E-ISSN: 2581-8147

 $\begin{tabular}{ll} Volume 15, Number 5, 2025, Pages 717-721 \\ https://doi.org/10.34198/ejms.15525.717721 \\ \end{tabular}$

Wardowski Type Characterization of the Interpolative Kannan Fixed Point Theorem

Clement Boateng Ampadu

31 Carrolton Road, Boston, MA 02132-6303, USA e-mail: profampadu@gmail.com

Abstract

In [1], Wardowski introduced the F-contraction, and used it to prove the Banach contraction mapping theorem. In this paper, we introduce a concept of F-interpolative Kannan contraction, and use it prove the interpolative Kannan contraction mapping theorem of [2].

1 Introduction and Preliminaries

Notation 1.1. [1] Ψ will denote the class of all mappings $F : \mathbb{R}_+ \mapsto \mathbb{R}$ satisfying

- (a) F is strictly increasing, that is, for all $\alpha, \beta \in \mathbb{R}_+$ such that $\alpha < \beta$, $F(\alpha) < F(\beta)$.
- (b) For each sequence $\{\alpha_n\}_{n\in\mathbb{N}}$ of positive numbers $\lim_{n\to\infty}\alpha_n=0$ if and only if $\lim_{n\to\infty}F(\alpha_n)=-\infty$.
- (c) There exists $k \in (0,1)$ such that $\lim_{\alpha \to 0^+} \alpha^k F(\alpha) = 0$.

Example 1.2. [1] The following are elements of Ψ

- (a) $F(\alpha) = ln(\alpha)$.
- (b) $F(\alpha) = ln(\alpha) + \alpha$.
- (c) $F(\alpha) = \frac{-1}{\sqrt{\alpha}}$, where $\alpha > 0$.
- (d) $F(\alpha) = ln(\alpha^2 + \alpha)$, where $\alpha > 0$.

Definition 1.3. [1] Let (X,d) be a metric space. A mapping $T: X \mapsto X$ is said to be an F-contraction if there exists $\tau > 0$ and $F \in \Psi$ such that

$$d(Tx, Ty) > 0 \Longrightarrow \tau + F(d(Tx, Ty)) \le F(d(x, y)).$$

Received: March 19, 2025; Accepted: May 30, 2025; Published: June 3, 2025

2020 Mathematics Subject Classification: 47H10, 54H25.

Keywords and phrases: F-contraction, interpolative Kannan contraction, fixed point theorems.

Theorem 1.4. [1] Let (X, d) be a complete metric space, and let $T: X \mapsto X$ be an F-contraction. Then T has a unique fixed point $x^* \in X$, and for every $x_0 \in X$ the sequence $\{T^n x_0\}_{n \in \mathbb{N}}$ is convergent to x^* .

Definition 1.5. [2] Let (X,d) be a metric space. We say that $T: X \mapsto X$ is an interpolative Kannan type contraction, if there exists a constant $\lambda \in [0,1)$ and $\alpha \in (0,1)$ such that

$$d(Tx, Ty) \le \lambda d(x, Tx)^{\alpha} d(y, Ty)^{1-\alpha}$$

for all $x, y \in X \backslash Fix(T)$.

Theorem 1.6. [2] Let (X,d) be a complete metric space, and T be an interpolative Kannan type contraction. Then T has a unique fixed point in X.

Definition 1.7. [3] Let (X,d) be a metric space. We say $T: X \mapsto X$ is an interpolative Berinde weak operator if it satisfies

$$d(Tx, Ty) \le \lambda d(x, y)^{\alpha} d(x, Tx)^{1-\alpha}$$

where $\lambda \in [0,1)$ and $\alpha \in (0,1)$, for all $x,y \in X$, $x,y \notin Fix(T)$.

Alternatively, the interpolative Berinde weak operator is given as follows

Definition 1.8. [3] Let (X,d) be a metric space. We say $T: X \mapsto X$ is an interpolative Berinde weak operator if it satisfies

$$d(Tx, Ty) \le \lambda d(x, y)^{\frac{1}{2}} d(x, Tx)^{\frac{1}{2}}$$

where $\lambda \in [0,1)$, for all $x, y \in X$, $x, y \notin Fix(T)$.

