1

n−1S
G
(
Θ2, C

G (Θ4,Θ5)Θ3

)
ξ

+Λ3g (Θ2,Θ4)C
G (ξ,Θ5)Θ3 +

1
n−1S

G (Θ2,Θ4)C
G (ξ,Θ5)Θ3

+Λ3g (Θ2,Θ5)C
G (Θ4, ξ)Θ3 +

1
n−1S

G (Θ2,Θ5)C
G (Θ4, ξ)Θ3

+Λ3g (Θ2,Θ3)C
G (Θ4,Θ5) ξ +

1
n−1S

G (Θ2,Θ3)C
G (Θ4,Θ5) ξ = 0

(56)
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Making use of (38) , (39) , (40) in (56), we get

−Λ3g
(
Θ2, C

G (Θ4,Θ5)Θ3

)
ξ − 1

n−1S
G
(
Θ2, C

G (Θ4,Θ5)Θ3

)
ξ

−AΛ3g (Θ2,Θ4) g (Θ5,Θ3) ξ +AΛ3g (Θ2,Θ4) η (Θ3)Θ5

− A
n−1S

G (Θ2,Θ4) g (Θ5,Θ3) ξ +
A

n−1S
G (Θ2,Θ4) η (Θ3)Θ5

+AΛ3g (Θ2,Θ5) g (Θ4,Θ3) ξ −AΛ3g (Θ2,Θ5) η (Θ3)Θ4

+ A
n−1S

G (Θ2,Θ5) g (Θ4,Θ3) ξ − A
n−1S

G (Θ2,Θ5) η (Θ3)Θ4

+AΛ3g (Θ2,Θ3) η (Θ4)Θ5 −AΛ3g (Θ2,Θ3) η (Θ5)Θ4

+ A
n−1S

G (Θ2,Θ3) η (Θ4)Θ5 − A
n−1S

G (Θ2,Θ3) η (Θ5)Θ4 = 0.

(57)

If we choose Θ4 = ξ in (57) and by using (18) , (38) , we obtain

− A
n−1S

G (Θ2,Θ5) η (Θ3) ξ −AΛ3g (Θ2,Θ5) η (Θ3) ξ

+AΛ3g (Θ2,Θ3)Θ5 −AΛ3g (Θ2,Θ3) η (Θ5) ξ

+ A
n−1S

G (Θ2,Θ3)Θ5 − A
n−1S

G (Θ2,Θ3) η (Θ5) ξ = 0.

(58)

If we choose Θ3 = ξ in (58) and by using (18) , we have

A

[
Λ3g (Θ5,Θ2) ξ +

1

n− 1
SG (Θ5,Θ2) ξ

]
= 0.

This completes our proof.

Corollary 4. Let M be an n-dimensional Sasakian manifold admitting a quarter-symmetric metric

connection Dq. If the curvature condition PG (Θ1,Θ2) · CG = 0 holds on the manifold M , then M is

either an Einstein manifold or a manifold with scalar curvature rG = 2n (n− 1).

4 η-Ricci-Bourguignon Solitons on Sasakian Manifolds Admitting

General Connection

Ricci-Bourguignon solitons are related to geometric flow theory, which is important in fields such as

differential geometry and general relativity. They can be considered a generalization of Ricci solitons,
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which study the evolution of a manifold under Ricci flow. These solitons, modified by the Bourguignon

tensor, are used to understand different classes of Riemannian geometry.

A Ricci-Bourguignon soliton on a semi-Riemannian manifold (M, g) is a data (g,Θ5, λ) fulfilling

LV g + 2S + (2λ− ρr) g = 0, (59)

where L denote the Lie-derivative, S and r denote Ricci tensor and scalar curvature, respectively, and λ

is real constants, ρ is a nonzero constant.

An η-Ricci Bourguignon soliton on (M, g) is a data (g, V, λ, µ) fulfilling

LV g + 2S + (2λ− ρr) g + 2µη ⊗ η = 0, (60)

where L denote the Lie-derivative, S and r are Ricci tensor and scalar curvatures, respectively, and λ, µ

are real constants, ρ is a nonzero constant. The η-Ricci Bourguignon soliton is said to be expanding for

λ > 0, steady for λ = 0 and shrinking when λ < 0.