Theorem 1.9. [3] Let (X,d) be a metric space. Suppose $T: X \mapsto X$ is an interpolative Berinde weak operator. If (X,d) is complete, then the fixed point of T exists.

Definition 1.10. [4] Let (X,d) be a metric space. A mapping $T: X \mapsto X$ is called an F-interpolative Berinde weak contraction if there exists $\tau > 0$ and $F \in \Psi$ such that

$$d(Tx, Ty) > 0 \Longrightarrow \tau + F(d(Tx, Ty)) \le F(d(x, y)^{\frac{1}{2}} d(x, Tx)^{\frac{1}{2}}).$$

Theorem 1.11. [4] Let (X,d) be a complete metric space, and let $T: X \mapsto X$ be a continuous F-interpolative Berinde weak contraction. Then T has a fixed point $x^* \in X$, and for every $x_0 \in X$, the sequence $\{T^n x_0\}_{n \in \mathbb{N}}$ is convergent to x^* .

2 Main Result

Definition 2.1. Let (X, d) be a metric space. A mapping $T : X \mapsto X$ is called an F-interpolative Kannan contraction if there exists $\tau > 0$, $\alpha \in (0, 1)$, and $F \in \Psi$ such that

$$d(Tx, Ty) > 0 \Longrightarrow \tau + F(d(Tx, Ty)) \le F\left(\frac{1}{2^{1-\alpha}}d(x, Tx)^{\alpha}d(y, Ty)^{1-\alpha}\right).$$

Example 2.2. Let $F : \mathbb{R}_+ \to \mathbb{R}$ be given by the formula $F(\alpha) = ln(\alpha)$. Observe that F satisfies (a), (b), and (c) of Notation 1.1. for any $\lambda \in (0,1)$. Each mapping $T : X \to X$ satisfying the implication in the previous definition is an F-interpolative Kannan contraction such that

$$d(Tx, Ty) \le \frac{e^{-\tau}}{2^{1-\alpha}} d(x, Tx)^{\alpha} d(y, Ty)^{1-\alpha}$$

for all $x, y \in X \setminus Fix(T)$, $Tx \neq Ty$. Note that for all $x, y \in X \setminus Fix(T)$, such that Tx = Ty, the inequality

$$d(Tx, Ty) \le \frac{e^{-\tau}}{2^{1-\alpha}} d(x, Tx)^{\alpha} d(y, Ty)^{1-\alpha}$$

still holds, that is, T is an interpolative Kannan contraction [2].

Theorem 2.3. Let (X,d) be a complete metric space, and let $T: X \mapsto X$ be a continuous F-interpolative Kannan contraction. Then T has a fixed point $x^* \in X$, and for every $x_0 \in X$, the sequence $\{T^n x_0\}_{n \in \mathbb{N}}$ is convergent to x^* .

Proof. Let $x_0 \in X$ be arbitrary and fixed. Define a sequence $\{x_n\}_{n\in\mathbb{N}} \subset X$ by $x_{n+1} = Tx_n$, $n = 0, 1, 2, \cdots$. Denote $\gamma_n = d(x_n, x_{n+1})$ for $n = 0, 1, 2, \cdots$. If there exists $n_0 \in \mathbb{N}$ for which $x_{n_0+1} = x_{n_0}$, then x_{n_0} is a fixed point of T, and the proof is finished. So we assume $x_n \neq x_{n+1}$ for all $n \in \mathbb{N}$. Then $\gamma_n > 0$ for all $n \in \mathbb{N}$. Since T is an F-interpolative Kannan contraction, we deduce the following

$$\tau + F(\gamma_n) = \tau + F(d(Tx_{n-1}, Tx_n))$$

$$\leq F\left(\frac{1}{2^{1-\alpha}}d(x_{n-1}, Tx_{n-1})^{\alpha}d(x_n, Tx_n)^{1-\alpha}\right)$$

$$= F\left(\frac{1}{2^{1-\alpha}}d(x_{n-1}, x_n)^{\alpha}d(x_n, x_{n+1})^{1-\alpha}\right)$$

$$\leq F\left(\frac{1}{2^{1-\alpha}}d(x_{n-1}, x_n)^{\alpha}(d(x_n, x_{n-1}) + d(x_{n-1}, x_{n+1}))^{1-\alpha}\right)$$

$$\leq F\left(\frac{1}{2^{1-\alpha}}d(x_{n-1}, x_n)^{\alpha}(2d(x_n, x_{n-1}))^{1-\alpha}\right)$$

$$= F(d(x_{n-1}, x_n))$$

$$= F(\gamma_{n-1})$$

which implies

$$F(\gamma_n) \le F(\gamma_{n-1}) - \tau \le F(\gamma_{n-2}) - 2\tau \le \dots \le F(\gamma_0) - n\tau.$$