These solitons are used to determine the stationary points of geometric flows and to study the

characterization of manifolds with various curvature conditions. They are used in studying the geometric

structures of space-time in relation to Einstein’s field equations. They are used in studying the geometric

structures of space-time in relation to Einstein’s field equations.

We consider a Sasakian manifold admitting general connection admitting an η-Ricci Bourguignon

soliton (g, ξ, λ, µ). Then from (60), it obvious that(
LG
ξ g

)
(Θ1,Θ2) + 2SG (Θ1,Θ2) +

(
2λ− ρrG

)
g (Θ1,Θ2) + 2µη (Θ1) η (Θ2) = 0. (61)

Next, we will express the Lie derivative along ξ on M admitting general connection as follows:(
LG
ξ g

)
(Θ1,Θ2) = LG

ξ g (Θ1,Θ2)− g
(
LG
ξ Θ1,Θ2

)
− g

(
Θ1, L

G
ξ Θ2

)
= LG

ξ g (Θ1,Θ2)− g ([ξ,Θ1]G ,Θ2)− g (Θ1, [ξ,Θ2]G) .

By means of (4) and (15) , the last equation reduces to(
LG
ξ g

)
(Θ1,Θ2) = 0. (62)

By virtue of (62), the equation (61) takes the following form

SG (Θ1,Θ2) =
(
ρrG − λ

)
g (Θ1,Θ2)− µη (Θ1) η (Θ2) . (63)

Thus, we can state the following theorem.
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Theorem 7. Let M be an n = (2m+ 1)-dimensional Sasakian manifold admitting a general connection

and (g, ξ, λ, µ) be an η-Ricci Bourguignon soliton on M. Then M is an η-Einstein manifold provided

λ ̸= ρrG and µ ̸= 0.

Particularly, if λ ̸= ρrG and µ = 0, Sasakian manifold admitting general connection M admitting

η-Ricci Bourguignon soliton reduces to Einstein manifold.

If we choose Θ2 = ξ in (63) , then we have

SG (Θ1, ξ) =
[
ρrG − (λ+ µ)

]
η (Θ1) ,

and we can state the following corollary.

Corollary 5. Let M be a Sasakian manifold admitting almost η-Ricci Bourguignon soliton admitting

general connection DG, then λ and µ are related by

λ+ µ = ρrG + (n− 1)Λ3. (64)

Using (64), we will characterize λ and µ in the Sasakian manifold admitting the almost η-Ricci

Bourguignon soliton according to different connections as follows.

Theorem 8. Let M be an n = (2m+ 1)-dimensional Sasakian manifold and (g, ξ, λ, µ) be an almost

η-Ricci Bourguignon soliton on M . Then the following holds:

i. For quarter-symmetric metric connection Dq

λ+ µ = ρrG − 2 (n− 1) ,

ii. For Schouten-Van Kampen connection DS

λ+ µ = ρrG,

iii. For Zamkovoy connection DZ

λ+ µ = ρrG,

iv. For generalized Tanaka Webster connection DT

λ+ µ = ρrG.

Definition 1. Let M be an n = (2m+ 1)−dimensional Sasakian manifold admitting general connection

DG. If RG ·SG and QG
(
g, SG

)
are linearly dependent, then the M is said to be Ricci pseudosymmetric.
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In this case, there exists a function LR on M such that

RG · SG = LRQ
G
(
g, SG

)
.

In particular, if LR = 0, the M is said to be Ricci semisymmetric.

Theorem 9. Let M be an n = (2m+ 1)−dimensional Sasakian manifold admitting general connection

Dg and (g, ξ, λ, µ) be an η-Ricci Bourguignon soliton on M. If M is a Ricci pseudosymmetric, then at

least one of the following holds:

i. LR = −Λ3,

ii. λ = (n− 1)Λ3 + ρrG and µ = 0,

iii. M is an expanding if ρrG > (1− n) Λ3,

iv. M is a steady if ρrG = (1− n) Λ3,

v. M is a shrinking if ρrG < (1− n) Λ3,

vi. The η-Ricci Bourguignon soliton (g, ξ, λ, µ) reduces to a Ricci-Bourguignon soliton (g, ξ, λ).

Proof. Let’s assume that M is a Ricci pseudosymmetric and (g, ξ, λ, µ) be almost η-Ricci Bourguignon

soliton on M admitting general connection. That’s mean(
RG (Θ1,Θ2) · SG

)
(Θ4,Θ5) = LRQ

G
(
g, SG

)
(Θ4,Θ5; Θ1,Θ2) ,

for all Θ1,Θ2,Θ4,Θ5 ∈ Γ (TM), which is equivalent to

SG
(
RG (Θ1,Θ2)Θ4,Θ5

)
+ SG

(
Θ4, R

G (Θ1,Θ2)Θ5

)
= LR

{
SG ((Θ1 ∧g Θ2)Θ4,Θ5) + SG (Θ4, (Θ1 ∧g Θ2)Θ5)

}
.

(65)

If we choose Θ5 = ξ in (65) , we get

SG
(
RG (Θ1,Θ2)Θ4, ξ

)
+ SG

(
Θ4, R

G (Θ1,Θ2) ξ
)

= LR

{
SG ((Θ1 ∧g Θ2)Θ4, ξ) + SG (Θ4, (Θ1 ∧g Θ2) ξ)

}
.

Making (18) and (22) in the last equality, one can easily to see

− (n− 1)Λ2
3g (η (Θ2)Θ1 − η (Θ1)Θ2,Θ4)

+Λ3S
G (η (Θ1)Θ2 − η (Θ2)Θ1,Θ4)

= LR {− (n− 1)Λ3g (η (Θ1)Θ2 − η (Θ2)Θ1,Θ4)

+ SG (η (Θ2)Θ1 − η (Θ1)Θ2,Θ4)
}
.

(66)
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Putting (63) in (66), we get

[
(n− 1)Λ3 +

(
ρrG − λ

)]
[Λ3 + LR] g (η (Θ1)Θ2 − η (Θ2)Θ1,Θ4) = 0.

This completes the proof.

We can give some important results of this theorem as follows.

Corollary 6. Let M be an n = (2m+ 1)-dimensional Sasakian manifold admitting general connection

DG and (g, ξ, λ, µ) be an η-Ricci Bourguignon soliton on M. If M is a Ricci semisymmetric, then at least

one of the following holds:

i. λ = (n− 1)Λ3 + ρrG and µ = 0,

ii. The η-Ricci Bourguignon soliton (g, ξ, λ, µ) reduces to a Ricci-Bourguignon soliton (g, ξ, λ),

iii. The general connection DG on M reduces to one of the Tanaka-Webster DT , Zamkovoy DZ , or

Schouten-van Kampen DS connections,

iv. M is an expanding if ρrG > (1− n) Λ3,

v. M is a steady if ρrG = (1− n) Λ3,

vi. M is a shrinking if ρrG < (1− n) Λ3.

Corollary 7. Let M be an n = (2m+ 1)-dimensional Sasakian manifold admitting quarter-symmetric

metric connection Dq and (g, ξ, λ, µ) be an η-Ricci Bourguignon soliton on M. If M is a Ricci

pseudosymmetric, then at least one of the following holds:

i. LR = 2,

ii. λ = ρrG − 2 (n− 1) and µ = 0,

iii. The η-Ricci Bourguignon soliton (g, ξ, λ, µ) reduces to a Ricci-Bourguignon soliton (g, ξ, λ) ,

iv. M is an expanding if ρrG > 2 (n− 1) ,

v. M is a steady if ρrG = 2 (n− 1) ,

vi. M is a shrinking if ρrG < 2 (n− 1) .