The above implies that $\lim_{n\to\infty} F(\gamma_n) = -\infty$. It now follows from (b) of Notation 1.1, that $\lim_{n\to\infty} \gamma_n = 0$. From (c) of Notation 1.1, there exists $\lambda \in (0,1)$ such that $\lim_{n\to\infty} \gamma_n^{\lambda} F(\gamma_n) = 0$. Since

$$F(\gamma_n) \le F(\gamma_{n-1}) - \tau \le F(\gamma_{n-2}) - 2\tau \le \dots \le F(\gamma_0) - n\tau$$

we deduce the following

$$\gamma_n^{\lambda} F(\gamma_n) - \gamma_n^{\lambda} F(\gamma_0) \le \gamma_n^{\lambda} (F(\gamma_0) - n\tau) - \gamma_n^{\lambda} F(\gamma_0)$$
$$= -\gamma_n^{\lambda} n\tau$$
$$< 0.$$

Since $\lim_{n\to\infty} \gamma_n = 0$ and $\lim_{n\to\infty} \gamma_n^{\lambda} F(\gamma_n) = 0$. If we take limits in the above inequality, we deduce that $\lim_{n\to\infty} n\gamma_n^{\lambda} = 0$. This suggests that there exists $n_1 \in \mathbb{N}$ such that $n\gamma_n^{\lambda} \leq 1$ for all $n \geq n_1$. Consequently, we have

$$\gamma_n \le \frac{1}{n^{\frac{1}{\lambda}}}$$

for all $n \ge n_1$. Now we show that $\{x_n\}$ is Cauchy. Consider, $m, n \in \mathbb{N}$ such that $m > n \ge n_1$. From the definition of the metric and the above inequality we get

$$d(x_m, x_n) \le \gamma_{m-1} + \gamma_{m-2} + \dots + \gamma_n$$

$$\le \sum_{i=n}^{\infty} \gamma_i$$

$$\le \sum_{i=n}^{\infty} \frac{1}{i^{\frac{1}{\lambda}}}.$$

Since $\sum_{i=n}^{\infty} \frac{1}{i^{\frac{1}{\lambda}}}$ is convergent, it follows from the above inequality that $\{x_n\}$ is a Cauchy sequence. From the completeness of X, there exists $x^* \in X$ such that $\lim_{n\to\infty} x_n = x^*$. Finally, since T is continuous, we deduce the following

$$d(Tx^*, x^*) = \lim_{n \to \infty} d(Tx_n, x_n) = \lim_{n \to \infty} d(x_{n+1}, x_n) = 0$$

which implies that x^* is a fixed point of T, and the proof is finished.

References

- [1] Wardowski, D. (2012). Fixed points of a new type of contractive mappings in complete metric spaces. Fixed Point Theory and Applications, 2012, Article 94. https://doi.org/10.1186/1687-1812-2012-94
- [2] Karapınar, E. (2018). Revisiting the Kannan type contractions via interpolation. Advances in the Theory of Nonlinear Analysis and its Applications, 2(2), 85–87. https://doi.org/10.31197/atnaa.431135
- [3] Ampadu, C. B. (2020). Some fixed point theory results for the interpolative Berinde weak operator. Earthline Journal of Mathematical Sciences, 4(2), 253–271. https://doi.org/10.34198/ejms.4220.253271

[4] Ampadu, C. B. (2021). Wardowski type characterization of the interpolative Berinde weak fixed point theorem. Earthline Journal of Mathematical Sciences, 5(2), 411–414. https://doi.org/10.34198/ejms.5221.411414

This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted, use, distribution and reproduction in any medium, or format for any purpose, even commercially provided the work is properly cited.