Corollary 8. Let M be an n = (2m+ 1)-dimensional Sasakian manifold and (g, ξ, λ, µ) be an η-Ricci

Bourguignon soliton on M admitting by any of the connections generalized Tanaka Webster, Zamkovoy

or Schouten-Van Kampen. If M is a Ricci pseudosymmetric, then at least one of the following holds:

i. M is a Ricci semisymmetric,

ii. λ = ρrG and µ = 0,

iii.The η-Ricci Bourguignon soliton (g, ξ, λ, µ) reduces to a Ricci-Bourguignon soliton (g, ξ, λ) ,

iv. M is an expanding if ρrG > 0,

v. M is a steady if ρrG = 0,

vi. M is a shrinking if ρrG < 0.
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Definition 2. Let M be an n = (2m+ 1)-dimensional Sasakian manifold admitting general connection

DG. If PG · SG and QG
(
g, SG

)
are linearly dependent, then M is said to be projective Ricci

pseudosymmetric.

In this case, there exists a function LPG on M such that

PG · SG = LPGQG
(
g, SG

)
.

In particular, if LPG = 0, the M is said to be projective Ricci semisymmetric.

Now, let us investigate the condition for an n-dimensional Sasakian manifold admitting a general

connection DG to be projective flat.

Theorem 10. Let M be an n = (2m+ 1)-dimensional Sasakian manifold admitting general connection

DG and (g, ξ, λ, µ) be an η-Ricci Bourguignon soliton on M. If M is a projective flat, then at least one of

the following holds:

i. λ = (n− 1)Λ3 + ρrG and µ = 0,

ii. The η-Ricci Bourguignon soliton (g, ξ, λ, µ) reduces to a Ricci-Bourguignon soliton (g, ξ, λ),

iii. M is an Einstein manifold,

iv. M is an expanding if ρrG > (1− n) Λ3,

v. M is a steady if ρrG = (1− n) Λ3,

vi. M is a shrinking if ρrG < (1− n) Λ3.

Proof. The proof of the theorem is clear from Theorem 1 and (63).

Corollary 9. Let M be an n = (2m+ 1)−dimensional Sasakian manifold admitting quarter-symmetric

metric connection Dq and (g, ξ, λ, µ) be an η-Ricci Bourguignon soliton on M. If M is a projective flat,

then at least one of the following holds:

i. M is an Einstein manifold,

ii. λ = ρrG − 2 (n− 1) and µ = 0,

iii. The η-Ricci Bourguignon soliton (g, ξ, λ, µ) reduces to a Ricci-Bourguignon soliton (g, ξ, λ) ,

iv. M is an expanding if ρrG > 2 (n− 1) ,

v. M is a steady if ρrG = 2 (n− 1) ,

vi. M is a shrinking if ρrG < 2 (n− 1) .

Theorem 11. Let M be an n = (2m+ 1)-dimensional Sasakian manifold admitting general connection

DG and (g, ξ, λ, µ) be an η-Ricci Bourguignon soliton on M. If M is a projective Ricci pseudosymmetric,

then at least one of the following holds:

i) M is a projective Ricci semi symmetric.

ii) λ = (n− 1)Λ3 + ρrG and µ = 0,
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iii) The η-Ricci Bourguignon soliton (g, ξ, λ, µ) reduces to Ricci-Bourguignon soliton (g, ξ, λ).

iii) M is an expanding if ρrG > (1− n) Λ3,

iv) M is a steady if ρrG = (1− n) Λ3,

v) M is a shrinking ρrG < (1− n) Λ3.

Proof. Let’s assume that n = (2m+ 1)-dimensional Sasakian manifold M be a projective Ricci

pseudosymmetric and (g, ξ, λ, µ) be almost η-Ricci Bourguignon soliton on M admitting general

connection. That’s mean(
PG (Θ1,Θ2) · SG

)
(Θ4,Θ5) = LPGQG

(
g, SG

)
(Θ4,Θ5; Θ1,Θ2) ,

for all Θ1,Θ2,Θ4,Θ5 ∈ Γ (TM) . From the last equation, we can easily write

SG
(
PG (Θ1,Θ2)Θ4,Θ5

)
+ SG

(
Θ4, P

G (Θ1,Θ2)Θ5

)
= LPG

{
SG ((Θ1 ∧g Θ2)Θ4,Θ5) + SG (Θ4, (Θ1 ∧g Θ2)Θ5)

}
.

(67)

If we choose Θ5 = ξ in (67) , we get

SG
(
PG (Θ1,Θ2)Θ4, ξ

)
+ SG

(
Θ4, P

G (Θ1,Θ2) ξ
)

= LPG

{
SG ((Θ1 ∧g Θ2)Θ4, ξ) + SG (Θ4, (Θ1 ∧g Θ2) ξ)

}
.

By using (18) , (35) and (36) in the last equality, we have

LPG {− (n− 1)Λ3g (η (Θ1)Θ2 − η (Θ2)Θ1,Θ4)

+ SG (η (Θ2)Θ1 − η (Θ1)Θ2,Θ4)
}
= 0.

(68)

If we use (63) in (68), we have[
(n− 1)Λ3 +

(
ρrG − λ

)]
LPGg (η (Θ1)Θ2 − η (Θ2)Θ1,Θ4) = 0.

This completes the proof.

We can give the following results as follows.

Corollary 10. Let M be an n = (2m+ 1)-dimensional Sasakian manifold admitting quarter-symmetric

metric connection Dq and (g, ξ, λ, µ) be an η-Ricci Bourguignon soliton on M. If M is a projective Ricci

pseudosymmetric, then at least one of the following holds:

i. M is a projective Ricci semisymmetric,

ii. λ = ρrG − 2 (n− 1) and µ = 0,
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iii. The η-Ricci Bourguignon soliton (g, ξ, λ, µ) reduces to Ricci-Bourguignon soliton (g, ξ, λ).

iv. M is an expanding if ρrG > 2 (n− 1) ,

v. M is a steady if ρrG = 2 (n− 1) ,

vi. M is a shrinking if ρrG < 2 (n− 1) .

Corollary 11. Let M be an n = (2m+ 1)-dimensional Sasakian manifold and (g, ξ, λ, µ) be an η-Ricci

Bourguignon soliton on M admitting by any of the connections generalized Tanaka Webster, Zamkovoy

or Schouten-van Kampen. If M is a projective Ricci pseudosymmetric, then at least one of the following

holds:

i. M is a projective Ricci semisymmetric,

ii. η-Ricci Bourguignon soliton (g, ξ, λ, µ) reduces to Ricci-Bourguignon soliton (g, ξ, λ),

iii. λ = ρrG and µ = 0,

iv. M is an expanding if ρrG > 0,

v. M is a steady if ρrG = 0,

vi. M is a shrinking if ρrG < 0.

Definition 3. Let M be an n = (2m+ 1)-dimensional Sasakian manifold admitting general connection

DG. If CG · SG and QG
(
g, SG

)
are linearly dependent, then M is said to be concircular Ricci

pseudosymmetric.

In this case, there exists a function such as LCG on M such that

CG · SG = LCGQG
(
g, SG

)
.

In particular, if LCG = 0, the M is said to be concircular Ricci semisymmetric.

Theorem 12. Let M be an n = (2m+ 1)-dimensional Sasakian manifold admitting general connection

DG and (g, ξ, λ, µ) be an η-Ricci Bourguignon soliton on M. If M is a concircular Ricci pseudosymmetric,

then at least one of the following holds:

i. λ = (n− 1)Λ3 + ρrG and µ = 0,

ii. The η-Ricci Bourguignon soliton (g, ξ, λ, µ) reduces to Ricci-Bourguignon soliton (g, ξ, λ) .

iii. LCG = −
[
Λ3 +

rG

n(n−1)

]
,

iv. M is an expanding if ρrG > (1− n) Λ3,

v. M is a steady if ρrG = (1− n) Λ3,

vi. M is a shrinking ρrG < (1− n) Λ3.

Proof. Let’s assume that n = (2m+ 1)-dimensional Sasakian manifold M be a concircular Ricci

pseudosymmetric and (g, ξ, λ, µ) be almost η-Ricci Bourguignon soliton on M admitting general

connection. That’s mean(
CG (Θ1,Θ2) · SG

)
(Θ4,Θ5) = LCGQG

(
g, SG

)
(Θ4,Θ5; Θ1,Θ2) ,
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for all Θ1,Θ2,Θ4,Θ5 ∈ Γ (TM) . This calculation give us

SG
(
CG (Θ1,Θ2)Θ4,Θ5

)
+ SG

(
Θ4, C

G (Θ1,Θ2)Θ5

)
= LCG

{
SG ((Θ1 ∧g Θ2)Θ4,Θ5) + SG (Θ4, (Θ1 ∧g Θ2)Θ5)

}
.

(69)

If taking Θ5 = ξ in (69) , we get

SG
(
CG (Θ1,Θ2)Θ4, ξ

)
+ SG

(
Θ4, C

G (Θ1,Θ2) ξ
)

= LCG

{
SG ((Θ1 ∧g Θ2)Θ4, ξ) + SG (Θ4, (Θ1 ∧g Θ2) ξ)

}
.

If making use of (18) , (40) and (41) in the last equality, we have

− (n− 1)AΛ3g (η (Θ2)Θ1 − η (Θ1)Θ2,Θ4)

+ASG (η (Θ1)Θ2 − η (Θ2)Θ1,Θ4)

= LCG {− (n− 1)Λ3g (η (Θ1)Θ2 − η (Θ2)Θ1,Θ4)

+ SG (η (Θ2)Θ1 − η (Θ1)Θ2,Θ4)
}
.

(70)

If we use (63) in (70), we have[
(n− 1)Λ3 +

(
ρrG − λ

)]
[A+ LCG ] g (η (Θ1)Θ2 − η (Θ2)Θ1,Θ4) = 0.

This proves our assertions.

We can give some important results of this theorem as follows.

Corollary 12. Let M be an n = (2m+ 1)−dimensional Sasakian manifold admitting general connection

DG and (g, ξ, λ, µ) be an η-Ricci Bourguignon soliton on M. If M is a concircular Ricci semisymmetric,

then at least one of the following holds:

i. M is of scalar curvature rG = −n (n− 1)Λ3,

ii. λ = (n− 1)Λ3 + ρrG and µ = 0,

iii. The η-Ricci Bourguignon soliton (g, ξ, λ, µ) reduces to Ricci-Bourguignon soliton (g, ξ, λ) ,

iv. M is an expanding if ρrG > (1− n) Λ3,

v. M is a steady if ρrG = (1− n) Λ3,

vi. M is a shrinking if ρrG < (1− n) Λ3.

Corollary 13. Let M be an n = (2m+ 1)-dimensional Sasakian manifold admitting quarter-symmetric

metric connection Dq and (g, ξ, λ, µ) be an η-Ricci Bourguignon soliton on M. If M is a concircular Ricci
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pseudosymmetric, then at least one of the following holds:

i. LCG = −
[

rG

n(n−1) − 2
]
,

ii. λ = ρrG − 2 (n− 1) and µ = 0,

iii. The η-Ricci Bourguignon soliton (g, ξ, λ, µ) reduces to Ricci-Bourguignon soliton (g, ξ, λ),

iv. M is an expanding if ρrG > 2 (n− 1) ,

v. M is a steady if ρrG = 2 (n− 1) ,

vi. M is a shrinking if ρrG < 2 (n− 1) .

Corollary 14. Let M be an n = (2m+ 1)-dimensional Sasakian manifold and (g, ξ, λ, µ) be an η-Ricci

Bourguignon soliton on M admitting by any of the connections generalized Tanaka Webster, Zamkovoy or

Schouten-Van Kampen. If M is a concircular Ricci pseudosymmetric, then at least one of the following

holds:

i. LCG = − rG

n(n−1) ,

ii. λ = ρrG and µ = 0,

iii. The η-Ricci Bourguignon soliton (g, ξ, λ, µ) reduces to Ricci-Bourguignon soliton (g, ξ, λ),

iii. M is an expanding if ρrG > 0,

iv. M is a steady if ρrG = 0,

v. M is a shrinking if ρrG < 0.

Theorem 13. Let M be an n = (2m+ 1)−dimensional Sasakian manifold admitting general connection

DG and (g, ξ, λ, µ) be an η-Ricci Bourguignon soliton on M. If M is a concircular flat, then M is of scalar

curvature rG = −n (n− 1)Λ3.

Proof. The proof of the theorem is a direct calculation.
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